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Abstract: An improved version of an earlier introduced algorithm for learning of visuomotor-coordination
has been successfully applied to a simulated robot arm system with five degrees of freedom, two of which
are redundant. The learning algorithm was not affected by this redundancy, and with the improved version
the robot arm system is able to reduce its positioning error to about 5% after only 200 learning steps and
finally to about 0.3% of its linear dimensions after 6000 learning steps. Learning proceeds without the
need of an external teacher by a sequence of trial movements using input signals from a pair of cameras.
The topology conserving map used for the representation of the input-output transformation leads to an
automatic resolution of the redundancy of the arm as it tries to minimize the variation of the joint angles
over the work space. The improved learning algorithm incorporates some immediate feedback, so that now
the robot arm not only is able to adapt to slowly occuring miscalibrations, but also can compensate for
sudden changes in its geometry, such as picking up e.g. a tool.

1. Introduction

Compared to present-day robots, biological motor control systems excel with an enormous degree of flexibility.
This flexibility is to a large extent due to two major factors. The first is the use highly developed sensors, most
notably vision, capable to monitor a multitude of different aspects of ongoing movements simultaneously.
The second factor is the presence of a high amount of redundancy in the muskulo-skeletal system, offering
for most movement goals a wide range of alternative realizations. Both strengths are enhanced further by
the high degree of adaptability that neural systems exhibit for both, sensory perception and selection and
control of movements.

There have been many attempts to capture these remarkable features in biologically inspired neural
network models, see e.g. [5-11]. Our own work has previously considered the problem of adaptive visuo-
motor coordination for a robot, using a non-redundant (simulated) three-link robot arm ([9,10,13]). In
this contribution, we want to focus on the additional issue of controlling a redundant arm and to resolve
its redundancy by the use of a topology conserving map imposing a “smoothness constraint” on the arm
configurations. In addition, we present an improved version of the learning rule used in [9,10,13], which
incorporates a more accurate visual feedback.

For a redundant robot arm, specification of a target location does not yet uniquely fix the configuration
of the arm, but instead allows a wide range of possibilities still compatible with the given end effector location.
The general problem of redundancy resolution is then to choose one of the infinity of possible configurations
such that some overall cost-function or some performance measure is extremalized. Frequently, however, the
precise form of the performance measure is of secondary interest, and serves merely as a tool to impose a
smoothness constraint upon the system, i.e. to ensure that the selected configurations for two nearby end
effector locations differ from each other as little as possible.

However, this is precisely the kind of task solved “naturally” by topology conserving maps. If such map
is used to represent the mapping from task space to joint coordinates, neighboring task coordinates will
activate neighboring nodes in the network for output. Due to the natural tendency of the map to smooth
out any unnecessary variations in the outputs of neighboring nodes, any redundant degrees of freedom will
be used by the map to make the variation between joint configurations for neighboring target points as small



as possible. This method differs from previous approaches, like the pseudo-inverse technique, in that the
optimization of smoothness comes “for free” by the natural learning dynamics of the network and does not
require any auxiliary computations beyond the usual adaptation steps.

In the following Section 2, we will describe the model and the adaptation equations, and in Section 3 .
we will present the results of a simulation for a 5-degree-of-freedom manipulator. As we will not consider
manipulator orientation, this amounts to the presence of two redundant degrees of freedom.

2. The Model

~ In Fig.1 we see the robot arm system consisting of a robot arm of five degrees of freedom and a pair of
cameras providing the spatial information about the location of the object the robot arm shall reach for.
For each trial movement, the target location is chosen randomly within the work space. Each target within
the three-dimensional work space corresponds to a pair of two-dimensional vectors, namely the locations
of the images of the object on the two camera “retinas”. As described in more detail in [9,10,13)], it is
possible to combine both locations to a four-dimensional vector u which then carries the visual information
necessary for the network to extract the spatial position of the object. These four-dimensional vectors form
the input signals for a vector-quantization network of Kohonen-type [2-4]. This network is able to adaptively
discretize the relevant three-dimensional submanifold within the four-dlmensmna.l input space. The highly
nonlinear transformation 0(u) from camera input to joint angles g is then linearized in the vicinity of each
discretization point. Below we describe how the local linear transformations are learnt from trial movements
and simultaneously with the adaptive discretization.

To each discretization point s corresponds a formal neuron of the Kohonen-network; the neuron as-
sociates a location ws within the four-dimensional input space with a five-dimensional vector 0 of joint
angles and a 5 x 4 matrix Ag. Angles 05 and matrix Ag are used to position the end effector at the given
target, if the corresponding input was closer to the discretization point wg than to any other wy, r # s.
The discrefisation occurs in a topologically ordered manner, which means that neighboring neurons of the
Kohonen-network are associated with neighboring subsets of the input space.

The positioning of the end effector consists of two phases, namely a gross-positioning and a subsequent,
usually small correction. For the gross-positioning the robot arm system uses the five-dimensional vector
fs each element of which determines one joint angle. After this gross movement the position of the end
effector in both camera “retinas” will be denoted by a four-dimensional vector v;, which is close to the
four-dimensional retinal target location u. Departing from the ansatz in [9,10,13], we now use the linear
correction term

AG = Ag(u —v;) | ()

for the final corrective joint movement. Here Ag is the Jacobian of the transformation f(u) at the discre-
tisation point s and Af is usually sufficient to correct the error of the gross movement very precisely. The
final position of the end effector is seen by the cameras at v;.

For the learning step of A we use a linear error correction rule of Widrow-Hoff-type [14] which minimizes
the quadratic error

E= l(Aa" — AgAv)? (2)

with Av = v; — v; by using steepest descent. Together with (1) and by choosing the optimal step size we
obtain as an improved estimate A* for Ag :

A* = As+|[|Av]|72 - Ag(u - vp)AvT. 3)

Because of the topologically correct assignment of the neurons to the inputs nelghbormg neurons of 8 have
to learn similar output values f; and Ar. Therefore, A* is used to improve the Jacobians A for all neurons
r in a whole neighborhood of s. This neighborhood is defined by a function hes which is unity at r = s and
decays to zero as r moves away from s. The resulting adjustments are

AT = AQ4 4 cheg(A” - AZY), )



and provide an enormous increase in speed and stability of the convergence of the learning algorithm ([13]).
With the improved Jacobian Ag we are now also able to improve 0-; because é::orrcct - 9-; = Ag(ws—v;)
so that we obtain as an improved estimate §* for g

§* = 05 + A% (ws — u). (5)
Like the Jacobians, the joint angles 0y of neighboring units share their learning steps through
Fre = 031 + eheg (0% - 621%). (6)

3.Simulation Results

In the following we describe the results of a simulation using the same parameter values for ¢ and hyg and the
same network topology (i.e. a three-dimensional 7 x 12 x 4 lattice of 336 neurons) as in ([9,10]). However, in
contrast to this work we now employed the improved adaptation rules (1), (3), (5) and the robot arm with
five degrees of freedom shown in Fig.1. The initial output values for each neuron were chosen at random,
but subject to the constraint that the resulting shape of the robot arm was convex in all cases.

Fig.2 shows the development of the remaining po-
sitioning error after each trial. The error decays
very rapidly to below one percent of its initial
value. Although the number of links is now lar-
ger (5 vs. 3), the decay of the error is faster
than in [9,10,13], which clearly shows the superi-
ority of the new learning rule over that employed
in [9,10,13]. This stems mainly from basing the
corrective fine movement on the actual distance
u — v; remaining after the preceeding gross mo-
vement, instead of using the distance u — wg be-
tween the target and the closest discretization
point. This provides the system with an accu-
rate feedback about its residual error, and ena-
bles the fine movement to compensate even for
sudden and unexpected changes in the geometry
of the arm. To demonstrate this, we suddenly in-
creased at trial 7000 the length of the last arm
segment by about 5% of its linear dimension, a
situation which could result from picking up e.g.
a wrench. As we see from Fig.2, even this per-
turbation causes only a small increase in error,
10.0% which rapidly returns to its baseline value.
: . Due to the redundancy of the arm, each tar-
8.0% get location is compatible with a continuous sub-
set of different arm postures. Initially, as a result
6.0% + of the random initialization of the network, mu-
tually close target locations may give rise to very
different arm postures selected for reaching. As
learning proceeds, those posture differences not
contributing to end effector location get more and
20% 1 . more wiped out and postures which only vary
smoothly over the target space emerge. An ex-
i ’ p y ample is provided by Fig.3, which shows succes-
2000 4000 6000 8000 10000 sive postures traversed if the end effector follows
Fig.2: Positioning error versus number of trials. - a path along a diagonal of the workspace.

Fig.1: The robot arm and the two cameras.
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Fig.3: Stroboscopic rendering of suc-
cessive robot arm postures on traver-
sing a trajectory in the workspace af-

ﬁ, ter learning. Due to the redundancy
;” i of the arm, each trajectory point can
be reached by an infinitude of diffe-
rent postures. Although the system
has never obtained any explicit in-
formation how to resolve this redun-
dancy, the topology conserving pro-
perty of the map used for the lear-
ning algorithm has forced a solution
leading to a particularly smooth mo-
vement.
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