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Abstract: As an example of Kohonen’s self-organizing mapping algorithm we simulate
the formation of a disproportionate representation of the ultrasound spectrum by the
auditory cortex of a bat. We compare the results with experimental data of the cortex
of the mustache bat Pteronotus parnelli rubiginosus and with an analytical calculation.

1. Introduction

A most important task for the brain is a good representation of its sensory data. In
the early stages of sensory processing , this is achieved by connecting cortical neurons
to their peripheral receptors in a topology conserving fashion. In this way, neighbouring
neurons in the cortex can get tuned to similar sensory inputs. The extent of cortical
representations of peripheral sensory fields is greatly varying, depending on the functional
importance of the sensory signals for the species behaviour. Within the cortex, the size
of the population of neurons concerned with particular sensory signals depends also on
the fine analysis necessary for these signals. For example, the fine analysis of visual
information in higher mammals is mainly performed at the fovea centralis. The fovea
centralis is a very small area near the center of the retina with a high density of sensory
cells. Therefore, the resolution in this area is much higher than in the areas of the
retina which are responsible for the periphery of the visual field. Although the fovea
centralis is much smaller than the whole retina, it is represented by the largest part of the
visual cortex. Similar disproportionate representations were found in the somatosensory
system and the motor cortex. For instance, “hand” areas in the somatosensory and
motor cortices of monkeys are of considerably larger relative size than the representation
of the remainder of the body surface (Woolsey 1958).

In the auditive cortex of mammals, however, a comparably disproportionate projec-
tion has not been found. This is probably due to the fact that the acoustic signals used
by most mammals have a broad frequency range and their sound energy is commonly
not concentrated at any particular frequency. The cry of a cat, for example, contains
many harmonics of the principal mode, and no part of the frequency band is more im-
portant for survival than the rest. The auditive cortex of cats has been investigated
very carefully, and the experiments have indicated, as expected, a nearly proportion-
ate tonotopic representation, without any particular preference to special frequencies.
Thereby high-frequency-sensitive neurons have been located on the anterior and low-
frequency-sensitive neurons on the posterior part of the cortex, with neurons sensitive
to intermediate frequencies lying in between. Analogous, previous investigations show a
very similar structure also for the auditive cortex of dogs and monkeys (Merzenich et al.

1975).



2. The auditory cortex of a bat

A completely different case was found, when the auditory cortex of the mustache bat
Pteronotus parnelli rubiginosus from Panama was investigated. Because of the emitted
urlentation siguals, the [requenicy spectiui coutaius soie very inportant parts for the
mustache bat. For orientation, it has several location signals at different frequencies to
measure the distances of objects in its surroundings by the time delay of the echo. In
addition, the mustache bat Pteronotus parnelli rubiginosus uses a very intense orientation
sound at 61 kHz to determine the velocity of objects by measuring the Doppler shift of
the echo. A separate area of the auditory cortex is involved to analyse this Doppler
shift. With this area, Pteronotus parnelli rubiginosus is able to determine the velocity
of enemies and insects, its main food source, to a precision up to 3 cm/s (Suga and Jen

1976).

The Doppler shift of the echo, caused by an object moving in the direction of flight
of the bat, is given by (see e.g. Gerthsen et al. 1986)

Af 2y Vobj
—L = Zbat 0o 1
7, (1)

fe denotes the echolocation signal frequency of 61 kHz, vpqt the velocity of the bat, Vobj
the velocity of the detected object and c the speed of sound. In the formula, the velocity
of the bat has to be multiplied by a factor of two because of a Doppler shift during the
emission of the orientation signal and an additional shift of the same amount during the
reception of the echo. An additional frequency shift of Vopj/c is caused by the motion
of the detected object. If the bat knows its own velocity, it is able to determine Vobj DY
means of the total Doppler shift Af.

The excellent sonar abilities of the bat are certainly essential for its survival. But to
be able to determine a frequency shift of 0.01%, which corresponds approximatly to the
velocity of 3 cm/s mentioned above, a particulary high resolution of the echo near the
frequency of the orientation signal is necessary. Therefore, it would not be surprising, if
the interval of the frequency band around the 61 kHz of the echolocation signal is dis-
proportionally represented at this part of the auditive cortex responsible for the analysis
of the Doppler shift. Corresponding investigations at the auditive cortex of Pteronotus
parnelli rubiginosus have been made and confirm this consideration.

Figure 1 shows the measurements of Suga and Jen (1976). In part B of Fig. 1 we
see that the one-dimensional frequency band extends continuously and monotonically
mainly along the anteroposterior axis. Furthermore, we can recognize the particularly
highly resolved interval around the echolocation frequency of 61 kHz. To emphasize
this extreme disproportionality, the shaded region of Fig. 1A is shown separately in
Fig. 1C. The region of the cortex drawn shaded in Fig. 1A is associated with that part
of the whole frequency band, which is relevant for the orientation of the bat. The
“best frequencies” of the neurons in this region extend from their minimum of 20 kHz
over the echolocation frequency to their maximum of 100 kHz (the "best frequency”
of a neuron is the frequency, which causes its highest excitation). In C, these best
frequencies are plotted versus their location on the anteroposterior axis. We see, that an
exceptionally large fraction of all neurons is tuned to a very small interval centered around
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Fig.1 (A) Dorsolateral view of the cerebrum of the mustache bat Pteronotus parnelli rubig-
inosus. The auditory cortices lie inside the rectangle. (B) Distribution of best frequencies
in the rectangle shown in (A). The area between the dotted lines is the primary auditory
cortex (AI). The areas dorsal or ventral to Al are nonprimary auditory cortices. Orderly
tonotopic representation is encountered in the areas with solid contour lines but it is more
vague in the areas with dashed contour lines. In the areas where contour lines are not drawn,
the tonotopic representation, if present, is obscure. Some of the best frequencies obtained
in these areas are shown by small letters. (C) Distribution of the best frequencies along the
anteroposterior axis in the shaded area in (A). Since the minor differences among the best
frequencies in areas 2 and 3 cannot clearly be shown in (C), the distribution of the best
frequencies in this area is shown by the inset with a larger frequency scale and using open
circles (from Suga and Jen 1976), (P.p.r., Pteronotus parnelli rubiginosus).

the echolocation frequency. Nearly half of this fraction of the auditory cortex is involved
in the analysis of the Doppler shifted echos.. This is consistent with the particularly high
resolution of 0.01%, enabling the bat to orientate itself in its surroundings and to detect
even the wingbeat of small insects.



3. The Model

We want to model the formation of the mapping from the ultrasound spectrum,
received by the mustache bat, to the auditive cortex. Several algorithms for the formation
of such mappings have been suggested (Edelman 1985; Takeuchi 1979; Willshaw 1976,
1979). In the following we will consider a proposal due to Kohonen (Kohonen 1982a,
1982c, 1984). This proposal does not model biological details but captures the most
essential features of such mappings. The aim is to generate a mapping of a space V
of input signals onto an discrete lattice A of formal neurons. The map is generated
by establishing a correspondence between inputs from V and neurons in the lattice
such, that the topological (neighborhood) relationships among the inputs are reflected
as faithfully as possible in the arrangement of the corresponding neurons in the lattice.
The correspondence is obtained iteratively by a sequence of training steps, which can
be formulated in terms of synaptic modification laws (Kohonen 1984) for the neurons.
However, for the purposes of this paper, we present the algorithm in an abstract form
without explicit reference to neurons.

Each input signal is represented by a vector f € V. In our special case, f specifies
the frequency of the received ultrasound signals and therefore is one-dimensional. For
each training step an input f € V' is chosen randomly according to some probability of
occurrence P(f). Each location r of the lattice A carries also a vector wy € V, in our
application the best frequency of neuron r. The vectors wy map lattice locations r to
points in V. In our simulation, the wy are chosen randomly for the initial state of the
mapping, and for each training step this mapping is adjusted by the following two steps:

1. Determine lattice location s for which
—fll = mi —f 2
Hws ”—l_HEUEHWr I (2)

where f is the randomly chosen input signal for the current step.
2. For all sites r in the neighborhood of s (with s included) adjust

Wgnew) _ W£-01d) + ehys(f — Wgold))’ (3)

where 0 < hps < 1 is a prespecified adjustment function of the distance llr — s||
and ¢ is a learning step size. hrs has its maximum at r = s and usually decays to
zero, as ||r — s|| increases.

By decreasing the step size € and the lateral width o of hys slowly with increasing number
of training steps, the algorithm can be shown to gradually yield values for the vectors
wr which define a (discretized) neighborhood conserving mapping between lattice sites
r and points of the input space V (Kohonen, op.cit.).

The formation of the map is driven by a random sequence of sensory input signals
whose probability distribution imprints on the final map in such a way that regions of the
input signal space corresponding to frequent signal occurences are mapped onto larger
areas than regions corresponding to rarer input signals. In our example the input space
P(f) is the one-dimensional ultrasound spectrum of the bat. We model this spectrum by
superimposing the spectra of white noise of a small amplitude and a gaussian distribution



peaked at 61 kHz. The white noise in the frequency interval between 20 and 100 kHz
describes signals of external ultrasound sources. The gaussian distribution at 61 kHz
models the Doppler shifted echolocation signals and has a width of o5 = 0.5 kHz which
corresponds to an average velocity of detected objects of 2 m/s. The relative amplitudes
of the white noise and the gaussian distribution were chosen such that Doppler shifted
echos occur three times as frequently as signals of external ultrasound sources. Figure 2
shows the resulting ultrasound spectrum.

Probability Distribution

20.0 61.0 100.0

Frequency in khz

Fig.2 The probability distribution of the input signals versus the fre-
quency of the signal, as assumed in the model. A Doppler shifted echo oc-
cures three times as frequently as a signal of external ultrasound sources.

4. The Simulation |

In Fig. 1B we see, that the relevant region of the auditive cortex of Pteronotus
parnelli rubiginosus for the resolution of the echolocation signals is very narrow along the
anteroposterior axis. Thus we used for our computer simulation a narrow stripe arranged
as a rectangle of 5 X 25 neurons with the longer side running along the anteroposterior
direction.

Figure 3 shows the Kohonen net during three different phases of the learning process.
Each box represents a neuron and displays the value of its best frequency. Figure 3a
shows the initial state. Each neuron was assigned to a frequency drawn randomly from
the range between 20 and 100 kHz. In Fig. 3b, after 500 learning steps, a continous
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Fig.3a The initial state of
the neurons with their ran-
domly chosen best frequen-
cies. Each neuron is rep-
resented by a box display-
ing the associated best fre-
quency. The neurons are ar-
ranged as a 5 x 25-lattice.

Fig.3b The situation after
500 learning steps. At this
stage the initial random cor-
respondene between neurons
and best frequencies has al-
ready given way to a tono-
topic representation of the
relevant frequency range.

Fig.3c The final state of
the “auditive cortex” after
5000 learning steps. As a
result of the narrow peak
of the probability distribu-
tion of the sensory signals
at 61kHz, a very dispropor-
tionate representation of the
Doppler shifted echolocation
signals has emerged. The as-
sociated neurons constitute
almost half of the whole cor-
tex.



relation between the frequencies as input signals and their assigned location on the net
has evolved. To build up an neighbourhood conserving topology mapping between input
space and neural net is one of the main features of the Kohonen model. The final state
after 5000 learning steps is shown Fig. 3c. We recognize a second main feature of the
model that it represents input signals corresponding to their probability of occurrence.
The extreme peak of the probability density of the input signals causes an occupation of a
large part of the “auditive cortex” with best frequencies from a small interval around the
echolocation frequency of 61 kHz. For this simulation, the time dependency of the step
size € and the lateral width o were chosen as follows: o(t) = o;[1 + ezp(—(5t/tmaz)?)]

where 0; = 5, €(t) = exp(—(5t/tmaz)?). t denotes the number of performed learning
steps. The maximum number of learning steps tymqz Was tmaz = 5000.
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Fig.4 A representation of the results of our computer simulation analogous to the
representation of the experimental data in fig. 1C. The best frequencies of all neurons
are plotted versus their coordinates 1 to 25 along the anteroposterior axis of our cortex
model. For each position there are five neurons, forming a row in Fig. 3.

The simulation shows that it can reproduce the qualitative features of the experi-
mental results, namely the tonotopy of the mapping along the anteroposterior axis and
the disproportionally large representation of the Doppler shifted orientation signals. The
latter property can be seen more easily in Fig. 4, where we chose the same representation
for our theoretical data from Fig. 3 as in Fig. 1C for the measured distribution of the best
frequencies. Each neuron is described by its location 1 to 25 on the anteroposterior axis
of our cortex model and its best frequency. In both diagrams, Fig. 1C and Fig. 4, the
plateau region indicates that nearly half of the whole cortex is devoted to the analysis of

the Doppler shifted echos. The size of this plateau is only determined by the probability
distribution of the input signals.



5. An analytical Solution

With the following two assumptions the final state of Kohonen’s selforganising map-
ping can be described mathematically.

i) We assume that for sufficiently large systems wy is sufficiently slowly varying with
r to allow replacing it by a corresponding smooth function w(r) over a continuum
of r-values. This basically assumes that the topological ordering of the final state
has already occurred.

ii) We assume bijective equilibrium configurations. This also assumes that the input
space is of same dimension as the used neural net.

For the equilibrium state of w(r) we get the differential equation
3 - Veln(P(w(r)) - J) = -.%Arw. (4)

with the Jacobian Jj; = %w;(r) and J = Det(J) (Ritter und Schulten 1986). In the
following we are interested in the one-dimensional case, because the input space of our
model, the ultrasound spectrum, is one-domensional as well. Then, equation (4) can be
written as

d 3d dw

E;‘. In P(w(r) = —55 In (-(i?) . (5)
Since w(r) represents the inverse of the mapping from the input space to the neural
net, the local magnification factor M of the mapping is given by M = 1/J with J =

dr/dw. Now we can describe the relation between local magnification factor M and
signal probability distribution P(f) by the simple dependency

M(=Jt=2

T dw

x P(f)2/3, (6)

We solve this equation for the signal spectrum of Fig. 2. This spectrum can be
written as

Py 1 (f = fe)?
s +(1—P0)\/2_7Fasezp (—W—) fisf<h (M

where 05 = 0.5kHz, fe = 61.0kHz, f| = 20kHz, fo = 100kHz and Py = 1/4. Py is the
probability for the occurence of a stimulus of the white noise. fi and fo are the band
limits of the received ultrasound spectrum. .

P(f) =

The integral over the whole distribution is not exactly equal to unity, but the error
is negligible because o5 is small against fo — f;. Since we have chosen Py = 1/4, Doppler
shifted echolocation signals occur three times as frequent as signals of the homogenous
underground noise (see Fig.2). With equation (6) we get

o _c. (B 1 (f = £)2 )\
EE“C'(fz—fl“l‘P"’\/z?af”””(‘ 207 )) ®)



with C as integration constant. Integrating yields

r(w)-—r1=C-j( L+ (1= Py) ! emp(—w>)2/3df. (9)

P,
fo—Ff V2ros 202

We solve this integral numerically and compare the calculated w(r) with the w(r) of a
simulation.
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Fig.5 The solid curve represents the result of the analytical calculation. The data
provided by the computer simulation are marked by points and agree very well with
the theoretical curve. The dashed line shows the intuitive but incorrect expectation,
namely a magnification factor proportional to the probability density of the input
signals.

For this simulation we used instead of a square lattice as “auditive cortex” a chain of
30 neurons, because our analytical calculations apply only for one-dimensional nets. In
view of the narrow shape of the auditory cortex this should be a justified simplification.
The simulation result and the result of the analytical calculation are compared in Fig. 5,
where we used again the same display format as in Fig. 2C and Fig. 4. The data points of
the simulation are fitted very well by the curve of the analytical calculation. Intuitively
one would expect a local magnification factor M(f) proportional to the probability
density P(f). This would correspond to the dashed curve in Fig. 5, which, however,
significantly deviates from the simulation results.



6. Conclusion

We have investigated the possibility that the highly disproportionate representation
of sound frequencies in the auditory cortex of the bat Pteronotus parnelli rubiginosus
need not be prewired initially but could instead result from adaptation of the neurons to
repeated sensory experiences. Following a suggestion by Kohonen for a neurally plausible
adaptation law (Kohonen 1982a, 1982c, 1984), we compared the representation generated
by a computer simulation and experimental data. We found good qualitative agreement,
provided that the disproportionality of the frequency. representation is reflected in the
statistics of the sensory experiences. For the idealization of a one-dimensional cortex,
the relationship between the probability distribution of the sound frequencies and the
distortion of the representation resulting from the model is calculated analytically. The
results support the idea that very simple adaptation laws together with suitable signal
statistics can lead to the adaptive formation of interesting sensory maps.
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