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Abstract Worldwide, steel and aluminum production and manufacturing is still one
of the major basic industries with a huge amount of material and energy consumption.
Hence, optimization of the various process control schemes which are involved can lead
to significant savings. Artificial Neural Networks are a new information processing tech-
nique which provides a novel approach to process control problems and promises major
improvements. Therefore, Siemens together with FORWISS has been studying and de-
veloping neural control schemes for a number of different process control problems which
occur at hot line rolling mills (Lindhoff et al., 1994). In this paper we give a brief survey
of the different control aspects which were tackled with this new approach and comment
on their current status.

1 Introduction

Production costs at a hot strip rolling mill could be reduced significantly by reducing the
amount of material which is wasted because the produced strip does not meet the quality
requirements posed by the customers. The wasted material has to be brought back into
the production process by re-melting, which requires a tremendous amount of handling
and energy costs.

The most important quality requirements which have to be met concern the shape of the
strip. First of all, the customer requires that across the whole strip of about 1km length
the desired final thickness is achieved within a tolerance of the order of 0.05 millimeters.
In principal, the rolling force control loop is able to achieve this precision. However, after
sending the strip into the mill, it takes a certain amount of time until the control loop
has changed the preset rolling force to the force which actually yields the right thickness.
This amount of time determines the length of the strip head where the thickness is not
within the specified tolerance and, hence, determines the amount of material which has
to be cut at the head of the strip and is wasted. To reduce this time span, process
optimization systems for hot strip mills try to preset the rolling forces such that they
lead to the desired thickness from the beginning and the control loop has to make as few
adjustments as possible. We will describe how Neural Networks can significantly improve
this presetting of the rolling force.

IPORWISS is the German acronym for “Bavarian Research Center for Knowledge-Based Systems”.
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Secondly, the customer requires that across the whole strip the width does not fall
below the desired value, which would ruin the strip. To assure this requirement, the strip
is currently rolled to a width which is about 12mm above the desired value. After the
rolling process, the borders are cut such that the strip exactly obtains the desired width,
which is usually between 800mm and 1600mm. An increase in the accuracy of the width
control would allow to reduce the margin of 12mm and, hence, would significantly reduce
the amount of material which is cut at the borders. To this problem, Neural Networks
have also been successfully applied, which is described in Section 3.

In addition to the closest possible thickness and width tolerances, it is becoming in-
creasingly important to be able to exercise an influence on the strip profile as well. Today
hot strip mills are required to produce minimum profiles, defined in its simplest form as
thickness differences between the middle and the edges of a strip, and to maintain defined
profile values within close tolerances during the milling process. This is especially impor-
tant because the relative strip profile cannot be modified during subsequent cold rolling.
Section 4 describes how Neural Networks can be used to improve the existing models and
strategies for profile control.

There are a number of other quality requirements which concern the inner structure
of the material. In this difficult problem domain, Neural Network approaches have also
been applied successfully (Poppe and Martinetz, 1993). In this short paper, however, we
concentrate only onto the control schemes which determine the geometry of the strip.

2 Rolling Force Control

Figure 1 shows a sketch of a hot strip rolling mill consisting of four stands. At each stand
n a certain relative thickness reduction ¢, = (d,_; —d,)/d,_; has to be achieved. For this
purpose at each stand a rolling force is preset before the slab runs into the mill. To achieve
the right thickness reduction within a tolerance of about 0.03 millimeters, the relation
between the rolling force F,, and the resulting relative thickness reduction ¢, has to be
known very accurately to be able to preset the right rolling force; however, this relation
depends on many quantities and is difficult to describe. Up to now, physical models
of the underlying processes with different parameter settings for different steel qualities
have been employed. The achieved accuracy, however, can still be improved significantly.
Further, this approach requires tedious bookkeeping of the parameter settings for many
hundred different steel qualities, and for each new steel quality the model parameters have
to be adapted from scratch. which is expensive since it requires to first roll a number of
strips with wrong rolling force pre-settings.

The goal of developing a Neural Network approach was not only to improve the estima-
tion accuracy, but also to overcome the weakness of the conventional method of applying
different models to different steel qualities, which does not allow to generalize to new ma-
terials. With a Neural Network which distinguishes between steel qualities by taking into
account the material’s chemical composition, it becomes possible to have a single model
for different steel qualities. Different materials have different input vectors for the Neural
Network. which allows “generalization to new materials and even to get rid completely of
the rather artificial category “steel or aluminum quality”.

At each stand n. the rolling mill in this case consisted of seven stands withn =1,...,7,
a Neural Network .Va(x.|w,) is employed to estimate the rolling force F, which has
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Fig. 1: Sketch of 2 hot wide strip rolling mill consisting of four stands. At each stand
a predetermined thickness reduction of the strip takes place. The final thickness,
width, and profile of the strip is measured after the last stand.

to applied at stand n. The input X, for the Neural Network, a 25-dimensional vector,
contains the concentration of the sixteen most important chemical elements of the material
of the strip plus the physical quantities describing the strip when it has reached the stand
n. e.g. the strip’s width, thickness, temperature, etc. at the respective stand.

The Neural Networks are adaptive through their weights w.. For achieving good per-
formance it turns out that it is necessary to adapt the networks on-line with each strip
which is rolled. The adaptation of the network weights W, is performed through gradient
descent on the quadratic error (Fn — ! w(Xa|Wa))?, which yields

AN (Xa|Wnr)

Aw, = U(Fn - Jw—u(xulwﬂn oW (1)

as the adaptation rule.

The data from 10000 strips. which corresponds roughly to the production of one month,
were available for pretraining the seven networks, i.e. each of the seven networks was
pretrained with 10000 data pairs (F{®, x{). After this pretraining, which might be per-
formed in a batch mode, the networks were tested in an on-line mode with 53812 strips.
During this simulated on-line test, with each strip the estimation errors of the seven net-
works were determined and for each network an adaptation step was performed. The
on-line test simulates the real application at the mill and yields exactly the rolling force
error which would have been achieved if the neural network had been deployed during the
five month when the 33812 strips were rolled. At the end of the on-line test the seven
RMS errors over the 53812 strips were determined and could then be compared with the
errors of the conventional method. The result is shown in Table 1. Averaged over the
seven stands the Neural Network approach was able to achieve a reduction of the RMS
error of the rolling force of 21%, which counts as a very significant improvement. The
neural network approach has now successfully been tested on-line at Krupp Hoesch Stahl
AG, Westfalenhiitte Dortmund, and has become a major component of a commercially
available process optimization system.
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Stand 1 2 3] 4] 5 6] 7]
Conv. method | 1003 802 772 763 769 849 859
Neural Net 767 636 557 549 619 736 754
Tmprovement | +24% | +21% | +28% | +28% | +20% | +13% | +12%

Table 1: The RMS error of the rolling force with the conventional method and the
Neural Network approach (in kN). The Neural Network approach is able to reduce

the RMS error up to 28%.

3 Width Control

Figure 1 shows the so-called finishing mill. At the finishing mill with its horizontal rolls
only the thickness of the strip can be controlled, not its width. The width is determined
in a rolling process with vertical rolls, which is performed before the strip runs into the
finishing mill. The problem, however, is that during the horizontal rolling the width of
the strip does change. To obtain the desired width at the end of the rolling process, it is
necessary to estimate the widening of the strip by the horizontal rolling. A good estimate
for this widening then enables one to reduce the width of the strip by this amount with
the vertical rolling. which then leads to the required final width of the strip after the
whole rolling process.

So far. the estimation of this widening has not been satisfying. It is still necessary to
add a margin of about 12mm to the desired width to make sure that at the end of the
rolling processes the width does not fall below the required value along the whole strip.
To increase the accuracy of this widening estimation, a neural network approach has been
developed. The input x of the neural network, a 24-dimensional vector, contains all the
quantities which might influence the widening of the strip during the horizontal rolling.
These are. e.g., the temperature of the strip, its thickness, the thickness reduction at each
stand. the strip’s width. the rolling velocity, the backward and forward tension at each
stand ete. The output N(x|w) of the network is then an estimation for the widening Ab
of the strip.

To achieve a good performance for the widening estimation. it is again necessary to adapt
the network on-line with each strip which is rolled. The adaptation of the network weights
w is again performed through gradient descent on the quadratic error (Ab — N(x|w))?
with an adaptation step according to (1).

For pretraining the network, data pairs (Ab¥),x(?) from roughly one month production
were used. After this pretraining, the network was again tested in an on-line mode, this
time with 70306 strips. On these 70306 strips, the Neural Network approach achieved
an RMS estimation error of 2.7mm, compared to 3.7mm of the conventional method.
This means that compared to the conventional method the Neural Network achieved a
reduction of the estimation error of 27%. Reducing the margin of 12mm by just one
millimeter translates into savings of about a million dollars per year for a modern hot
wide strip rolling mill. The Neural Network approach has now successfully been deployed
on-line at Thyssen Stahl AG/Beeckerwehrt for about a year.



4 Profile Control

Figure 2 illustrates the definition of the term “profile” and shows an exaggerated “bending
effect” due to the roll separating forces. There are a number of additional effects that
influence the strip profile, such as roll bending or roll thermal crown when the roller
expands due to the heat transferred from the hot strip. All these effects overlap to produce
a very complex overall profile that depends on current settings of the rolling forces and
the geometry of the current strip as well as on the recent process history, because the
thermal crown is influenced, e.g., by the width of previous strips and the pause time
between strips. Thus, it is very difficult to obtain a mathematical model that describes
this highly nonlinear and instationary process up to the desired degree of accuracy.

Roll Force

Roll Gap

Work Roll
Support Roll

Profile =D - %—91

Fig. 2: Definition of the profile as the average thickness difference between the
middle and the edges of a strip.

The main difficulty in the context of profile prediction is that an actual measurement of
the profile can be conducted only after the last stand. This means, there are no measured
values available for the intermediate profiles that could be used to verify or adapt a math-
ematical profile model for each individual stand. Thus, the current use of mathematical
models requires delicate and repeated fine-tuning of various model parameters by hand
which is obviously very expensive due to the time and the material wasted.

Figure 3 shows one possible approach how Neural Networks can be used in combina-
tion with existing mathematical models to improve the prediction capability for the final
profile. The roll-gap profile at each stand is predicted by complex mathematical models
(MM), which include a model of the roll bending and of the thermal crown of the roll,
thus taking the process history into account. The Neural Network is used to combine
the information of the MMs with other process parameters and is pretrained and then
adapted on-line to provide the functional relationship that predicts the resulting profile.

This combination of Neural Networks and mathematical models allows to preserve the
basic knowledge about physical dependencies as expressed by the mathematical models,
while gaining an automated fine-tuning capability through the adaptive Neural Network.
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Fig. 3: One possible combination of a Neural Network with different mathematical
models (MM) to predict the final profile after the rolling process.

Preliminary simulation results with actual data obtained during a 3 month period from a
4-stand hot rolling mill aluminum plant indicate that the overall prediction performance
can be improved by about 20% compared to the mathematical model alone with hand-
tuned parameters. On-line experiments at the mill with the combined MM /NN model
are underway to validate our current simulation results.

5 Summary and Outlook

With a number of real-world applications we have shown that neural networks are able to
improve the conventional control and optimization schemes for hot line rolling mills. Some
of these Neural Network approaches are now major components of commercial process
optimization system for rolling mills. others are still tested but already show promising
results. Still only the first steps have been made. Many further control, optimization
and diagnosis problems in the application domain of steel and aluminum production
and manufacturing are still open to be tackled with Neural Network approaches. After
the potential of Neural Networks has now been clearly demonstrated, the effort will be
further increased with the goal to make Neural Networks a standard technique in process
automation for steel and aluminum production and manufacturing.
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