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A neural network approach to the problem of estimating physical properties of
a material based on the material’s chemical composition is presented. The net-
work, a multilayer perceptron, consists of sigmoidal hidden units and a linear
output unit arranged in a feedforward architecture. As a component of a pro-
cess optimization system which is applied in production processes with a priori
unknown and eventually drifting characteristics, fast on-line adaptation of the
network is performed. A first application has been the estimation of the “rel-
ative yield stress” of different steel qualities, which is necessary for optimizing
the rolling process at a hot line rolling mill. On an independent test data set the
neural network approach achieved a reduction of the average estimation error of
about 15% compared to the current state-of-the-art method.

1. Introduction

Process optimization requires knowledge about the relevant properties of the processed mate-
rial. Depending on the material transformation process to be controlled, physical properties
of the material like its heat capacity, its viscosity, its heat conductivity, or its hardness (just
to mention a few) determine the optimal choice for the control parameter values. In most
cases, however, the respective material property cannot be measured directly but must be
estimated based on the thermodynamic state of the material, i.e., its chemical composition,
its temperature, the given pressure, and eventually geometric quantities. The quality of the
estimation result determines to a great extent the cost effectiveness and the product quality
of the production process.

To be able to estimate material properties based on the thermodynamic state variables,
the respective physical relationship has to be known. A common approach is to try to



describe this relationship through physical models. However, in most cases the underlying
physics is too intricate and/or not understood sufficiently to allow the design of feasible
physical models which yield satisfying estimation results. In addition, the development
of physical models is time consuming, requires precise knowledge about the usually very
complex physical processes, and each model is specific for each material and each material
transformation process.

To increase cost effectiveness and product quality also of intricate material transformation
processes, an approach is necessary which learns the underlying physical relationship instead
of modeling it based on specific prior knowledge. In addition, it would be highly desirable
to have an approach which is generic and can be applied to a variety of materials and
transformation processes. In the following we demonstrate that neural networks as adaptive
modeling schemes have the desired capabilities. We describe the application of a neural
network to the problem of estimating the relative yield stress (plasticity) of steel plates
based on the steel plates’ chemical composition, temperature, and shape. Knowledge about
the relative yield stress is necessary for optimizing rolling processes, in our case the rolling
of steel at a hot line rolling mill.

2. The Neural Network Architecture

The neural network has to model the relation
a= F(C,Si, Mn, P, S, Al, N,Cu,Cr,Ni,Sn,V, Mo, Ti, Nb, B,d, b, T;, Ty)

between the relative yield stress a of the steel plate and the concentrations of the sixteen
chemical additives C, St, ..., B, the steel plate’s thickness d and its width b. T; and T}
denote the temperature of the steel plate before and after the rolling, respectively. These
two temperatures serve as a measure for the actual rolling temperature T', which cannot
be determined explicitly. The concentration of the sixteen chemical additives C, St,..., B is
obtained from a material analysis during the steel cooking,.

Figure 1 shows the neural network architecture, a three-layer feedforward network con-
sisting of ten sigmoidal hidden units and one linear output unit. Each hidden unit receives
the same twenty-dimensional input vector x = (C, Si,..., Nb, B,d, b, T;, Tf). The weights of
the hidden units i, i = 1,...,10, are denoted by w; = (wj, ..., wi), and the weights of the
linear output unit are denoted by w = (wy, ..., wyp). The thresholds of the hidden units and
the output unit are denoted by #; and 6, respectively. Hence, when the network receives
the input x which carries the information about the steel plate to be rolled, the network
generates the output
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Figure 1: The architecture of the
neural network. The network re-
ceives 20 inputs and consists of 10
sigmoidal hidden units plus one lin-
ear output unit.

as an estimation for the relative yield stress of the steel plate, with o(.) = 1/(exp(—.) + 1)
forming the sigmoidal output of the hidden units. The index W denotes the dependence
of the network output Mw(x) on the set W = (w;,6;,w,8) of all network weights and
thresholds.

The estimation error of the network has to be minimized by adapting the network weights
W = (w;,0;,w,0). This is achieved through pattern-by-pattern training, i.e., with each
pattern p through gradient descent on the square error

EW) = (o — Nw(x*))?.

x* comprises the chemical composition, thickness, width, and temperature of the pu-th steel
plate, the actual relative yield stress of which was a*. With each new data pairs (x*, a*) the
network weights are adjusted through gradient descent on E(W), which yields, by calculating

BE(W)
oW

AW = —q (1)

the backpropagation learning rules [1, 2].

3. The Performance

For testing the performance of the neural network approach and comparing it with the
current state-of-the art method, 38442 measured data pairs (x#, a*) from a rolling mill were
made available by the steel manufacturer. The data pairs were ordered chronologically,
corresponding to the order the steel plates were rolled. The first 10000 data pairs formed
the training set which was used for a preadaptation of the network. The following 28442
data pairs were used for on-line testing and training.



(Ecur) (Emt) ﬂ
39.57% 33.70% 14.9%

Table 1: The relative RMS error of the neural network and the current method.

The on-line performance of the network was tested by sequentially presenting data pairs
(x*,a*) from the test set, in the same chronological order as the steel plates were rolled.
With each steel plate the estimation error of the neural network and the current-state-of-the-
art method, respectively, was recorded, and an adaptation step of the network weights was
performed. Then the next data pair was presented, etc.. After 28442 data pairs the average
estimation error of the neural network and the current-state-of-the-art method on these
28442 steel plates was calculated. The test was performed in the laboratory, however, the
result is equivalent to the average estimation error the neural network would have achieved
if it had really been applied at the rolling mill.

The achieved estimation performance is shown in Table 1. (F,.) denotes the root mean
square (RMS) estimation error of the neural network on the data of the test set, relative to
the standard deviation of the test data. (F...) denotes the relative RMS estimation error of
the current state-of-the-art method on the test set, and A is the achieved improvement. The
neural network approach achieves an improvement of 14.9% over the current state-of-the-art
method.

4. Discussion

The results obtained with the straight-forward neural network approach are very promising.
In the application described, the estimation of the relative yield stress of steel, the im-
provement of the estimation quality is so significant that the neural network approach will
replace the current method and soon be a component of a commercially available process
optimization system for rolling mills.

There are a couple of reasons for the favorable results with the neural network approach.
The main reason is the on-line adaptation of the network. The network weights are per-
manently adjusted to the changing characteristics of the rolling mill and the drifts of the
measuring devices for the chemical composition, thickness, width and temperature of the
steel plate. Particularly the calibration of the measuring devices is not very reliable because
of the very hazardous environment at a hot line rolling mill. The presented approach based
on a neural network is able to compensate for these drifts due to its adaptability.
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