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E-mail: martinetz@informatik.uni-luebeck.de

Abstract— Badoiu and Clarkson [1] introduced an extremely
simple incremental algorithm which finds the smallest enclosing
ball around points with ε precision in at most O(ε−2) iteration
steps. A simplified proof for this quadratic scaling is given. Based
on this proof it is shown that the number of steps in fact increases
only like O(ε−1). This new bound leads to a new optimal step
size of the algorithm. With this new step size one can even expect
a O(ε−1/2) scaling.

I. INTRODUCTION

In many applications it is necessary to find the smallest
enclosing ball (SEB) around a set S of n points x ∈ R

d.
See, e.g., references in Kumar et al. [3]. There are more or
less elaborate combinatorial algorithms which provide exact
solutions, also in high dimensions (see e.g. [2]), but without
a polynomial worst-case bound. Badoiu and Clarkson [1]
introduced a very simple, gradient based ”three-liner” which
provides ε-approximate solutions in at most O( nd

ε2
) time. This

iterative algorithm works as follows: Let c be the unknown
center of the SEB of S, and R its radius. Let ct be the guess
for the center at step t. Set c0 = 0, and iterate according to

ct+1 = ct +
1

1 + t
(xt − ct), (1)

with xt as the point of S which is furthest away from ct.
At the latest after 1/ε2 iterations ||ct − c||/R ≤ ε and
(Rt − R)/R ≤ ε is valid, with Rt as the radius of the smallest
enclosing ball around ct [1].

We show that in fact the precision of the solution increases
like O(t−1) with the number of iteration steps. Based on this
new bound a step size different from 1/(1+ t) can be derived
which achieves a precision increase of even O(t−2).

II. A NEW BOUND

Theorem: An ε-approximate SEB is obtained in at most
min(a/ε, 1/ε2) iteration steps, with a as a constant which
depends on S. This requires at most O

(

min(a, 1/ε)nd

ε

)

time.

First we give an alternative proof for the 1/
√

t convergence
bound of ||ct − c||/R. Then we show that ||ct − c||/R also
converges at least as a/t.

Without loss of generality we can set c = 0 and R = 1. We
introduce ut = tct. The iteration rule yields ut+1 = ut + xt,
and the change of the length of ut obeys

u
2
t+1 − u

2
t = 2uT

t xt + x
2
t ≤ 1 , (2)

since according to Lemma 2.1 in [1] always u
T
t xt ≤ 0. But

then ||ut||2 ≤ t, and we obtain

||ct − c||
R

=
||ut||

t
≤

√
t

t
=

1√
t

(t > 0) .

A O(1/t) convergence is given, if u =
∑t−1

τ=0
xτ stays

bounded. This is indeed the case. After a finite number of
iterations t∗ each xt will lie on the surface of the SEB, i.e.
||xt|| = 1. The set of points on the surface we denote by S ′.
With u

′
t we introduce the projection of ut onto the subspace

spanned by these x ∈ S ′. If u
′
t stays bounded, then also u.

From t∗ on, the xt ∈ S for which (xt − ct)
2 is maximal is

the xt ∈ S′ for which u
′T
t xt is minimal. For x ∈ S′

u
T
t xt =

u
′T
t xt ≤ 0 is valid. We discriminate two cases:
i) max||u′||=1 minx∈S′(u′T

x) < 0

ii) max||u′||=1 minx∈S′(u′T
x) = 0

Note that u
′ with ||u′|| = 1 varies only within the subspace

spanned by the x ∈ S ′. If this subspace is of dimension one,
only i) can occur. For i) it can easily be proven that u′

t remains
bounded. Case ii) can be redirected to i), which is a little bit
more tedious.

i) There is a δ > 0 such that for each iteration step u
′T
t xt ≤

−δ||u′
t||. Analog to Equation (2) we obtain

u
′2
t+1 − u

′2
t = 2u′T

t xt + x
2
t

≤ −2δ||u′
t|| + 1 .

The negative contribution to the change of ||u′
t|| increases

with ||u′
t|| and keeps it bounded.

ii) We redirect this case to i). Let u
′
∗, ||u′

∗|| = 1 maximize
minx∈S′(u′T

x). The set of those x ∈ S ′ with u
′T
∗ x = 0 we

denote by S′′. Since u
′
∗ is spanned by the x ∈ S ′, there is at

least one x ∈ S′ for which u
′T
∗ x > 0. The hyperplane defined

by u
′
∗ separates all those x ∈ S ′ which do not belong to S ′′

from the origin by a positive margin. Note that u
′ changes

according to the perceptron learning rule [4]. Hence, after a
finite number of learning steps xt will always be an element
of S′′. Then the xt ∈ S′ that minimizes u

′T
t x is identical to

the xt ∈ S′′ that minimizes u
′′T

t x, where u
′′

t is the projection
of u

′
t onto the subspace spanned by the x ∈ S ′′. Note that the

dimension of S′′ is reduced by at least one compared to S ′.
For x ∈ S′′ again u

T
t xt = u

′T
t xt = u

′′T
t xt ≤ 0 is valid. u

′



remains bounded, if u
′′ remains bounded. We have the same

problem as in the beginning, but within a reduced subspace.
Either case i) or ii) applies. After a finite number of these
recursions the dimension of the respective subspace will be
one. Then only case i) can apply and, hence, ||u|| will stay
bounded.
With a = ||umax||, we finally obtain

||ct − c||
R

≤ min

(

a

t
,

1√
t

)

. (3)

Figure 1 shows the convergence of the algorithm for 5.000
points in 100 dimensions, (a) homogeneously distributed on a
ball of unit radius and (b) uniformly distributed on the vertices
of a unit hypercube. Two points were prespecified to lie on
opposite sites, respectively, to know the exact solution for the
precision measurement. Usually a is smaller in the scenario
(a) than in (b). Computer experiments and intuition, but not
yet a proof, suggest that a ≤

√
2d can be assumed as a very

conservative bound. Since everything happens in a subspace of
at most (n − 1) dimensions, we obtain a ≤ min(

√
2d,

√
2n).

Usually a is much smaller, for the scenario (a) sometimes even
smaller than 1.
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Fig. 1. Double-logarithmic plot of the deviation from the exact SEB center
with the number of iteration steps (n = 5.000, d = 100). This deviation
decreases to zero along a line of slope −1, which demonstrates the O(t−1)
convergence we have proven. The line of slope −1/2 gives the old upper
bound.

III. A NEW STEP SIZE

Now we know that always ||ct − c||/R ≤ ∆t with ∆t =
min

(

a/t, 1/
√

t
)

is valid. With this improved bound we can
improve the step size of algorithm (1). The worst case at step
t is ||ct − c||/R = ∆t together with (xt − c)(ct − c) = 0.
The step size which then minimizes (ct+1 −c)2 − (ct −c)2 is
given by 1/(1+∆−2

t ). As long as t ≤ a2, the better bound is
∆t = 1/

√
t with the step size 1/(1 + t). As soon as t > a2,

however, the a/t bound is better and we should take the step
size 1/(1 + t2/a2).
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Fig. 2. Double-logarithmic plot of the deviation from the exact SEB center
with the number of iteration steps if the improved step size is used (n =
5.000, d = 100). Compared to Fig. 1 We obtain a drastically improved
convergence. It seems that one can expect a O(t−2) decrease.

Figure 2 shows that this modified step size scheduling
indeed leads to an improved convergence of the algorithm. We
took the same scenario as in Fig. 1 and a = min(

√
2d,

√
2n).

In the double-logarithmic plot the deviation of ct from the
exact SEB center decreases along a line of slope −2. It seems
that instead of O(t−1) we now can expect even a O(t−2)
convergence. After 104 steps we are two orders of magnitude
more precise than in Fig. 1.

IV. DISCUSSION

Combined with core sets [1], [3] we obtain the bound
O

(

nd

ε
+ min(a, 1/ε) d

ε3

)

. Obviously, this is advantageous only
for n ≥ ε−2. With a bound on a we can apply the im-
proved step size scheduling. The next step would be to
prove the observed min(b/t2, a/t, 1/

√
t) convergence for this

scheduling. With this bound one could improve the step size
scheduling even further and would again get a better bound for
a further step size improvement. The extension of Badoiu’s and
Clarkson’s algorithm and our convergence analysis to smallest
enclosing balls around balls (SEBB) is straightforward.
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[2] K. Fischer, B. Gärtner, and M. Kutz. Fast smallest-enclosing-ball
computation in high dimensions. Proc. 11th European Symposium on
Algorithms (ESA), pages 630–641, 2003.

[3] P. Kumar, J. S. B. Mitchell, and A. Yıldırım. Computing core-sets
and approximate smallest enclosing hyperspheres in high dimensions.
Algorithm Engineering and Experimentation (ALENEX), Lecture Notes
Comput. Sci., pages 45–55, 2003.

[4] M. Minsky and S. Papert. Perceptrons. MIT Press, 1969.


