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Abstract— Badoiu and Clarkson [1] introduced an extremely
simple incremental algorithm which finds the smallest enclosing
ball around points with ¢ precision in at most O(¢~?) iteration
steps. A simplified proof for this quadratic scaling is given. Based
on this proof it is shown that the number of steps in fact increases
only like O(e’l). This new bound leads to a new optimal step
size of the algorithm. With this new step size one can even expect
a O(e~/?) scaling.

I. INTRODUCTION

In many applications it is necessary to find the smallest
enclosing ball (SEB) around a set S of n points x € R%
See, e.g., references in Kumar et al. [3]. There are more or
less elaborate combinatorial algorithms which provide exact
solutions, also in high dimensions (see e.g. [2]), but without
a polynomial worst-case bound. Badoiu and Clarkson [1]
introduced a very simple, gradient based “three-liner” which
provides e-approximate solutions in at most O(Z—f) time. This
iterative algorithm works as follows: Let ¢ be the unknown
center of the SEB of S, and R its radius. Let c; be the guess
for the center at step £. Set ¢y = 0, and iterate according to
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with x; as the point of S which is furthest away from c;.
At the latest after 1/¢? iterations ||c; — c||/R < € and
(R: — R)/R < ¢ is valid, with R, as the radius of the smallest
enclosing ball around c; [1].

We show that in fact the precision of the solution increases
like O(t~!) with the number of iteration steps. Based on this
new bound a step size different from 1/(1+¢) can be derived
which achieves a precision increase of even O(t~2).

II. A NEw BOUND

Theorem: An e-approximate SEB is obtained in at most
min(a/e, 1/€2) iteration steps, with a as a constant which
depends on S. This requires at most O (min(a, 1/€)™¢) time.

First we give an alternative proof for the 1/1/¢ convergence
bound of ||c; — ¢||/R. Then we show that ||c; — c||/R also
converges at least as a/t.

Without loss of generality we can set c = 0 and R = 1. We
introduce u; = tc;. The iteration rule yields u;y1 = u; + Xy,
and the change of the length of u; obeys

ul, —ul =2uix +x; <1, )

since according to Lemma 2.1 in [1] always u} x; < 0. But
then ||[us||? < t, and we obtain
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A O(1/t) convergence is given, if u = Zi_:lo X, stays
bounded. This is indeed the case. After a finite number of
iterations t* each x; will lie on the surface of the SEB, i.e.
[|x:|| = 1. The set of points on the surface we denote by S’.
With u} we introduce the projection of u; onto the subspace
spanned by these x € S’. If u} stays bounded, then also u.
From t* on, the x; € S for which (x; — ¢;)? is maximal is
the x; € S’ for which u’tht is minimal. For x € S’ ul'x, =
u’ tht < 0 is valid. We discriminate two cases:

(t>0).

i) max)|y=1 minxes/(u’Tx) <0
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ii) max||y|j=1 minkes (u"” x) =0
Note that u’ with ||u’|| = 1 varies only within the subspace
spanned by the x € S’. If this subspace is of dimension one,
only i) can occur. For i) it can easily be proven that u’; remains
bounded. Case ii) can be redirected to i), which is a little bit
more tedious.

i) There is a 6 > 0 such that for each iteration step u’ tht <
—4]|u’¢||. Analog to Equation (2) we obtain
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The negative contribution to the change of ||u’¢|| increases
with ||u’|| and keeps it bounded.

ii) We redirect this case to i). Let u’,, |[u’s|| = 1 maximize
minye s (w'” x). The set of those x € S with w7 x = 0 we
denote by S”. Since u’, is spanned by the x € S’, there is at
least one x € S’ for which w’” x > 0. The hyperplane defined
by u’, separates all those x € S” which do not belong to S”
from the origin by a positive margin. Note that u’ changes
according to the perceptron learning rule [4]. Hence, after a
finite number of learning steps x; will always be an element
of S”. Then the x, € S’ that minimizes u’; x is identical to
the x; € S” that minimizes u”; x, where u”; is the projection
of u’; onto the subspace spanned by the x € S”. Note that the
dimension of S” is reduced bgﬁ at least one compared to S’.

For x € S” again ulx; = v/} x; = u”, x; < 0 is valid. u’



remains bounded, if u” remains bounded. We have the same
problem as in the beginning, but within a reduced subspace.
Either case i) or ii) applies. After a finite number of these
recursions the dimension of the respective subspace will be
one. Then only case i) can apply and, hence, ||u|| will stay
bounded.

With a = ||Wnaz||, we finally obtain
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Figure 1 shows the convergence of the algorithm for 5.000
points in 100 dimensions, (a) homogeneously distributed on a
ball of unit radius and (b) uniformly distributed on the vertices
of a unit hypercube. Two points were prespecified to lie on
opposite sites, respectively, to know the exact solution for the
precision measurement. Usually a is smaller in the scenario
(a) than in (b). Computer experiments and intuition, but not
yet a proof, suggest that a < v/2d can be assumed as a very
conservative bound. Since everything happens in a subspace of
at most (n — 1) dimensions, we obtain a < min(v/2d, v/2n).
Usually a is much smaller, for the scenario (a) sometimes even
smaller than 1.
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Fig. 1. Double-logarithmic plot of the deviation from the exact SEB center

with the number of iteration steps (n = 5.000, d = 100). This deviation
decreases to zero along a line of slope —1, which demonstrates the O(¢t 1)
convergence we have proven. The line of slope —1/2 gives the old upper
bound.

III. A NEw STEP SI1ZE

Now we know that always ||c; — c||/R < A with A; =
min (a/t,1/V/t) is valid. With this improved bound we can
improve the step size of algorithm (1). The worst case at step
tis ||c: — c||/R = A; together with (x; — ¢)(c; —¢) = 0.
The step size which then minimizes (c;11 —c)? — (¢; —¢)? is
given by 1/(1+A;?). As long as t < a?, the better bound is
A; = 1/+/t with the step size 1/(1+t). As soon as t > a2,

however, the a/t bound is better and we should take the step
size 1/(1+t2/a?).
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Fig. 2. Double-logarithmic plot of the deviation from the exact SEB center
with the number of iteration steps if the improved step size is used (n =
5.000, d = 100). Compared to Fig. 1 We obtain a drastically improved
convergence. It seems that one can expect a O(t~2) decrease.

Figure 2 shows that this modified step size scheduling
indeed leads to an improved convergence of the algorithm. We
took the same scenario as in Fig. 1 and a = min(v/2d, v2n).
In the double-logarithmic plot the deviation of c; from the
exact SEB center decreases along a line of slope —2. It seems
that instead of O(t~') we now can expect even a O(t?)
convergence. After 10* steps we are two orders of magnitude
more precise than in Fig. 1.

IV. DISCUSSION

Combined with core sets [1], [3] we obtain the bound
O (22 + min(a, 1/€)%). Obviously, this is advantageous only
for n > € 2. With a bound on a we can apply the im-
proved step size scheduling. The next step would be to
prove the observed min(b/t?, a/t,1/+/t) convergence for this
scheduling. With this bound one could improve the step size
scheduling even further and would again get a better bound for
a further step size improvement. The extension of Badoiu’s and
Clarkson’s algorithm and our convergence analysis to smallest
enclosing balls around balls (SEBB) is straightforward.
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