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Abstract

In recent works, large databases of stimuli and their corresponding olfactory perceptions have
been analyzed to gain an insight into the organization of olfactory perception. Maps of these
perceptions have provided evidence that the olfactory perception space is high dimensional.
Based on these results, the question of the dimensionality of olfactory perception space can
be asked using a new perspective. In this paper the problem of dimensionality is approached
more rigorously and upper bounds on the dimensionality of the olfactory perception space are
estimated.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In color vision, it has been found that three dimensions are su3cient to span the
color perception space [6]. We are able to compose all colors that humans can perceive
using a linear combination of three primary colors, giving every color a three dimen-
sional vector representation in a Euclidean space. In this space, distances between the
perception quality of colors can be measured easily. For olfaction, knowledge about
the structure of such a perception space would reveal essentially new and much more
rigorous ways to quantify relationships between individual odor sensations (like, e.g.
between cherry and apple).
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Recently, Chee-Ruiter [2] proposed a map for olfactory perception based on a set
of odor quality descriptions. She intended to reveal structural information of the olfac-
tory perception space (also called odor space). This map was formulated as a directed
graph without a particular dimensional embedding. In an extension of this framework
[7] the proposed observations were projected into the nearest Euclidean space by us-
ing multidimensional scaling (MDS) [5]. Unfortunately, this nearest space was still
quite high-dimensional. Therefore, self-organizing maps [9] were then applied to de-
rive a two-dimensional map which preserves the high-dimensional topology as well as
possible.
The Euclidean embedding via MDS provided strong quantitative support for the

long-held belief that olfactory perception space is high dimensional [8]. However, we
do not know the features that are characteristic for odor space. We do not even know
the number of features we are looking for. Therefore, it seems to be essential for the
further understanding of olfactory perception to Fnd at least constraints for the minimal
number of features that can explain the variety of sensations of smell.
Historically, there have been only a few approaches that explicitly try to estimate the

dimensions of olfactory perception space. In 1915 Henning [3] proposed his prism of
odors. He used six primary odors to span a three-dimensional prism. In 1974, SchiGman
[10] argued that the odor space can be embedded in only two dimensions. These results
were based on two diGerent sets of experimental data. One consisted of 50 odorants
compared to nine standard odorants, which were chosen to cover a wide range of
olfactory quality. Consequently, a successful embedding into at most nine dimensions
has to be expected. The second set of data was acquired by Woskow [11] consisting
of 25 arbitrarily chosen stimuli that were compared qualitatively by subjects. Some of
these stimuli were mentioned to be so similar that the boiling points had to be checked
to ensure that the bottles were labeled correctly. In this case, it is reasonable to expect
the according dimensionality to be much smaller than 24. For both setups, an initial
factor analysis revealed at least eight dimensions.
Assuming that the olfactory perception space might be more complex than these

initially low-dimensional data sets, we will present a more realistic embedding by using
a signiFcantly larger source of information. In the following, we will again focus on
an estimation of the dimensionality of the odor space. We will explain the techniques
which were employed and present our results on data that has been used so far to
produce maps of olfactory perception [8].

2. Data

Aldrich Chemical Company [1] has published a catalog in which several chemicals
are proFled by a set of several hundred descriptors. These descriptors (like fruity or
cherry) are the terms we commonly use to describe smell sensations. Hence, each
descriptor can be regarded as a point in the olfactory perception space.
Chee-Ruiter analyzed these data and obtained a collection of 851 stimuli, each de-

scribed by 278 descriptors. This set was then reduced onto 171 descriptors by removing
descriptors that are evoked by only a single chemical. The dissimilarities of these 171
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descriptors were estimated using a symmetric distance measure which can be interpreted
as a weighted version of a cross-entropy measure [2,7].
This dissimilarity matrix is used to analyze the dimensionality of the odor space. It

should be mentioned again that these values are not directly evaluated by test subjects.
Instead, we took verbal odor descriptions and measured the similarities between them
using a mathematical measure.

3. Methods

We are looking for a metric representation of the data that is as low dimensional as
possible and still conserves all neighborhood relations. Similar odors should become
close neighbors in this representation, whereas very dissimilar odors should be clearly
seperated.
Generally, given a set of points in a high-dimensional metric space, the Frst step

to evaluate the intrinsic dimensionality of this set would be to calculate its principal
components and the corresponding eigenvalues. The eigenvalues give the variance of
the distribution of these points. For unused dimensions this variance is zero. In other
words, the number of eigenvalues greater than zero equals the smallest number of
dimensions needed [4].
However, the odor space data are not given by a set of points but by a dissimilarity

matrix. If we interpret this matrix as a distance matrix of points in a certain Euclidean
space, we can employ MDS [5], which Fnds the set of points that corresponds to the
dissimilarity matrix as much as possible. If the data are metric, i.e. if the dissimilarity
matrix is a distance matrix, for a (n×n) matrix, (n−1) dimensions are always su3cient
to obtain an exact mapping. However, since there is no known metric measure that
estimates the dissimilarities between diGerent odors accurately, we have to expect the
data to be non-metric to a certain degree. In this case, by deFnition an error-free
representation of the data would not be possible for any metric embedding. MDS tries to
minimize the error between the distances of the embedded points and the dissimilarities
of the corresponding odors. Therefore, if dsim(i; j) is the dissimilarity between two odor
descriptors Oi and Oj, and if d(n−1)

eucl (i; j) denotes the Euclidean distance between the
two descriptors after embedding n points into an (n− 1) dimensional Euclidean space,
the residual error

�(i; j) = (dsim(i; j)− d(n−1)
eucl (i; j))

is the non-metric defect of the single dissimilarity dsim(i; j). This non-metric defect
remains constant for embedding dimensions D¿ (n − 1). However, it might be that
the individual embedding error dsim(i; j)−dDeucl(i; j) remains on this minimal level even
for embedding dimensions D¡ (n−1). Then we assume that the data can be embedded
into an intrinsic subspace. This intrinsic dimension is given by the smallest embedding
dimension for which the embedding error does not increase signiFcantly. This allows
us to deFne a metric embedding error

dDmetric(i; j) = d
D
eucl(i; j)− �(i; j):
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Thus, the overall metric embedding error can then be expressed as

�Dmetric =
∑

i; j

|dsim(i; j)− dDmetric(i; j)|:

Interestingly, the quality of the embedding into a metric space directly depends on the
metric embedding quality while the non-metric defects can be expected to be constant.

4. Results

Initially, we applied MDS on the (171×171) dissimilarity matrix to get 171 points in
R170 with a minimal metric embedding error. On these points we performed principal
component analysis to analyze the eigenvalues of this embedding. In Fig. 1a the sorted
eigenvalues are plotted. For dimensional reduction tasks, usually the largest eigenvalues
that form more than 90% of the energy are discarded. In this case, 68 dimensions are
a reasonable size for an upper dimensional bound. This bound is marked in Fig. 1a
and b. Incidentally, there are zero eigenvalues. This conFrms our assumption of having
an intrinsic dimensionality lower than (n− 1).
Fig. 2 shows scatter plots for diGerent dimensions. In such a plot the dissimilarities

are plotted against their corresponding distances. As expected, in Fig. 2a it can be seen
that the embedding even in R170 is far from perfect, due to the non-metricity of the
data. As described, we used the diGerence to a perfect metric embedding as an estimate
of the constant non-metric defect. The metric embedding quality for 32 dimensions as
well as for 16 and for 64 dimensions—after removing the non-metric defect—can be
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Fig. 1. (a) Dashdotted line shows the sorted eigenvalues for 170D, vertical line marks 90% energy cut-oG
(68D). The metric embedding error (solid curve) increases signiFcantly for dimensions smaller than 32 (see
dashed vertical line). The error was scaled to Ft in the energy graph. (b) Standard deviation and mean
values for simulation runs of MDS. Values become smaller the more the scaled distances correspond to the
given dissimilarities.
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Fig. 2. Scatter plots of odor data after MDS. (a) Small dots illustrate the non-metric defect, i.e. embedding
of 171 points into 170D. Crosses show the metric embedding quality for 32D. (b) For 16D (small dots) the
overall metric embedding quality is not as good as for 32D, for 64D (circles) it is similar to 32D.

seen in the scatter plots in Fig. 2. Interestingly, while there is a signiFcant increase
of embedding quality between 16 and 32 dimensions, the enormous expansion to 64
dimensions does not notably increase the quality.
This becomes even clearer if we take a closer look at the development of the overall

metric embedding error �Dmetric for diGerent dimensions. In Fig. 1a, �Dmetric is shown,
for several dimensions between 2 and 170. Please note that from 170 down to 32
dimensions this error increases only marginally. This would be a typical behavior for
a 32 dimensional structure, because then and only then the dimensional reduction from
170 to 32 would not aGect the embedding quality.
To avoid local minima, typically several runs of MDS with randomized start values

are performed. In Fig. 1b, the overall results for diGerent dimensions are shown. For
dimensions lower than 32, the standard deviation of the resulting distances dDeucl(i; j) as
well as the mean of the corresponding stress values [5] increase signiFcantly. This can
be taken as further evidence for our bounds. The more the metric embedding forces
the distances to diGer from the given dissimilarities, the more local minima occur and
the more ambiguous are the results. As a consequence, the standard deviation of the
dDeucl(i; j) as well as the mean of the stress values increase.

5. Discussion

For the olfactory system, it remains an open issue to deFne quantitatively the com-
plexity of the underlying nervous system. On the other hand, it seems to be intuitively
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clear that the thousands of olfactory receptors combine to a somewhat more simple
representation on the perceptual level, as smelling is a very natural task.
Woskow [11] and SchiGman [10] suspected olfactory perception to be on a com-

plexity level as low as eight or even two dimensions, respectively. Not only have 30
years not been enough to understand these few dimensions of odor space, but both
experimental setups have turned out to be inadequate to describe a high-dimensional
structure in general.
In this work, results are presented that imply a high-dimensional olfactory perception

space. Chee-Ruiter’s data [2] combined with our methods reveal an upper bound of 68
dimensions and a lower bound of at least 32 Euclidean dimensions for the olfactory
perception space.
With the results presented here, new questions might be posed especially about the

neural organization underlying the olfactory perception.
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