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Abstract. The well-known MinOver algorithm is a simple modification of the
perceptron algorithm and provides the maximum margin classifier without a bias
in linearly separable two class classification problems. DoubleMinOver as a slight
modification of MinOver is introduced, which now includes a bias. It is shown
how this simple and iterative procedure can be extended to SoftDoubleMinOver
for classification with soft margins. On benchmarks the extremely simple Soft-
DoubleMinOver algorithm achieves the same classification performance with the
same computational effort as sophisticated Support-Vector-Machine software.

1 Introduction

The Support-Vector-Machine (SVM) [1], [2] has been applied very successfully and
become a standard tool in classification and regression tasks (e.g. [3], [4], [5]). A major
drawback, particularly for industrial applications where easy and robust implementa-
tion is an issue, is the large Quadratic-Optimization problem which has to be solved.
The users have to rely on existing software packages, which are hardly comprehensive
and, in some cases at least, error-free. This is in contrast to most Neural Network ap-
proaches, where learning has to be simple and incremental almost by definition. The
pattern-by-pattern nature of learning in Neural Networks usually leads to simple train-
ing procedures which can easily be implemented. It is desirable to have similar training
procedures also for the SVM.

Several approaches for obtaining more or less simple incremental training proce-
dures for the SVM have been introduced so far [6], [7], [8], [9]. We want to men-
tion in particular the Kernel-Adatron by Friess, Cristianini, and Campbell [6] and the
Sequential-Minimal-Optimization algorithm (SMO) by Platt [7]. The SMO algorithm
by Platt is the most widespread iterative training procedure for SVMs. It is fast and ro-
bust, but it is still not yet of a pattern-by-pattern nature. It is not yet as easy to implement
as one is used from Neural Network approaches.

Therefore, in this paper we will revisit and extend the MinOver algorithm which was
introduced by Krauth and Ḿezard [10] for constructing synaptic weight matrices of op-
timal stability in spin-glass models of Neural Networks. It is well-known that MinOver
also yields the maximum margin hyperplane without a bias in linearly separable clas-
sification problems. We will reformulate MinOver. In this reformulation the MinOver



algorithm is a slight modification of the perceptron learning rule and could hardly be
simpler. Then we extend MinOver to DoubleMinOver which remains as simple as Min-
Over but now provides the maximum margin solution also for linear classifiers with a
bias. Then we will show how DoubleMinOver can be extended to SoftDoubleMinOver
for classification with soft margins. SoftDoubleMinOver yields solutions also in case
the classification problem is not linearly separable. Finally, we will present results and
comparisons on standard benchmark problems.

2 The DoubleMinOver Algorithm

Given a linearly separable set of patternsxi ∈ RD, i = 1, . . . , N with corresponding
class labelsyi ∈ {−1, 1}. We want to find the hyperplane which separates the patterns
of these two classes with maximum margin. The hyperplane for classification is deter-
mined by its normal vectorw ∈ RD and its biasb ∈ R. It achieves a separation of the
two classes, if

yi(wT xi − b) > 0 for all i = 1, . . . , N

is valid. The margin∆ of this separation is given by

∆(w, b) = min
i

[yi(wT xi − b)/||w||].

Maximum margin classification is given by thew∗, ||w∗|| = 1 and b∗ for which
∆(w∗, b∗) = ∆∗ becomes maximal.

A simple and iterative algorithm which provides the maximum margin classification
in linearly separable cases is the well-known MinOver algorithm introduced by [10] in
the context of constructing synaptic weight matrices of optimal stability in spin-glass
models of Neural Networks. However, it only provides the maximum margin solution
if no biasb is included. The MinOver algorithm yields a vectorwt which converges
against the maximum margin solution with increasing number of iterationst. This is
valid as long as a full separation, i.e. a∆∗ > 0, exists. The MinOver algorithm works
like the perceptron algorithm, with the slight modification that with each training stept
the patternxmin(t) out of the training setT = {xi|i = 1, . . . , N} with the worst, i.e.
the minimum distance (overlap)yiwT xi is chosen (b = 0). Hence, the name MinOver.

We now modify MinOver such that a biasb can be included. For this purpose we
divideT into the setT + of patterns with class labelyi = +1 and the setT − of patterns
with class labelyi = −1. Then, instead of looking for the pattern with minimum dis-
tance onT , we look for the patternxmin+(t) with minimum distanceyi(wT xi − b) on
T + and for the patternxmin−(t) with minimum distanceyi(wT xi − b) onT −. Hence,
the name DoubleMinOver.

With tmax as the number of desired iterations, DoubleMinOver works like follows:

0. Sett = 0, choose atmax, and setwt=0 = 0.
1. Determine thexmin+(t) out ofT + and thexmin−(t) out ofT − which

minimizeh (xi) = yiwT
t xi, respectively.

2. Setwt+1 = wt + xmin+(t)− xmin−(t).
3. Sett = t + 1 and go to 1.) ift < tmax.
4. Determinexmin+ andxmin− according to 1. and setb = 1

2 (h (xmin+)− h (xmin−)).



2.1 On the Convergence of DoubleMinOver

For a givenw, the margin∆(w, b) is maximized withb(w) for which the margin to
both classes is equal, i.e., for which

min
xi∈T +

[yi(wT xi − b(w))] = min
xi∈T −

[yi(wT xi − b(w))]

is valid. This leads to the expression of step 4. for the bias

b(w) =
1
2

(
min

xi∈T +
yiwT xi − min

xi∈T −
yiwT xi

)
.

We now have to look for thew which maximizes∆(w) = ∆(w, b(w)). We obtain

∆(w) = min
xi∈T

yi(wT xi − b(w))
||w||

= min
xi∈T +

yiwT xi − b(w)
||w||

= min
xi∈T −

yiwT xi + b(w)
||w||

=
1
2

(
min

xi∈T +

yiwT xi

||w||
+ min

xi∈T −
yiwT xi

||w||

)
.

With
Z =

{
zij = xi − xj | ∀ (i, j) : xi ∈ T +, xj ∈ T −}

we obtain

∆(w) =
1
2

min
zij

wT zij

||w||
.

In this formulation we can directly apply theO(t−1/2) convergence proofs for MinOver
in [10] or [11]. For both methods in fact even aO(t−1) convergence is given [11].

2.2 DoubleMinOver in its dual formulation and with kernels

The vectorwt which determines the dividing hyperplane is given by

wt =
t−1∑
τ=0

(xmin+(τ)− xmin−(τ)) =
∑
xi∈T

yini(t)xi

with ni(t) ∈ N0 as the number of times eachxi has been used for training up to
stept.

∑
xi∈T ni(t) = 2t is valid. In this dual formulation the training step of the

DoubleMinOver algorithm simply consists of searching forxmin+(t) andxmin−(t) and
increasing their correspondingni by one.

In the dual representation the inner productwT x can be written as

wT x =
∑
xi∈T

yinixT
i x . (1)

If the input patternsx ∈ RD are transformed into another (usually higher dimensional)
feature space by a transformationΦ(x), DoubleMinOver can work with the Kernel
K(x,x′) = Φ(x)T Φ(x′) instead of the usual inner product. At each step of the algo-
rithm wherewT xi occures one then uses

wT Φ(xi) =
∑
xj∈T

yjnjK(xj ,xi) = yih (x) . (2)



3 SoftDoubleMinOver

So far linear separability of the patterns was required. Since this is not always the case,
the concept of a ”soft margin” was introduced in [1], [2]. With a soft margin training
patterns are allowed to be misclassified for a certain cost. With DoubleMinOver we can
easily realize a 2-norm soft margin.

In Cristianini and Shawe-Taylor [12] it is shown that solving the 2-norm soft margin
classification problem within a feature space implicitly defined by a kernelK(x,x′) is
equivalent to solving the hard margin problem within a feature space defined by a kernel
K̂(x,x′) for whichK̂(xi,xj) = K(xi,xj)+C−1δij is valid for eachxi,xj ∈ T , with
δij as the Kroneckerδ which is1 for i = j and0 otherwise. Within the feature space
defined byK̂(x,x′) the training data are linearly separable by construction. The scalar
parameterC determines the ”hardness” of the margin. The smallerC, the softer the
margin. ForC →∞ we obtain the dual formulation of DoubleMinOver (hard margin).

The SoftDoubleMinOver algorithm in its dual formulation then works like follows:

0. Sett = 0, choose atmax, and setni = 0 for i = 1, . . . , N .
1. Determinexmin+(t) ∈ T + andxmin−(t) ∈ T − which minimize

ĥ (xi) = yi

∑
xj∈T

yjnj

(
K(xj ,xi) +

δij

C

)
=

ni

C
+ h (xi) .

2. Increasenmin+ andnmin− by one, respectively.
3. Sett = t + 1 and go to 1.) ift < tmax.

4. Determinexmin+ andxmin− according to 1. and setb = 1
2

(
ĥ (xmin+)− ĥ (xmin−)

)
.

Having determined theni andb via SoftDoubleMinOver, the class assignment of a new
patternx takes place, of course, based on the original kernel. The decision depends on
whether ∑

xi∈T
yiniK(xi,x)− b

is larger or smaller than zero.

4 Experimental results on benchmark problems

To validate and compare the performance of SoftDoubleMinOver1 we tested it on a
number of common classification benchmark problems. The classification benchmarks
stem from the UCI2, DELVE3 and STATLOG4 [13] collection. We compare our results

1 A SoftDoubleMinOver package is available athttp://www.inb.uni-luebeck.de/
maxminover

2 UCI Repository:http://www.ics.uci.edu/˜mlearn/MLRepository.html
3 DELVE Datasets:http://www.cs.utoronto.ca/˜delve/index.html
4 STATLOG Datasets:http://www.niaad.liacc.up.pt/statlog/index.html



Table 1. Classification results obtained with SoftDoubleMinOver on standard benchmarks. For
comparison the results obtained with theC-SVM Implementation of the OSU-SVM Toolbox and
those reported in the Fraunhofer benchmark repository are listed.

C2-SDMO OSU-SVM Reference
Benchmark #TR #TESeconds/Iter. ERR Seconds ERR ERRREF

banana 400 4900 0.030/200 11.6± 0.83 0.031 10.4± 0.46 12.0± 0.66
br-cancer 200 77 0.019/100 27.1± 4.96 0.012 28.2± 4.62 26.0± 4.74
diabetis 468 300 0.060/300 23.3± 1.78 0.065 23.1± 1.82 24.0± 1.73
fl-solar 666 400 0.148/300 32.4± 1.80 0.229 32.3± 1.82 32.0± 1.82
german 700 300 0.142/200 24.1± 2.67 0.177 24.0± 2.17 24.0± 2.07
heart 170 100 0.010/100 15.5± 3.22 0.006 15.2± 3.21 16.0± 3.26
image 1300 1010 0.811/2000 13.1± 4.33 0.812 9.8± 0.62 3.0± 0.60
ringnorm 400 7000 0.030/300 2.6± 0.41 0.021 2.5± 0.38 1.7± 0.12
splice 1000 2175 0.615/500 16.1± 0.65 0.654 14.9± 0.78 11.0± 0.66
titanic 150 2051 0.034/1500 22.4± 0.96 0.013 22.3± 1.04 22.0± 1.02
waveform 400 4600 0.047/300 11.4± 0.59 0.045 10.7± 0.53 10.0± 0.43
thyroid 140 75 0.004/200 4.2± 2.40 0.003 4.1± 2.42 4.8± 2.19
twonorm 400 7000 0.057/200 2.4± 0.13 0.033 2.4± 0.14 3.0± 0.23

#Tr : number of training data, #Te : number of test data

with those reported in the SVM-benchmark repository of the Fraunhofer Institute5 and
results we obtained with theC-SVM of the OSU-SVM Matlab Toolbox6 that is based
on SMO [7].

Each result reported in the benchmark repository of the Fraunhofer Institute is based
on 100 different partitionings of the respective benchmark problem data into training
and test sets (Except for the splice and image benchmark which consist of 20 partition-
ings). For classification they used the standard C-SVM with RBF-kernels. The reported
classification result is the average over all 100 realizations. Each partitioning is avail-
able from this repository.

Table 1 lists the average classification errors we obtained with SoftDoubleMinOver
and the OSU-SVM on the different benchmark problems. We used the default param-
eter settings of the OSU-SVM Toolbox. As the Fraunhofer Institute we used RBF-
kernels, and we took their kernel widthsγ. TheC values in SoftDoubleMinOver and
the OSU-SVM where chosen such that the minimum error is obtained. On all bench-
marks the simple SoftDoubleMinOver is as fast as and achieves results comparable to
those of the OSU-SVM and those reported in the Fraunhofer benchmark repository after
only a few training steps. On the ”ringnorm”, the ”image” and the ”splice” benchmark
both the OSU-SVM as well as SoftDoubleMinOver are significantly worse than the
Fraunhofer reference. By either performing more iterations for SoftDoubleMinOver or
tweeking the parameters of the OSU-SVM one can obtain comparable results for these
benchmarks, too.

5 Benchmark Repository:http://ida.first.fraunhofer.de/projects/bench/
benchmarks.htm

6 OSU SVM Classifier Toolbox:http://www.ece.osu.edu/˜maj/osu_svm/



5 Conclusions

The main purpose of this paper is to present a very simple, incremental algorithm which
solves the maximum margin classification problem with or without kernels and with or
without a soft margin. SoftDoubleMinOver as an extension of MinOver learns by sim-
ply iteratively selecting patterns from the training set. Based on previous work it can
be shown that SoftDoubleMinOver converges likeO(t−1) to the exact solution, with
t as the number of iteration steps. The incremental nature of the algorithm allows one
to trade-off the computational time and the precision of the obtained hyperplane. The
computational effort increases linearly with the number of training patternsN . In exper-
iments on standard benchmark problems SoftDoubleMinOver achieves a performance
comparable to the widespread OSU-SVM which is based on the SMO-algorithm. How-
ever, SoftDoubleMinOver as a ”three-liner” is much easier to implement, and with its
pattern-by-pattern nature it might be a good starting point for a real on-line learning
procedure for maximum margin classification.
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