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Abstract. If a simple and fast solution for one-class classification is re-
quired, the most common approach is to assume a Gaussian distribution
for the patterns of the single class. Bayesian classification then leads to
a simple template matching. In this paper we show for two very dif-
ferent applications that the classification performance can be improved
significantly if a more uniform subgaussian instead of a Gaussian class
distribution is assumed. One application is face detection, the other is
the detection of transcription factor binding sites on a genome. As for
the Gaussian, the distance from a template, i.e., the distribution center,
determines a pattern’s class assignment. However, depending on the dis-
tribution assumed, maximum likelihood learning leads to different tem-
plates from the training data. These new templates lead to significant
improvements of the classification performance.

1 Introduction

In many applications a one-class classification problem has to be solved, i.e. the
separation of a single class of patterns from the rest of the pattern space. A
typical example is the detection of faces in images: the class of human faces
has to be separated from all the other possible patterns [3,6,12]. Usually, the
single class occupies only a negligible volume compared the rest of the pattern
space, and only positive examples for this class are useful or even given for
training a classifier. The huge rest of the pattern space can hardly be represented
by examples. Another typical one-class classification problem can be found in
bioinformatics. Gene regulation is controlled by sequence-specific DNA binding
proteins, the so-called transcription factors [2]. Molecular biologists want to know
the sites where these factors bind on a genome. Sequence patterns where binding
takes place form the single class that has to be separated from the rest of all
possible sequence patterns.

Our investigation is further motivated by the computational requirements
for an industrial face detection system that has to find faces in a video stream
in real time. A common and simple approach is to assume a Gaussian distribu-
tion for the single class. More complex would be a mixture of Gaussians or the
application of a support vector machine [6,10]. Therefore simple approaches are
needed, but what performance can be achieved by simple template matching?
As we will see below, Bayesian classification with a Gaussian class distribution
leads to template matching. However, the same is true for every radial symmetric
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and monotonic class distribution, with the form of the distribution determined
only by the template. We focused our investigation on a class of subgaussian
distributions that vary from the Gaussian to the rectangular distribution. Obvi-
ously, the subgaussian model which fits most adequately to the distribution of
the given data will yield the best template.

2 One-class classification with Gaussians

We assume patterns x € RV . Given a pattern x, we ask whether this pattern
belongs to the class c¢. For example, whether an image pattern is a face. Bayes
decision rule answers this based on the posterior class probability P(c|x) of the
given pattern to belong to class ¢. P(c|x) can be derived from the pattern dis-
tribution of class ¢, P(x|c), with the Bayes theorem P(c|x)P(x) = P(x|c)P(c).
P(c) is the prior class probability, and P(x) denotes the prior probability for the
occurrence of pattern x.

A simple model for the probability distribution P(x|c) of patterns from class
c is the Gaussian. Assuming the same prior probability P(x) for all patterns, we
obtain for the posterior class probability

P(c|x) = Ce~x—w)*/20° (1)

with w as the center of the Gaussian, o2 as its variance, and C as a normalization
constant that includes the prior class probability P(c).

We assume that a query pattern x belongs to class ¢, if P(c|x) exceeds a
prespecified value Pu;,. Hence, all the patterns that lie within a sphere with a
certain radius R around w are assumed to belong to class c¢. Thus, the distribu-
tion center w can be regarded as a template for the class c.

Usually, the prior class probability P(c) is not known, and, hence, a prespec-
ified Ppin can not explicitly be translated into a respective radius R. But one
knows that P, increases with decreasing R. By varying R one controls the
specificity /sensitivity of the classifier.

Starting with R = 0 and increasing R against infinity, one obtains the so-
called specificity-sensitivity- or receiver-operating-curve (ROC) of the classifier.

2.1 Determining the template by maximum likelihood estimation

To estimate the template, i.e., the center of the Gaussian distribution, based on
example patterns X = {xy,...,x,} for class ¢ (the training set), we assume that
the training patterns are independently drawn from the class distribution P(x|c).
Then the likelihood L(X|w) that a Gaussian class distribution with center w
generates the data X is given by

L(XlW) — H e—(x—W)2/2¢y2- (2)
xeX
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Fig. 1. Shape of the distribution functions P, (x|c) with w = 0 and o = 0.5 for a = 1,
which is the Gaussian (dash-dotted line), a = 2, 5, 20, 200 (dotted lines), and for a = oo,
which is the rectangular distribution (solid line).

Maximum likelihood estimation (MLE) looks for the w that maximizes this
likelihood and yields as solution

*_1 x
W=l 3)

xeX

Given a Gaussian distribution, the center-of-gravity of the training data is the
MLE for its center, i.e., one takes the average pattern as a template.

3 One-class classification with subgaussians

Instead of being a Gaussian, we now assume the distribution of the patterns of
class ¢ to be a subgaussian

P(x|c) = Coe l0mW)/20%)7, (4)

For a = 1 we obtain the standard Gaussian distribution discussed above. Now
we are interested in a-values larger than one. Fig. 1 illustrates how the shape
of the distribution P(x|c) changes with an increasing a towards a more and
more rectangular (spherical in higher dimensions) distribution. For a — oo the
distribution P(x|c) becomes a (hyper)sphere with P(x|c) = 1 inside the sphere,
i.e., for (x — w)? < 202, and zero outside.

As above, with the assumption of a homogeneous prior P(x) the posterior
class probability P(c|x) has the same shape as the class pattern distribution
P(x|c). Again, all the patterns inside a hypersphere of radius R and center w, are
assigned to class ¢. By varying R, the false acceptance rate (FAR) and the false
rejection rate (FRR) can be influenced along the respective ROC. Compared to
the standard Gaussian distribution, we now obtain different distribution centers
w, i.e., different templates. Should the real pattern distribution rather have the
shape of a sphere than of a Gaussian, the classification performance will improve
with increasing a.

3.1 Determining the center of the subgaussian distribution

As for the Gaussian distribution we determine the center of the subgaussian by
MLE. The likelihood L(X|w) of generating the data X is
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Fig. 2. Face detection templates. From left to right the average face (@ = 1) and the
subgaussian templates are shown for a = 10,20, 100 and a — oc.

L(xX|w) = J el (5)

xeX

Maximizing L(X|w) is equivalent to minimizing

S(w) =) (x—w)*. (6)
xeX

The maximization of the likelihood with respect to w is independent of the
o that is assumed for the model distribution. If we set the derivative of S(w)
to zero, we obtain an equation for the distribution center w},. However, this
equation can be solved explicitly only for & = 1. In this case the solution is,
as expected, the center-of-gravity of the training data. For o > 1, w}, can be
obtained iteratively by gradient descent. The new estimate w?,(t+1) then follows

from the old estimate according to

wh(t+1) = wi(t) +e Y lIx = wh )| (x - wi(t), (7)

xeX

with € as the step size of the gradient descent.

4 Face Detection

As a first example we present the results we obtained for face detection. For
these experiments we used a public database® of gray-scale images with (19 x 19)
pixel resolution. This database is a standard for the evaluation of face detection
systems [3,6,8,10], and thus, is a good basis for comparisons. The database
provides 2,429 faces as a training set, and 472 faces and 23,573 non-faces as a
test set. We flipped the training images horizontally to increase the training set
to 4,858 faces. As in [8], the pixel intensities of each image were normalized to
zero-mean and unit variance.

With the training faces the templates w}, were calculated for different «.. For
a = 1 we simply had to calculate the average face. Starting from this average
face, a was increased step by step. For each «, 100 iterations of the gradient
descent (e = 0.01) were performed. In Fig. 2 we see how the template w? changed
with increasing a.

3 http://www.ai.mit.edu/projects/cbcl/software-datasets/FaceData2.html
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Figure 3 presents the ROC for different templates. The closer such a curve
bends towards the origin, the better the classifier works. Interestingly, the per-
formance increases significantly with increasing a. For the common Gaussian
(¢ = 1) we obtain the worst performance. The best performance is obtained
for & — oo, which yields the center of the spherical distribution as template.
Obviously, the distribution of faces in the pixel space is rather spherical than
Gaussian.

To illustrate the gain in performance in a more global context, we adapted a
ROC obtained with a state-of-the-art approach for face detection by Heisele et
al. [3]. A support vector machine (SVM) with a 2nd degree polynomial kernel
was trained not only on the 2,429 faces that we used, but in addition also on
4,450 non-face images. As a preprocessing step, the histogram of each image
was equalized. Interestingly, with our extremely simple approach of template
matching within the raw pixel space, we obtain a classification performance
which is remarkably close to this much more sophisticated approach of Heisele
et al. (Fig. 3).

5 Detection of protein-DNA binding sites

Genetic information in most biological systems is stored in DNA sequences, con-
sisting of base pairs which are denoted by A (adenine), C (cytosine), G (guanine)
and T (thymine). Regulation of gene expression is mediated by specialized pro-
teins, called transcription factors, which bind to specific regulatory sites on the
genome more tightly than to all other sites. A transcription factor “recognizes”
a binding site by the local sequence, called the binding word.

For understanding and modelling gene regulation, it is necessary to know
at which words a certain transcription factor binds and executes its function.
Classification of words into binding words and non-binding words is therefore
an important task in bioinformatics. Since for experimental reasons non-binding
words have only rarely been described, we have to solve a one-class classification
problem in which only positive samples from the class of binding words are given.
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For representing DNA sequence information by vectors with real-valued
components, a method called “orthogonal coding” is typically used. Let A =
{A,C,G, T} denote the alphabet of base pairs. Orthogonal coding is a map-
ping from A’ to R** which represents a sequence of L nucleotide symbols as
a vector X = (TA1,%C,1,2G,1,2T,1,LA,2,---,2T,L), where zy; = 1 if the [-th
symbol is b and z;; = 0 otherwise. As an example, the orthogonal coding of
the sequence GAT is (0,0,1,0,1,0,0,0,0,0,0,1). By this construction, symbols
are represented by quartets of components, and different symbols correspond to
different, orthogonal quartets.

5.1 Classification of words

The concept presented above to choose a template and to use the distance to the
template as a basis for classification is now applied to the problem of detecting
binding words. A word (pattern) x is assumed to be a binding word if the distance
[|x — w|| of the word to the template w is smaller than a maximum distance
R. Since ||x||* = L is valid within the orthogonal coding scheme, we obtain
|[x —w]||? = L +||w||> — 2wTx. Hence, the condition of a maximum distance R
then is equivalent to the condition that the so-called score w’x of a word has
to exceed a threshold Spin for being a binding word.

The template w is called a “scoring matrix” in the bioinformatics literature,
where the term “matrix” refers to the common practice to arrange the 4L com-
ponents of w in a 4 x L table. The scoring matrix is a good approximation
for calculating the protein-DNA binding energy [1, 5] and, therefore, it is struc-
turally adequate for capturing the binding behaviour of a transcription factor.
The maximum likelihood template now depends on the assumed distribution of
the binding words.

Here we assume the subgaussian class distributions as introduced in Sec-
tion 3. For a = 1, the case of a Gaussian class distribution, we obtain for the
template w the arithmetic mean of the experimentally known binding words. In-
terestingly, this is equivalent to the so-called profile matrix, the most commonly
used approach for binding word detection in bioinformatics [2,9].

As an alternative, we now consider the template resulting from a — oo and
ask, whether this yields improvements similar to those we have seen for face
detection. This template is equivalent to the so-called binding matrix which has
been introduced recently [5].

5.2 Sample application

Since non-binding words are not available, it is not possible to determine ROCs
as for the face detection problem. Instead, we split up the known binding words
into a training set and a test set. The training set is then used to calculate the
templates for ¢ = 1 and a — oo. The respective thresholds are then set to
the largest value that still provides a zero FRR on both the test set and the
training set (i.e. we require that all binding words are classified correctly). The
corresponding FAR cannot directly be determined, because false positives are
not known. However, from theoretical analyses and empirical observation it is
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Fig. 4. Box plot showing the gain in speci-
N ficity achieved with the assumption of a
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scribed in the text. Boxes encompass the
T —T middle quartiles, the bar depicts the me-
profile binding dian and the whiskers extend to the ex-
treme values.
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known that the ratio of k, the number of words accepted by the transcription
factor, to K = 4% the number of all words, has to be small [7,4]. Quantitatively,
k/K = 1073 is, on average, a reasonable estimate and k/K < 10~2 can definitely
be expected to be satisfied. Thus, the amount by which the k/K ratio obtained
for the classifier exceeds 1072 is a measure for the FAR which corresponds to
the zero FRR.

Of course, it would be easy to achieve a low k/K at FRR=0, if we could
choose a classifier of arbitrary structure. However, we want to minimize the
k/K ratio with a template (matrix) classifier since this approach is structurally
adequate from biochemical and biophysical considerations. As we will see, within
this approach it is not easy to achieve a k/K ratio which is in the right order of
magnitude. In particular, the profile matrix typically leads to a k/K ratio which
indicates a large FAR. Finding a template (matrix) that allows for a lower k/K
value would therefore be a significant improvement.

Fig. 4 shows the results we achieved for « = 1 and @ — oo on a set of 73
binding words of the SOX-9 transcription factor provided by the TRANSFAC
database [11] (TRANSFAC matrix M00410). We created training sets by ran-
domly drawing 2/3 of the binding words. Templates were computed based on
these training sets, and for each template, the threshold was set to the maximum
value at which all known binding words, including those not used for training,
are classified correctly. Then the corresponding k/K ratios were determined. For
an extreme subgaussian distribution (o = 00) we achieve a reduction of k/K by
half an order of magnitude in comparison to the classifier based on the Gaussian
distribution (a = 1), which corresponds to the common profile matrix.

6 Conclusions

We have shown that the assumption of a subgaussian class distribution can
increase one-class classification performance significantly compared to the wide-
spread assumption of a Gaussian class distribution. This is obtained with simple
and fast template matching as in case of the traditional Bayesian approach for
Gaussian class distributions. It is just that the template that results from as-
suming the subgaussian class distribution seems to be more appropriate. With
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the framework presented in this paper, the shape of the distribution is steered
by a single continuous parameter «, with a = 1 for the standard Gaussian and
a — oo for a rectangular distribution. The corresponding templates can be deter-
mined by simple gradient descent. The performance increase was shown for two
example problems as different as face finding and DNA-binding site detection.
For face detection, the increase was robust against different methods of image
preprocessing like histogram normalization, subtraction of best-fit linear plane,
and edge extraction. This suggests that there might be quite a number situa-
tions and problems where the assumption of a subgaussian instead of a Gaussian
pattern distribution would be more appropriate and thus lead to superior results
without additional computational costs for the classification task.
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