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Abstract

In this paper we describe an e4ort to project an olfactory perception database onto the nearest
high dimensional Euclidean space using multidimensional scaling. This yields an independent
Euclidean interpretation of odor perception, whether this space is metric or not. Self-organizing
maps were then applied to produce two-dimensional maps of the Euclidean approximation of
olfactory perception space. These maps provide new knowledge about complexity and potentially
the functionality of the sense of smell from the point of view of human odor perception. This
report is based on a recent thesis by Madany Mamlouk, Quantifying olfactory perception, at the
University of L;ubeck, Germany.
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1. Introduction

While considerable e4ort has been spent trying to relate the chemical structure of
odorants to odor perception, very little is yet understood about the larger organization
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of human odor perception. Instead, both the perfume industry and olfactory researchers
rely on sets of data such as Dravnieks’ Atlas of Odor Character ProGles [3] or other
compilations which describe the odors elicited by a particular chemical, e.g. Hexyl
Butyrate, using a set of odor descriptors, e.g. fruity, sweet and pineapple.

Over the last several years we have been examining the relationship between the
odor descriptors found in these data sets in an attempt to determine whether they
might reveal an underlying structure in human odor perception. Our initial e4orts using
an information theoretic approach suggested that, in fact, there might be an overall
organization to the space of human olfactory perception [2].

In this paper we extend this e4ort using a combination of mapping techniques. The
structures revealed could provide scientists a more rigorous way to select odorants for
human psychophysical experiments as well as a more solid foundation for systems,
cellular and molecular studies of the biology of olfaction.

2. Method

Our analysis of odor descriptors and olfactory perception space is based on the data set
found in the Aldrich Flavor and Fragrances Catalog [1], including 851 stimuli using 278
odor descriptors. For estimating dissimilarities between di4erent odors, intuitively most
satisfying results have been obtained using the subdimensional distance ds, deGned as

ds(Ox; Oy) =
∑n

i=1 (|oxi − oyi | · oxi ) + (
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where Oj = (oj1 ; : : : ; o
j
n) is the n-dimensional binary proGle or feature vector of odor j.

Ox is assumed to be less prominent than Oy, which is expressing the subdimensional
characteristic of this dissimilarity measure. Also, it can be interpreted as a weighted
version of a cross-entropy measure [2].

We used multidimensional scaling (MDS) to extract information for a reasonable
map from a (278 × 278) odor dissimilarity matrix. There is no a priori reason to ex-
pect that the odor space is metric [7], but MDS is projecting these probably non-metric
dissimilarities to the nearest Euclidean space, which then is a metric space. MDS is
a common method for dimensional reduction and graphical representation of multidi-
mensional data, but it can be used to estimate the dimensionality of a data set as well
[8], which turned out to be an interesting feature in analyzing this data set.

To avoid local minima, Monte-Carlo simulation techniques were used. Because of the
rotational invariance of MDS the standard deviation of the resulting distance matrices
has been used to control stability during simulation. Surprisingly, the high dimensional
scaling of odor space was found to be statistically stable with an average of only 4%
standard deviation using 95% conGdence intervals. In Fig. 1, this stability can be seen
for MDS stress values, which describe the tension between the given dissimilarities
and the resulting Euclidean distances [5]. A dimension of about 32 appeared to be a
good estimation in terms of the trade-o4 between a high and statistically stable stress
relaxation and the highest sustainable dimensional reduction. It should be mentioned
again that the database is deduced from psychophysical data, therefore while there is
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Fig. 1. Standard deviation and mean values of stress values for Monte-Carlo simulation runs of MDS on
Aldrich database. Stress values become smaller the more the scaled distances and the given dissimilarities
correspond.

Fig. 2. Olfactory perception map for scaled data of the Aldrich database. (a) The distances between neighbor-
ing units of the SOM are shown. Large distances are bright. (b) SOM is reassigned using k-means clustering
to visualize fragmentations, e.g. cluster 15 is located in the lower right corner and right below the center.

no noise, inaccuracies are introduced into the dataset because subjects proGling their
olfactory sensations used discrete labels.

To visualize the high dimensional results of MDS on a low dimensional map, we
used a two-dimensional self-organizing mapping (SOM, [6]), which preserves the gen-
eral topology of the odor data, i.e. if two points are close-by on the map, they should
be close-by in the high dimensional input space as well.

In Fig. 2, the grid elements are reassigned after learning by k-means clustering [4]
to denote potential fragmentations on the Gnal map. We used the “SOM Toolbox for
Matlab” by Vesanto et al. [9].
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3. Results

The use of MDS onto the given odor dissimilarity matrix resulted in an appropri-
ate thirty-two-dimensional Euclidean approximation of olfactory perception space. The
quality of the dimensional reduction was tested using stress-values as well as scatter
plots. This analysis indicated that MDS on higher dimensions did not increase the qual-
ity of the projection, while lower dimensions increased the stress-values signiGcantly.
Fig. 2 shows the resulting toroid map of the olfactory perception space, i.e. its sides
are continuous.

Because SOMs have been used to reduce the dimensionality of the olfactory percep-
tion space, some distortion of the map is inevitable. In particular, in some cases the
lower dimensional map shows odor descriptors as neighbors, when they are not in the
high dimensional space. This condition is indicated in Fig. 2a by the bright shading of
common links.

Fig. 3. Odor perception map labeled with odor descriptors, each descriptor has been plotted onto its nearest
neighbor on the SOM. The shaded areas are corresponding to the clusters in Fig. 2.
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Fig. 4. Localization of all odors evoked by compounds carrying Nitrogen and Sulfur. The brighter a cluster
is, the higher is the percentage of its odors that are evoked by odorants containing Nitrogen (a) and Sulfur
(b). Compounds that contain both Nitrogen and Sulfur are included as well.

Conversely, in some cases neighbors in odor space might not be neighbors on the
map. This is indicated by Fig. 2b, where the additional clustering of the SOM by
k-mean clustering can be used to Gnd such fragmented clusters.

Please note that fragmentations still persist in the labeled map as shown in Fig. 3,
for example celery, caraway and pleasant are embedded in fragmented cluster 15, thus
they are neighbors in odor space. Odor descriptors that carry only redundant global
information are omitted on this map, for example grapefruit, which is only evoked by
a single stimulus in our data set.

One interesting feature of these maps is that they suggest an ordering of relatedness
in odor perception. For example, without such a map, it is not clear how the odor
perception of apple, banana and cherry might be ordered. Using the label map in Fig.
3 and the cluster map in Fig. 2b, we Gnd that cherry belongs to cluster 17, apple to
cluster 19 and banana to cluster 11. Because of the toroid character of the map, clusters
17 and 19 are neighbors, and clusters 19 and 11 are next to each other. However, there
is always at least one cluster between clusters 11 and 17.

Thus, these odor maps suggest that the odor percept cherry is more closely related
in perceptual space to apple than to banana, while apple shares an association with
both cherry and banana.

Finally, perhaps the most surprising result of our previous analysis of odor percep-
tion space [2] was the Gnding that the descriptors used to classify molecules contain-
ing nitrogen or sulfur were clearly segregated in the odor perception maps. Because
these molecules are key atoms in di4erent metabolic cycles, it was proposed that hu-
man olfactory perception reQected the organization of animal and plant metabolism.
As shown in Fig. 4, this result is also apparent using these new mapping
techniques.
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4. Discussion

In this study, we have expressed relationships between odors using techniques which
generate a solid topology conserving map. The approximation via MDS provides strong
quantitative support for the long held belief that olfactory perception space is high
dimensional. The resulting maps also allow us to order odor perception in a way not
previously possible.

We believe that these maps can provide a new foundation for studies of the olfactory
system that is related to the structure of olfactory perception rather than strictly based
on the structure of chemical compounds. Many e4orts to construct an understanding of
olfactory perception based primarily on structural di4erences in chemical compounds
have failed. Using the techniques described here, relationships between single odors
can be quantiGed in a fundamentally new and more rigorous way. New questions can
also be asked about the molecular, cellular and systems biology underlying olfactory
perception.

To date, most e4orts, focusing on the organization of receptors or neural responses,
have constructed maps based on general properties of chemicals [7,10]. This approach
however, has had only marginal success in relating the structure of chemical stimuli
to perception. The hypothesis we continue to pursue, that human olfactory perception
reQects the metabolic relationships between molecules in the natural environment has
been supported by this further analysis and potentially represents a major step forward
in understanding olfaction.
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