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Abstract

This paper examines how methods inspired by biological processes can be applied to the design of large-scale environment-aware
sensor networks. Our ultimate goal are systems containing thousands of sensors spanning large building complexes or even cities
that can cooperate to detect and analyse complex situations. We discuss the problems involved in implementing such systems
using conventional engineering approaches, sketch a system architecture that can circumvent these problems by evolving a system
optimised for a given application domain from a rough generic template, and discuss initial ideas for using biological analogies to
perform the required adaptations. These include low-level attention, brain plasticity, and genetic regulatory networks.

1 Introduction

The classical engineering approach to system design requires an
exact specification of system response for every possible situa-
tion that the system might encounter. This can be achieved by
providing an analytical response function, by enumerating all
relevant possibilities, or a combination of both. While highly
successful as the basis for most of today’s technical devices and
systems, this approach is increasingly reaching its limits as sys-
tems get more and more complex and have to deal with the dy-
namics of the real world. In such domains, the possible system
states and the corresponding system responses are usually ana-
Iytically intractable. At the same time, the enumeration strategy
is not feasible due to combinatorial state space explosion.

To deal with the above problem, the organic computing concept
takes inspiration from the way biological organisms are able to
adapt to a complex dynamic environment. Rather than to exactly
specify every single state and response the idea is to: (i) sketch
a rough outline of the system containing plausible possibilities
for key states and responses, and (ii) provide a set of rules that
allow the system to autonomously adapt and evolve the appro-
priate states and responses over the course of its lifetime. As
obvious as the above might seem, in particular since it has been
functioning for biological systems for millions of years, today it
is far from clear where, how, and if at all this idea can be applied
to technical systems. This paper presents the results of an ini-
tial, conceptual architecture study that aims to answer the above
question. To this end, we look at a specific class of systems that
has recently generated much interest: large-scale environment-
aware sensor networks and discuss (i) the problems involved in
implementing such systems using conventional engineering ap-
proaches, (ii) a system architecture that can circumvent these
problems by evolving a system optimised for a given applica-
tion domain from a rough generic template, and (ii) specific ini-
tial ideas for using biological analogies to perform the required
adaptation.

Self-organisation in large scale sensor networks is a very active
research topic [10] that includes some large projects [22, 11, 9])
in which self-organisation is mostly used as a means of opti-
mising routing with respect to resource consumption and ser-
vice discovery. By contrast, we investigate the use of bioin-

spired adaptation methods as means of improving the ability of
the system to extract meaning from the environment and satisfy
high-level goals. Resource consumption related system-state
concerns drive the adaptation. In terms of bioinspired analo-
gies other sensor network project have mostly looked at areas
like swarm intelligence and genetic algorithms. Brain inspired
methods have so far been given little attention, partially because
of the focus on routing and resource consumption mentioned
above.

In the general area of situation awareness current work has had
some success in modelling and detecting predefined situations
and user activities (e.g. [12, 34, 33, 35, 23]) and using this in-
formation in so-called context-sensitive applications (e.g. [29,
5, 16]). However, the success is still mostly limited to simple
situations in a constrained environment. Also, reliability is still
a major issue.

In addition to looking at systems order of magnitude larger and
more complex than the state of the art, an important aspect of
our work is that we look beyond the use of one general solution
for all situations. Instead we focus on the ability to adapt to the
situation using multiple methods and pre-given patterns.
Considering the general area of organic systems, concepts are
just beginning to emerge. Initial ideas that were presented at [1]
include, among others, an adaptive approach to the control of
traffic lights described by Rochner and Mueller-Schloer, organic
middleware concepts presented by Trumler, Bagci, Petzold and
Ungerer, concepts for computer crash management described by
Haase and Eschmann, and gaze-based human-machine interac-
tion [8]. Bioinspired methods as used in computer vision and
genetic algorithms will be discussed in more detail in Section 4.

2 Problem Description and Example Sce-
nario

We deal with sensor networks spanning large building complexes
or even cities and analyse how such systems can be made to
function as a single coherent system that uses a complex, dy-
namically evolving world model to extract high-level meaning
from the events in the environment. Our approach is based
on appropriate integration of classical proof-based and bioin-
spired, self organising methods. As a consequence,we start with



a static, generic system template devised by using conventional
engineering techniques and apply bioinspired self organisation
methods to evolve it into an application-specific sensor network
that is able to assign high-level meaning to events in a specific,
changing environment.

2.1 Example Scenario

To illustrate our vision of large-scale environment-aware sensor
networks and to outline the associated problems, we begin with
a relevant example scenario that is both very rich and scalable:
an intelligent hospital.

2.1.1 Sensing Modalities

A single hospital room might be equipped with a subset of the
following information sources
e Sensors in the bed (bed configuration and patient pos-
ture) and other furniture.
Identification of all equipment and personnel in the room
RFID readers in the bed and table able to identify medi-
cine vials, food and drink containers etc.
e Location for selected equipment and personnel (ultra-
sonic or through carpet) in the room
Ambient sound sensors in the room
Personal microphones
Motion sensors in the hospital gowns of the medical per-
sonnel for activity recognition
e Information from equipment about settings, activity, and
measurement results
e Cameras in the room.
In addition, different systems for tracking personnel around the
halls (e.g. personal inertial navigation, RFID, WLAN location,
ultrasonic) might be available. RFID readers and switches in-
tegrated in appropriate cabinets could be able to track who has
taken what medicine out of which cabinet. Something similar
could be done for simple and yet important tools like syringes
or scalpels.

2.1.2 World Model and Extraction of Meaning

In principle, the above sensors provide enough information to
fairly exactly characterise the environment. Examples of the
type of information that we would like to be extracted include:

1. Primitive events and actions such as taking a particular
measurement on the patient, having a sip of water, stand-
ing up, taking a particular vial out of a cabinet etc.

2. Compound activities such as administering medication,
eating lunch, or performing a particular examination.

3. Localised processes and situations such as a doctor mak-
ing his rounds, a personnel meeting, or an operation tak-
ing place.

4. Global processes and trends such as a shift change, equip-
ment shortage, long term changes in response times to
emergencies etc.

2.1.3 System Goals

Properly used, the above information could increase the relia-
bility and improve the efficiency of a variety of processes in the
hospital. With respect to a particular patient, this includes en-
forcing timely and correct medication or more accurate tracking

of the patient’s condition by combining information about ac-
tivity, eating and sleeping patterns with the medical parameters.
For the personnel, such a system could provide context sensi-
tive information and notification, help optimise daily schedules,
and assist in personal performance analysis. On the organisa-
tional level, duty rosters of the personnel, equipment usage, and
patient assignments could be optimised.

2.2 Issues to Consider

In a large hospital complex with hundreds of rooms and peo-
ple, we are looking at a system with thousands or even tens of
thousands of sensors. The sensors need to recognise hundreds of
different isolated event types, combine them, include additional
information and evaluate it with respect to the high-level system
goals. Similar numbers of sensors can be found in many other
application domains such as factories and large office buildings.
By contrast, the current state of the art of commercial systems
is the use of sensor networks to monitor selected physical para-
meters such as room temperatures, tire pressures etc. in simple
control loops. Research in ambient intelligence has had some
success in going a step further to model and detect predefined
situations and user activities and uses this information in so-
called context sensitive applications. However, the success is
still mostly limited to simple situations in a constrained envi-
ronment. In addition, the recognition often lacks the robustness
needed for real-life applications. In summary, the state of the art
is still far from the above vision of extracting high-level mean-
ing in large sensor networks such as the one described above.
The reasons for this are in part well known problems facing any
attempt aiming at creating an environment-aware system and
partly issues specific to the ambient sensor network approach.
They can be summarised under three headings: complexity, dy-
namic development, and resource constraints.

2.2.1 Complexity

There are three main sources of complexity that the system needs
to deal with:

e Model Complexity. Activities and situation in the envi-
ronment can rarely be viewed in isolation. Instead, the
different levels and parts of the envisioned model hierar-
chy are interlinked in a complex manner. Considering the
scale at which the envisioned networks are supposed to
operate, any attempt to exactly specify all possible vari-
ants of such interactions is infeasible.

e Environment Variability. Human actions and interactions
tend to be highly variable. Situations that on an abstract
level belong to the same class and should be recognised
by the system as identical can be quite different on a
more detailed level. Such differences can emerge sponta-
neously as a reaction to specific events, or be a matter of
personal style and preferences. Again, an attempt to pre-
engineer a system to account for all possibilities faces
combinatorial state explosion problems.

e Input Space Complexity. The size of the envisioned sen-
sor networks implies that it is able to collect a large amount
of information. This is of course necessary to be able to
monitor complex situations in a large intelligent space.
On the other hand, it implies that the dimension of the
input space is so large that conventional recognition and



clustering algorithms have problems dealing with the data
unless an appropriate partitioning is found. This means
that it is not feasible to collect data from all the nodes
and then process it in a central control system.

2.2.2 Dynamic Development

The only constant about the real world is continuous change.
Changes occur on different time-scales, ranging from sponta-
neously occurring events to long-term trends. Since classically
engineered systems tend to have problems dealing with a chang-
ing environment, whereas biological systems are good at mas-
tering it, the dynamics are a key reason to look at bioinspired
alternatives. In our case the relevant sources of change are:

e World Model Dynamics. The environment includes both
abrupt, spontaneous events (e.g. a doctor is called to
an emergency during patient examination) and medium
to long term evolution. The latter encompasses trends
such as systematic changes in the way certain procedures
are conducted by certain persons as they get more ex-
perienced. In a hospital setting they might also include
changes to procedures due to new equipment or regula-
tions.

e Stimuli Dynamics. The quality of information about a
given activity or situation contained in a particular sen-
sor signal can greatly vary over time. The variation can
be spontaneous (e.g. a light ultrasound receiver being oc-
cluded), periodic (e.g. a loud machine being switched on
at a particular time of a day making sound recognition
difficult), or long-term developments (e.g. a bed making
more and more noises as it gets older).

e System Dynamics. The sensor network itself is subject
to a number of different developments. On a short-term
time scale parts of the system are continuously moving
between locations, since we assume sensors to be also
part of equipment and the outfit of the people. On the
long-term time scale, we must assume sensors to drop
out or be added as equipment is updated.

2.2.3 Resource Restrictions

The vision behind ambient sensor networks assumes that the
sensor nodes are an integral, permanent part of the environment.
This implies two things. First, depending on the specific loca-
tion and role of the sensor node, there are stringent constraints
on its size, weight, and price. Second, many nodes will not be
connected to a fixed power supply. Neither will it be possible
to regularly change a battery. Thus the nodes will either have
to live off energy extracted from the environment or use so little
power that a single battery will last for the entire life time of
the device. In any case, power consumption is a primary con-
cern limiting the performance and functionality of the nodes.
As a consequence, resource constraints and management must
be taken seriously. Interestingly, it is widely believed that en-
ergy consumption plays a key role in the performance limits of
the human brain. Configuration problems of similar type can
be found in many distributed and parallel systems. In previous
work [2], we have for example discussed how the architecture
of context-sensitive, wearable systems can be optimised accord-
ing to similar criteria. Nonetheless, the problem considered in
this paper is special for three reasons: (1) the sheer size of the

optimisation space, (2) the need for dynamic reconfiguration at
runtime with minimal resources available for the reconfigura-
tion task and (3) the fact that the recognition problem for which
the system is to be optimised is known only in very broad terms
at system design time and changes as the network develops and
modifies its world models.

3 Organic Approach Overview

Our approach aims to structure the sensor network in a hierarchi-
cal, parallel way that matches the structure of the world model.
This is similar to the way different parts of the brain are struc-
tured to deal with complexity and resource restrictions. Based
on such a structure, we define a generic system template that
will also include feature specifications, pre-trained classifiers
and initial guesses at the probability distributions involved in
the modelling of high-level processes and goals. In a biological
analogy, this would mimic the way some concepts are believed
to be genetically pre-wired into the brain. Due to the complexity
and variability of the environment in a network spanning a large
space, such a model will be incomplete and very inaccurate. To
counter this, methods inspired by cognitive processes (e.g. at-
tention), brain plasticity and genetics (regulatory networks), as
well as population evolution, will be used to allow the system
to adapt to the specific environment in which it is deployed and
to keep adapting as the environment changes. The adaptation
will include structural changes (including the emergence of new
structure corresponding to new concepts), feature and probabil-
ity distribution optimisations, and strategies for resource man-
agement.

3.1 System Structure

In terms of system structure, the key concepts for dealing with
complexity while observing the resource restrictions are paral-
lelism and hierarchy. As a consequence, the envisioned archi-
tecture is based on the following assumptions:

1. The world model is hierarchic, roughly following the iso-
lated event, compound action, local process, global pro-
cess-and-trend categories structure presented in the ex-
ample scenario.

2. Asshownin Figure 1, the system consists of sensor nodes
that contain a set of sensors, a simple processing unit, a
communication interface, and a power supply. The spe-
cific sensors, the computing power of the processing unit,
and the specifications of the communication interface can
vary from node to node. So does the available power sup-
ply that can range from a fixed connection to a fully au-
tonomous node scavenging power from the environment.
What all nodes have in common is the fact that they each
have their own limit regarding which sensors and algo-
rithms can be used at the same time. This means that
depending on the required recognition task some nodes
might need to operate in different modes, which in turn
means that not all types of recognition can be accom-
plished with optimal accuracy at the same time.

3. In every relevant location a group of sensor nodes is as-
signed to every primitive event/action that the system
needs to recognise at this location. Thus for example
in every patient room the sensors in the bed plus possi-
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Figure 1 Structure of a sensor node

bly motion sensors in the gown and location sensor in the
room would be in charge of detecting the patient getting
out of bed.

4. The local event/action sensor groups are hierarchically
organised following the hierarchy of the world model
(see Figure 2). Thus every compound action, or local/
global process is mapped onto a hierarchy of sensor node
groups. In the hospital network the groups responsible
for the detection of taking out a medicine vial from the
cabinet, the group responsible for tracking the nurse along
the corridor and the group responsible for recognising the
action of taking a pill are interconnected into a recogni-
tion system for the process of medication delivery. For
the compound actions and local processes there will be
parallel groups corresponding to different locations and/or
persons. For the global processes, single system wide
groups will exists.

3.2

The system template provides two things. First, it defines an
outline of the world model that the structure of the network
will follow. This includes estimates of all probability distrib-
utions involved in the construction of compound activities and
processes out of the primitive events/actions. They can be spec-
ified using such conventional approaches as Bayesian networks
or probabilistic grammars and estimated using supervised learn-

System Template

ing techniques. Second, it provides an initial mechanism for
the recognition of all primitive events/actions. The specifica-
tion includes initial guesses at the best sensor nodes, features
and node configurations to be used and classifiers pre-trained
using a supervised approach. A key property of the template
is that it is generic and not optimised to the specific environ-
ment in which it will be deployed. This means that one would
have for example a generic hospital template applicable to dif-
ferent hospitals. It also means that for each primitive event only
a single generic specification is provided. This specification has
to be applied to all locations in which this event can then take
place (see next paragraph). The same is true for the higher level
compound actions and processes. The generic, single instance
specification and the fact that we assume a manageable number
of primitive events/actions to be the basis for all extraction of
meaning allows the template to avoid combinatorial complexity
explosion even for large spaces and complex environments. On
the other hand it means that the initial performance of the sys-
tem will be very poor. Also we cannot expect the template to
be complete in terms of both the primitives and the compound
actions/processes.

3.3 Adaptation

From the system point of view, four kinds of adaptation at dif-
ferent time scales are needed:
1. Short-term resource management Most sensors will be



part of a number of different groups dedicated to differ-
ent events. In general, different modes of operation will
be required by each group (resolution, computed feature,
measurement mode). As a consequence it will not be
possible to detect all possible events at the same time
(at least not with the maximum accuracy). Instead, a
mechanism will be needed to decide, which are the most
relevant/likely events and focus the system resources on
those.

Medium-term, location-specific adaptation As described
above, the same events/actions and processes will be found
in different locations and with the participation of differ-
ent persons. However they are not likely to take place
in an identical way. Such variations are major problems
for current context-aware systems that often have to be
trained specifically for each location and person. The de-
velopment of methods that will allow a system trained for
one location to adapt to another is therefore necessary.
The adaptation shall involve the selection/weighting of
sensors/features as well as the modification of the proba-
bility distributions underlying the classifiers.
Medium-term structural adjustment As described be-
fore, due to environment complexity and variability the
system template will in general neither contain all prim-
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Figure 2 Structure of the envisioned sensor system and an illustration of a possible assignment of sensor node groups to primitives
and compound actions.

itive events nor will it accurately reflect all relations be-
tween primitive events in compound actions or processes.
Thus the system must be able to evolve structures such as
new event types, new connections and with it new higher
level compound actions and processes. Some of those
will be purely internal, needed to better represent higher
levels and the goals. Others might actually be presented
to human supervisors for evaluation.

Long term system-level evolutionary adjustment While
the variations between locations are a major source of
problems, they can also be used to the system’s advan-
tage. The different variants of a recognition subsystem
for a given event/action developed at different locations
can be seen as a population in which a kind of population-
wide evolution can take place. While some of the dif-
ferences will be location-specific, some will simply be
location-independent improvements. They can appear
accidentally or due to the fact that a particular event has
been particularly common at this location. Overall sys-
tem improvement analogous to evolutionary development
of a species population can be achieved by propagating
such general improvements to all locations.



4 Bioinspired Adaptation Strategies

For the four types of adaptation needed by the system, we con-
sider the following analogies from biological systems.

4.1 Short-term resource management

This type of adaptation is analogous to the way humans tend to
focus their attention on a particular subset of stimuli and ignore
others given current goals. In animal vision, the gaze is directed
to the objects of interest, which are then processed with high
resolution and with colour, whereas the peripheral visual field
is processed with decreasing resolution and no colour. Vision
is an active and highly selective process, a strategy that makes
biological systems very effective in acting in their specific envi-
ronment. The active vision paradigm has meanwhile become an
established area of machine vision: a computer, as well as a hu-
man observer, can understand its environment more effectively
and efficiently if the sensor interacts with that environment [6].
Low-level attention is usually supposed to be driven by the sen-
sory input data and characterised as a bottom-up process (while
top-down indicates cognitive processes which depend on con-
text, the world model etc.). A few models of low-level attention
exist, see [14] for a review, that all attempt to find those image
features that form a so-called saliency map and are more likely
to attract attention. A low-level attention module should be able
to decide which kinds of changes in the sensory input are more
significant than others. Based on the concept of intrinsic dimen-
sion [36, 4], algorithms have been developed that can extract
dynamic saliency from a video stream and predict human eye
movements, e.g. [7, 8].

Thus, the problem of resource management can be handled by
competition introduced by the attention-based control subsys-
tem of the architecture. The process will involve a competition
between the magnitude of a novel or unexpected sensory state
against the goal-directed focusing of attention on other parts of
the state space due to current ongoing operations that try to sat-
isfy a higher level goal.

4.2 Medium-term, location-specific adaptation

It is one of the most stunning abilities of the brain that it can eas-
ily recognise objects despite large variances in their appearance.
In general, such perceptual similarities cannot be described by
a metric in input space [27]. Nevertheless, recent brain-inspired
computer-vision systems are able to automatically learn object
classes [28] and are beginning to reach acceptable levels of per-
formance. However, current brain-inspired machine learning
techniques need to be further developed to be used for location-
specific adaptation.

As a complementary approach, techniques inspired by pheno-
typic adaptation can be used. The capability of a given genome
to produce dramatically different phenotypes in response to dif-
ferences in environmental conditions is another impressing ex-
ample of the adaptive potential of biological systems. It is well
known that, for example, human skin reacts to exposure to sun-
light by producing dark pigments, and that plants can strongly
vary in shape, leaf thickness, and many other properties in re-
sponse to their local growth conditions.

The basis of such adaptation is the fact that expression, or ac-
tivity, of a gene can be regulated. The molecular agents that

mediate gene regulation (called transcription factors), are them-
selves gene products. Thus, the genes in a genome are organised
in a directed graph of regulatory interactions called a regulatory
network. By combining theoretical research on regulatory net-
works [25, 15] with recent advances in molecular biology, which
enable identification of such networks in model organisms [21],
new insights into the organisational principles of regulatory net-
works are currently beginning to emerge [3]. Furthermore, regu-
latory networks lend themselves well to various algorithmic ab-
stractions [15, 19, 26]. These factors provide strong motivation
for exploring algorithms for adaptation modelled after regula-
tory networks.

4.3 Medium-term structural adjustment

Recent experiments indicate that the plasticity of the brain can
be spectacular. Sharma et. al. [32], for example, have shown
that young ferrets can see in the sound zone, i.e. the auditory
cortex is largely rewired if driven by visual instead of audi-
tory input and can replace the function of the visual cortex to
a large extent. Traditional machine learning does not involve
drastic structural changes. Accordingly, neural-network models
assume the changing of weights in the neural network as the ba-
sis of learning. Although there are a number of approaches for
self-organising neural networks that can adapt to changing in-
puts, e.g. [20, 24], methods that allow for substantial changes in
the network structure are still missing. Therefore, new kinds of
machine-learning techniques which do not traditionally operate
in a given feature space (like a neural network that adjusts its
weights) but can continuously change that feature space to op-
timise a given goal are needed. This implies that feature spaces
and classification boundaries therein can both change such as to
optimise a criterion. This would be a departure from viewing
learning as the process that estimates an unknown (classifier)
function, which will then determine the forthcoming decisions.
Instead, rather few and changing regions of the feature space
would be used to make a decision that will be only optimal at
that moment and for the then relevant goals.

4.4 Long-term system-level evolutionary adjust-
ment

Biological evolution is capable of generating information with
adaptive value by random variation (mutation, recombination
etc.) and to accumulate this information by Darwinian selec-
tion. This process has been conceptualised by evolutionary al-
gorithms [13, 30], which have successfully been applied in var-
ious optimisation and machine learning tasks. In most evolu-
tionary algorithms, the objective is adaptation to a given set of
conditions, i.e. a given, static fitness function. In contrast, nat-
ural evolution is capable of retaining genetic information which
has temporarily lost its adaptive value as a result of changes in
the environment. If the original conditions return on a regular
basis, regulatory mechanisms which activate a given piece of in-
formation (e.g. a gene) specifically under the conditions where
this confers a selective advantage can evolve. It is clear that reg-
ulatory networks (see above) are a result of continued evolution
of such regulatory mechanisms.

Clearly, activation of genes which provide adaptation to the cur-
rent conditions ultimately depends on processing the sensor in-



put by which the current conditions are recognised. Regulatory
networks are dynamical systems capable of processing such sen-
sor data (which may be represented by pheromones as a biolog-
ical example, or by input from a sensor network as a technical
example). Increase of complexity of regulatory networks during
evolution thus enables a living system to adapt to an increas-
ingly wide amount of variations in environmental conditions.
Thus, integrating regulatory networks into evolutionary algo-
rithms, as explored e.g. in [18], and combining this with evolu-
tionary mechanisms for continuously maintaining a population
with complex diversity [31], e.g. by bioinspired mechanisms for
mutation rate control [17] is a promising approach towards real-
izing large-scale, distributed sensor networks that are capable of
long-term, autonomous adaptation to a complex and changing
environment.

5 Conclusion

We have proposed an organic architecture for very large-scale
ambient sensor networks. The overall goal is to show that with
the help of biological analogies large sensor networks spanning
building complexes or even cities can be made to function as a
single coherent system that uses a complex, dynamically evolv-
ing world model to extract high-level meaning from the events
in the environment. Towards these goals, we propose to (i)
structure the sensor network in a hierarchical, parallel way that
matches the structure of the world model, (ii) start with a generic
system template that includes feature specifications, pre-trained
classifiers and initial guesses of the probability distributions in-
volved in the modelling of high-level processes and goals, and

(iii) use methods inspired by visual information processing (salient

features), cognition (attention, concept formation, abstraction
and schemata learning), brain plasticity, genetics (regulatory net-
works), and population evolution to allow the system to adapt to
the specific environment in which it is deployed, and to keep
adapting as the environment changes.

Besides a continuous optimisation of parameters (as in tradi-

tional machine-learning), the envisioned adaptation includes struc-

tural changes (like the emergence of new structure correspond-
ing to new concepts), optimisation of feature and probability dis-
tributions, and strategies for resource management.

The ideas described in this paper are the results of an initial
conceptual exploration stage of our work. Next, they need to
be converted into specific methods and algorithms and tested in
real-life experiments. From there work towards the actual im-
plementation of real-life sensor networks can begin. In addition,
an appropriate simulation environment will be needed to be able
to flexibly investigate really large scale networks.
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