
1

Robust and Fast Learning of Sparse Codes with
Stochastic Gradient Descent

Kai Labusch, Erhardt Barth, Thomas Martinetz, Senior Member, IEEE

Abstract—Particular classes of signals, as for example natural
images, can be encoded sparsely if appropriate dictionaries are
used. Finding such dictionaries based on data samples, however,
is a difficult optimization task. In this paper, it is shown that
simple stochastic gradient descent, besides being much faster,
leads to superior dictionaries compared to the Method of Optimal
Directions (MOD) and the K-SVD algorithm. The gain is most
significant in the difficult but relevant case of highly overlapping
subspaces, i.e. when the data samples are jointly represented
by a restricted set of dictionary elements. Moreover, the so-
called Bag of Pursuits method is introduced as an extension of
Orthogonal Matching Pursuit, and it is shown that it provides
an improved approximation of the optimal sparse coefficients
and, therefore, significantly improves the performance of the
here proposed gradient descent as well as of the MOD and K-
SVD approaches. Finally, it is shown how the Bag of Pursuits
and a generalized version of the Neural Gas algorithm can be
used to derive an even more powerful method for sparse coding.
Performance is analyzed based on both synthetic data and the
practical problem of image deconvolution. In the latter case, two
different dictionaries are learned for sample images of buildings
and flowers, respectively. It is demonstrated that the learned
dictionaries do indeed adapt to the image class and that they
therefore yield superior reconstruction results1.

Index Terms—sparse coding, neural gas, dictionary learning,
matching pursuit, K-SVD, MOD

I. INTRODUCTION

In signal processing and pattern recognition appropriate rep-
resentations of given data are required. Which representation
is appropriate depends on the given problem goal and on the
structure of the data. Typical criteria for good representations
are coding-efficiency, robustness, invariance, but also more
goal-oriented criteria like the resulting classification perfor-
mance. Besides such criteria, guiding principles for the design
and understanding of optimal representations are useful.

One such principle, that also emerged from the neuro-
sciences, is the principle of sparse coding. It has been derived
from the observation that when the visual brain represents
a particular image, only few of the many visual neurons
are active. Later, this observation has been turned into an
algorithm that could learn sparse representations of natural
images, and the resulting representations resembled receptive
fields of neurons in the primary visual cortex [1]. Besides this
resemblance, however, it has been shown that the algorithm
introduced in [1], which provides a sparse representation by
adapting to a particular type of data, can, e.g., improve the
performance of systems for hand-written digit recognition [2].

University of Lübeck, Institute for Neuro- and Bioinformatics, Ratzeburger
Allee 160, 23562 Lübeck, Germany {labusch,barth,martinetz}@inb.uni-
luebeck.de

1An example implementation of the methods that are proposed in this paper
can be found at http://www.inb.uni-luebeck.de/tools-demos/ngdl

In a parallel development, ground breaking theoretical in-
sights related to sparse coding and compressed sensing opened
a completely new perspective for approaching the problem and
made it a now popular topic of signal processing [3], [4], [5],
[6], [7], [8], [9], [10], [11]. For a review of these developments
see [12].

Many of the new results are based on approaches that
assume the existence of a proper dictionary. Most often,
however, such a dictionary is not known a priori and has to
be learned from the given data. In this paper, we show that
stochastic gradient descent can provide such dictionaries with
a simple and fast algorithm. We also propose a few refinements
that increase the robustness of the algorithm and the quality
of the resulting dictionary.

Suppose that we are given data X = (x1, . . . ,xL), xi ∈ RN
which we want to represent as a sparse linear combination
of some learned dictionary C, i.e., xi = Cai, where C =
(c1, . . . , cM), cl ∈ RN . Sparsity implies that each coefficient
vector ai must have only a few non-zero elements, i.e. ‖a‖0 ≤
k. The cost function for learning such a dictionary C is given
by

Eh =
1

L

L∑
i=1

‖xi − Cai‖22 (1)

with

ai = arg min
a
‖xi − Ca‖ subject to ‖a‖0 ≤ k (2)

denoting the best k-term representation of xi in terms of C.
The number of dictionary elements M and the maximum num-
ber of non-zero entries k are user-defined model parameters.
In case of M > N , the dictionary is overcomplete.

The nested optimization problem (1) can be solved by alter-
nating between an optimization with respect to the coefficients
ai and an optimization with respect to the dictionary C. First,
the coefficients are determined for some fixed dictionary, and
then the coefficients are fixed and the dictionary is updated.
This procedure is then repeated many times. Examples of
methods that use this two-fold optimization approach are, for
instance, the Method of Optimal Directions (MOD) [13], the
K-SVD algorithm [14] and the Sparsenet algorithm [1].

Using only data samples generated as a sparse linear com-
bination of some given dictionary, it has been shown that
methods such as MOD or K-SVD can be used to reconstruct
the dictionary robustly even when the dictionary is highly
overcomplete [14]. However, one limitation revealed in our ex-
periments is, that even the K-SVD algorithm, which performed
best in [14], can only reconstruct a “true” underlying dictio-
nary for small values of k. The alternative Sparse-Coding-
Neural-Gas (SCNG) algorithm proposed in [15] does not suffer

2

from this deficiency, but, unlike MOD or K-SVD, it is bound
to a specific approximation method for the determination of
the coefficients, i.e., OOMP (Optimized Orthogonal Matching
Pursuit).

In this paper, we propose a simple stochastic-gradient-
descent method for learning overcomplete dictionaries. Like
with MOD or K-SVD, one can use an arbitrary approximation
method for the determination of the coefficients during the
learning process. In order to demonstrate the performance of
the method, we test it on synthetically generated overcomplete
linear combinations of known dictionaries, and compare the
resulting performance against MOD and K-SVD. Preliminary
results obtained on synthetic data were presented in [16].
Here, we report on computationally more demanding experi-
ments that lead to even better results, and we included new
experiments on synthetic data in the analysis which show
that our method learns even with a smaller number of given
training samples. In order to show that our method actually
performs well in a real world application, we also report on
new experiments in which we apply the proposed dictionary
learning method to the problem of image deconvolution.

The method that is proposed in this paper is fast, since
it does not involve a matrix inversion or singular value
decomposition in the update of the dictionary. Furthermore,
we report on an experiment on synthetic data that indicates
that convergence to the “true” solution can be obtained signif-
icantly faster compared to other state-of-the-art methods. The
proposed method is robust, since it performs well even if the
underlying representation is less sparse (large k). Additionally,
the method is able to determine the “true” solution, even if
only a small number of training samples is given, in contrast
to the best performing competing method of our analysis (K-
SVD), which does not converge to the “true” solution at all.

II. ESTIMATING THE COEFFICIENTS

Here we discuss some methods that can be used to obtain an
approximation of the solution of the optimization problem (2)
provided that we are given some fixed dictionary. In general,
(2) is a combinatorial problem that is NP-hard [17]. However,
a number of approximation methods have been proposed
that tackle the problem of finding optimal coefficients ai
constrained by ‖ai‖0 ≤ k given fixed C and xi. Here, we
consider a class of greedy methods, e.g., Matching Pursuit
(MP) [18], Orthogonal Matching Pursuit (OMP) [19], and
Optimized Orthogonal Matching Pursuit (OOMP) [20] that
iteratively construct the vector xi out of the elements of the
dictionary C. It is known from [8], [10] that at least OMP and
OOMP solve the optimization problem (2) exactly as long as
the mutual coherence of C is small enough with respect to the
sparsity of the given signal xi. The mutual coherence of C is
given by

µ(C) = max
1≤i,j≤M i 6=j

|cTi cj |
‖ci‖2‖cj‖2

.

As long as there is an ‖ai‖0 ≤ k with xi = Cai and

‖ai‖0 <
1

2

(
1 +

1

µ(C)

)
,

ai is the unique solution of (2) and OMP and OOMP will find
it.

A. Matching Pursuit (MP)

We start with a simple approach and consider the Matching
Pursuit algorithm (MP). Let CaMP

i denote the current approxi-
mation of xi in MP, and let εi = xi−CaMP

i denote the current
residual that still has to be encoded. Initially, aMP

i = 0 and
εi = xi. MP iteratively selects k columns of C by performing
the following steps:

1) Select clwin
by clwin

= arg maxcl
(cTl εi)

2

2) Set (aMP
i)lwin

= (aMP
i)lwin

+ (cTlwin
εi)

3) Obtain new residual εi = xi − CaMP
i

4) Continue with step 1 until k iterations have been per-
formed

Even if we perform N iterations of MP, i.e., if we select as
many dictionary elements as there are input dimensions, it is
not guaranteed that we will obtain CaMP

i = xi and εi = 0,
though the asymptotical convergence of MP for k → ∞ has
been proven [18].

B. Orthogonal Matching Pursuit (OMP)

Let CaOMP
i denote the current approximation of xi in Orthog-

onal Matching Pursuit. In contrast to MP, this approximation
fulfills CaOMP

i = xi and εi = 0 after k ≤ N iterations [19].
Let U denote the set of indices of those columns of C that
already have been used during Orthogonal Matching Pursuit.
The number of elements in U , i.e., |U |, equals the number of
iterations that have been performed so far. The columns of C
that are indexed by U are denoted by CU . Initially, aOMP

i = 0,
εi = xi and U = ∅. OMP works as follows:

1) Select clwin by clwin = arg maxcl,l/∈U (cTl εi)
2

2) Set U = U ∪ lwin

3) Solve the optimization problem

aOMP
i = arg min

a
‖xi − CUa‖22

4) Obtain current residual εi = xi − CaOMP
i

5) Continue with step 1 until k iterations have been per-
formed

C. Optimized Orthogonal Matching Pursuit (OOMP)

An improved variant of the OMP algorithm is Optimized
Orthogonal Matching Pursuit (OOMP) [20]. In general, the
columns of C are not pairwise orthogonal. Hence, the criterion
of OMP that selects the column clwin , lwin /∈ U of C that is
added to U is not optimal with respect to the minimization of
the residual that is obtained after the column clwin

has been
added. Therefore, Optimized Orthogonal Matching Pursuit
uses a selection criterion that is optimal with respect to
the minimization of the norm of the residual obtained: the
algorithm runs through all columns of C that have not been
used so far and selects the one that yields the smallest residual.
Optimized Orthogonal Matching Pursuit works as follows:

3

1) Select clwin
such that

clwin = arg min
cl,l/∈U

min
a
‖x− CU∪la‖

2) Set U = U ∪ lwin

3) Solve the optimization problem

aOOMP
i = arg min

a
‖xi − CUa‖22

4) Obtain current residual εi = xi − CaOOMP
i

5) Continue with step 1 until k iterations have been per-
formed

The selection criterion of the OOMP algorithm (step 1)
involves M−|U | minimization problems, one for each column
of C that has not been used so far. In order to reduce the com-
putational complexity of this step, we use an implementation
of the OOMP algorithm that employs a temporary dictionary
R that has been orthogonalized with respect to CU . R is
obtained by removing the projection of the columns of C onto
the subspace spanned by CU from C and setting the norm of
the residuals rl to one. The residual εUi is obtained in the same
way, i.e., the projection of xi to the subspace spanned by CU

is removed from xi. Initially, R = (r1, . . . , rl, . . . , rM) = C
and εUi = xi. In each iteration, the algorithm determines the
column rl of R with l /∈ U that has maximum overlap with
respect to the current residual εUi :

lwin = arg max
l,l/∈U

(rTl ε
U
i)2 . (3)

Then, in the construction step, the orthogonal projection with
respect to rlwin

is removed from the columns of R and εUi :

rl = rl − (rTlwin
rl)rlwin

, (4)

εUi = εUi − (rTlwin
εUi)rlwin

. (5)

After the projection has been removed, lwin is added to U , i.e.,
U = U ∪ lwin. The columns rl with l /∈ U may be selected in
the subsequent iterations of the algorithm. The norm of these
columns is set to unit length. If the stopping criterion |U | = k
has been reached, the final entries of aOOMP

i can be obtained
by recursively collecting the contribution of each column of
C during the construction process, taking into account the
normalization of the columns of R in each iteration.

III. HARD-COMPETITIVE STOCHASTIC GRADIENT
DICTIONARY LEARNING

So far, we have considered the case where a dictionary C
is given. Now, we want to solve the problem of learning an
optimal dictionary C = (c1, . . . , cM) from the training data
x1, . . . ,xL provided that we know the number of dictionary
elements M as well as the dimension k of the subspaces that
cover the training data. We propose a very simple way of
minimizing (1). Suppose that we are given some method such
as MP, OMP, or OOMP that provides an estimation at of the
coefficients of a given sample xt that is randomly selected
from the training data at time steps t = 0, . . . , tmax. At each

time step, we update the dictionary C according to the gradient
of (1) with respect to C:

∆C = αt(xt − Cat)atT (6)

The learning rate

αt = α0

(
αfinal

α0

) t
tmax

(7)

decreases exponentially. α0 denotes the initial and αfinal the
final learning rate.

After each update, the column vectors of C are renormalized
to one. Then a new training sample xt+1 is selected, the coef-
ficients at+1 are re-determined, and the next update for C can
be performed. This simple procedure is fast, since it does not
involve a singular value decomposition or a matrix inversion.
Furthermore it uses only one sample in each learning step and
is therefore even applicable for online-learning. It also does
not require storage of a large set of training samples.

Note, that (6) can be seen as the pattern-by-pattern variant
of the dictionary update rule of the Sparsenet algorithm [1]
which is

∆C = η (X − CA)AT (8)

where X is a matrix that contains the training samples that
are considered in the current batch update and A are the
coefficients that have been estimated with respect to these
training samples. Here, η is a constant learning rate.

IV. EXPERIMENTS WITH HARD-COMPETITIVE STOCHASTIC
GRADIENT DESCENT

In the experiments we use synthetic data that actually can be
represented as sparse linear combinations of some dictionary.
We perform the experiments in order to asses two questions:
(i) How good is the target function (1) minimized? (ii) Is it
possible to obtain the true underlying dictionary only from the
given data?

In the following Ctrue = (ctrue
1 , . . . , ctrue

50) ∈ R20×50

denotes a synthetic dictionary. Each entry of Ctrue is uni-
formly chosen in the interval [−0.5, 0.5]. Furthermore, we set
‖ctrue
l ‖ = 1. Using such a dictionary, we create a training

set X = (x1, . . . ,x1500), xi ∈ R20 where each training
sample xi is a sparse linear combination of the columns of
the dictionary:

xi = Ctruebi . (9)

We choose the coefficient vectors bi ∈ R50 such that they
contain k non-zero entries. The selection of the position of
the non-zero entries in the coefficient vectors is performed
according to three different data generation scenarios:
• Random dictionary elements: In this scenario all com-

binations of k dictionary elements are possible. Hence,
the position of the non-zero entries in each coefficient
vector bi is uniformly chosen in the interval [1, . . . , 50].

• Independent Subspaces: In this case the training sam-
ples are located in a small number of k-dimensional
subspaces. We achieve this by defining b50/kc groups of
dictionary elements, each group containing k randomly

4

selected dictionary elements. The groups do not inter-
sect, i.e., each dictionary element is at most member of
one group. In order to generate a training sample, we
uniformly choose one group of dictionary elements and
obtain the training sample as a linear combination of the
dictionary elements that belong to the selected group.

• Dependent subspaces: In this case, similar to the previ-
ous scenario, the training samples are located in a small
number of k-dimensional subspaces. In contrast to the
previous scenario, the subspaces do highly intersect, i.e.,
the subspaces share basis vectors. In order to achieve
this, we uniformly select k−1 dictionary elements. Then,
we use 50− k + 1 groups of dictionary elements where
each group consists of the k − 1 selected dictionary
elements plus one further dictionary element. Again, in
order to generate a training sample, we uniformly choose
one group of dictionary elements and obtain the training
sample as a linear combination of the dictionary elements
that belong to the selected group.

The value of the non-zero entries is always chosen uniformly
in the interval [−0.5, 0.5]. Finally the data was scaled such
that the mean variance was equal to 1.

We apply MOD, K-SVD and the stochastic gradient descent
method that is proposed in this paper to the training data. In
case of MOD and K-SVD, we use the implementations that
are provided by the authors of [14].

Let C learned = (clearned
1 , . . . , clearned

50) denote the dictionary
that has been learned by one of these methods on the basis
of the training samples. In order to measure the performance
of the methods with respect to the minimization of the target
function, we consider

Eh =
1

1500

1500∑
i=1

‖xi − C learnedai‖22 (10)

where ai is obtained from the optimized orthogonal matching
pursuit algorithm. In order to asses if the true dictionary can
be reconstructed from the training data, we consider the mean
maximum overlap between each element of the true dictionary
and the learned dictionary:

MMO =
1

50

50∑
l=1

max
k=1,...,50

|(ctrue
l)T clearned

k | . (11)

k, the number of non-zero entries is varied from 1 to 11. For
the stochastic gradient descent method, we perform 100×1500
update steps, i.e., 100 learning epochs. For MOD and K-
SVD, we perform 100 learning iterations, each iteration using
1500 training samples. Note, that this leads to the same
computational demand for all the methods used. We repeat
all experiments 50 times and report the mean result over
all experiments. For all dictionary learning methods, i.e.,
MOD, K-SVD, and the stochastic gradient descent, optimized
orthogonal matching pursuit is used in order to obtain the
dictionary coefficients during learning.

The results of this experiment are depicted in Figure 1.
In case of the random dictionary elements scenario (see (a)
and (d)) the stochastic gradient approach clearly outperforms
MOD and K-SVD. From the mean maximum overlap (see

(d)) it can be seen that almost all dictionary elements are
well reconstructed with up to 6 non-zero coefficients in the
linear combinations. If the dictionary elements cannot be
reconstructed any more, i.e., for k > 6, the mean repre-
sentation error Eh starts to grow (see (a)). In case of the
independent subspaces ((b) and (e)) and dependent subspaces
scenario ((c) and (f)) the stochastic gradient method also
outperforms MOD and K-SVD in terms of minimization of
the representation error (see (b) and (c)), whereas in terms of
dictionary reconstruction performance only in the intersecting
subspaces scenario a clear performance gain compared to
MOD and K-SVD can be seen (see (c) and (f)). This might be
caused by the fact that in case of the independent subspaces
scenario it is sufficient to find dictionary elements that span
the subspaces where the data is located in order to minimize
the target function, i.e., the scenario does not force the method
to find the true dictionary elements in order to minimize the
target function.

V. A BAG OF PURSUITS

In order to further improve performance, we now consider
an extension of OOMP that not only determines a single
approximation of the best coefficients but that determines
Kuser good approximations of the best coefficients. This
method is called “bag of pursuits” (BOP), since it performs
a sequence of optimzed orthogonal matching pursuits. The
algorithm starts with U jn = ∅, Rj0 = (r0,j

1 , . . . , r0,j
M) = C

and εj0 = x. The set U jn contains the indices of those columns
of C that have been used during the j-th pursuit with respect
to x up to the n-th iteration. Rjn is a temporary matrix that
has been orthogonalized with respect to the columns of C that
are indexed by U jn. rn,jl is the l-th column of Rjn. εjn is the
residual in the n-th iteration of the j-th pursuit with respect
to x.

In iteration n, the algorithm looks for that column of Rjn
whose inclusion in the linear combination leads to the smallest
residual εjn+1 in the next iteration of the algorithm, i.e., that
has the maximum overlap with respect to the current residual.
Hence, with

yjn =

(
rn,j1

T
εjn

‖rn,j1 ‖
, . . . ,

rn,jl
T
εjn

‖rn,jl ‖
, . . . ,

rn,jM
T
εjn

‖rn,jM ‖

)
(12)

it looks for lwin(n, j) = arg maxl,l/∈Uj
n
(yjn)2

l . Then, the
orthogonal projection of Rjn to rn,jlwin(n,j) is removed from Rjn

Rjn+1 = Rjn −
rn,jlwin(n,j)(R

j
n
T
rn,jlwin(n,j))

T

rn,jlwin(n,j)

T
rn,jlwin(n,j)

. (13)

Furthermore, the orthogonal projection of εjn to rn,jlwin(n,j) is
removed from εjn

εjn+1 = εjn −
εjn
T
rn,jlwin(n,j)

rn,jlwin(n,j)

T
rn,jlwin(n,j)

rn,jlwin(n,j) . (14)

The algorithm stops if ‖εjn‖ = 0 or n = k. The j-th
approximation of the coefficients of the best k-term approx-
imation, i.e., aj , can be obtained by recursively tracking

5

Random
dictionary elements

Independent
subspaces

Dependent
subspaces

2 4 6 8 10
0

0.5

1

k

E
h

(a)

HC−SGD

K−SVD

MOD

2 4 6 8 10
0

0.5

1

k

E
h

(b)

HC−SGD

K−SVD

MOD

2 4 6 8 10
0

0.5

1

k

E
h

(c)

HC−SGD

K−SVD

MOD

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (d)

HC−SGD

K−SVD

MOD

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (e)

HC−SGD

K−SVD

MOD

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (f)

HC−SGD

K−SVD

MOD

Fig. 1. Experimental results for hard-competitive stochastic gradient descent. The figures show the obtained final reconstruction error Eh and the obtained
final mean maximum overlap (MMO) between learned and “true” dictionary. See text for details. HC-SGD: hard-competitive stochastic gradient descent
(α0 = 0.1, αfinal = 10−3). MOD and K-SVD: 100 learning iterations each using 1500 training samples. During learning, for all methods the coefficients
were obtained from OOMP. All experiments were repeated 50 times.

2 4 3 1

3 4 1

5 3241

2 3 1

2 4 3 5

43 5

r
i

=
r
i −

(r T1
r
i)r

1

ε
=

ε
−

(r T1
ε
)r

1

ri = ri − (rT3 ri)r3

ε = ε− (rT3 ε)r3

STOP

r i
=

r i
−

(r
T 2
r i

)r
2

r i
=

r i
−

(r
T 5
r i

)r
5

ri = ri − (rT2 ri)r2ri = ri − (rT3 ri)r3

r
i

=
r
i −

(r T4
r
i)r

4

Dictionary R = (r1, . . . , r5) = C, ‖ri‖ = 1

ε
=

ε
−

(r
T 5
ε
)r

5

ε
=

ε
−

(r
T 2
ε
)r
2

sort according to (rTi ε)2

sort according to (rTi ε)2sort according to (rTi ε)2

ε = ε− (rT3 ε)r3 ε = ε− (rT2 ε)r2

ε
=

ε
−

(r T4
ε
)r

4

sort according to (rTi ε)2

Residual ε = x

sort according to (rTi ε)2

STOPSTOP

r
i

=
r
i −

(r T2
r
i)r

2

ε
=

ε
−

(r T2
ε
)r

2

Fig. 2. The Figure depicts the tree-like search procedure of the BOP method if the constraint ‖a‖0 ≤ 3 is in place. In this example Kuser = 3 holds, i.e.,
the method determines three different solutions. The method starts by sorting the dictionary elements according to their overlap with respect to the residual
(root of the tree). The dictionary element that has the largest overlap, i.e., element 5, is selected. All other dictionary elements as well as the residual are
orthogonalized with respected to dictionary element 5. This procedure is repeated (elements 2 and 3 are selected) until at most three dictionaries elements
have been used. Now, the second solution is determined. Among all overlaps that have been computed so far, the largest one is selected (element 1 at root
level). Again, a sequence of orthogonalizations is performed, until three dictionary elements have been used (elements 2 and 3 are selected). The third solution
is obtained by repeating the entire procedure again. Solution 1: 5,2,3 Solution 2: 1,2,3 Solution 3: 5,4,2.

6

Random
dictionary elements

Independent
subspaces

Dependent
subspaces

2 4 6 8 10
0

0.5

1

1.5

k

E
h

OOMP (TRUE)

BOP (TRUE)

OOMP (RAND)

BOP (RAND)

2 4 6 8 10
0

0.5

1

1.5

k

E
h

OOMP (TRUE)

BOP (TRUE)

OOMP (RAND)

BOP (RAND)

2 4 6 8 10
0

0.5

1

1.5

k

E
h

OOMP (TRUE)

BOP (TRUE)

OOMP (RAND)

BOP (RAND)

Fig. 3. Comparison of the mean reconstruction error Eh on the data that has been described in Section IV. Both sparse approximation methods, i.e, OOMP
and BOP, were provided with the “true” dictionary the data was generated from. It can be seen that if the “true” dictionary is known, OOMP finds the
“true” solution only for k = 1 whereas BOP with Kuser = 50 finds the correct solution up to k = 5. For comparison purposes we also show the mean
reconstruction error both methods achieve with a random dictionary. All experiments were repeated 50 times.

the contribution of each column of C that has been used
during the iterations of pursuit j. In order to obtain a set of
approximations a1, ...,aKuser , where Kuser is chosen by the
user, we want to conduct Kuser matching pursuits. To obtain
Kuser different pursuits, we implement the following function:

Q(l, n, j) =

0 :

If there is no pursuit among
all pursuits that have been per-
formed with respect to x that
is equal to the j-th pursuit up
to the n-th iteration where in
that iteration column l has been
selected2

1 : else .

(15)

Then, while a pursuit is performed, we track all overlaps yjn
that have been computed during that pursuit. For instance, if
a1 has been determined, we have y1

0, . . . ,y
1
n, . . . ,y

1
s1−1 where

s1 is the number of iterations of the 1st pursuit with respect
to x. In order to find a2, we now look for the largest overlap
in the previous pursuit that has not been used so far

ntarget = arg max
n=0,...,s1−1

max
l,Q(l,n,j)=0

(y1
n)2
l (16)

ltarget = arg max
l

(y1
ntarget

)2
l . (17)

We replay the 1st pursuit up to iteration ntarget. In that itera-
tion, we select column ltarget instead of the previous winner
and continue with the pursuit, until the stopping criterion has
been reached. If m pursuits have been performed, among all
previous pursuits, we look for the largest overlap that has not
been used so far:

jtarget = arg max
j=1,...,m

max
n=0,...,sj−1

max
l,Q(l,n,j)=0

(yjn)2
l (18)

ntarget = arg max
n=0,...,sjtarget−1

max
l,Q(l,n,jtarget)=0

(
yjtargetn

)2
l

(19)

ltarget = arg max
l,Q(l,ntarget,jtarget)=0

(yjtargetntarget
)2
l . (20)

2This means, that two pursuits are considered to be equal if in both pursuits
the same set of dictionary elements has been selected up to the n-th iteration.
The order in which the elements have been selected does not matter.

We replay pursuit jtarget up to iteration ntarget. In that itera-
tion, we select column ltarget instead of the previous winner
and continue with the pursuit until the stopping criterion has
been reached. We repeat this procedure until Kuser pursuits
have been performed. A schematic view of the BOP method
is shown in Figure 2.

Since in this paper overcomplete dictionaries are considered,
the size of the dictionary can become very large. If the
dictionary is very large, the orthogonalization of the entire
temporary dictionary with respect to the element of the dic-
tionary that has been used in the current step, i.e., (13), can be
computationally expensive. A computationally less demanding
strategy is to omit the orthogonalization of the dictionary, i.e.,
to perform the same tree like search procedure where OMP
solutions are computed instead of OOMP solutions.

VI. EXPERIMENTS USING BOP

First, we tested how far BOP improves OOMP. For that
purpose, we again used our synthetical data from Section IV,
however, this time the dictionary needs not to be learned but
the true dictionary is assumed to be known. Then, only the best
coefficients for reconstruction have to be determined. This is
done with OOMP and, for comparison, with BOP. The result
with respect to the reconstruction error both methods achieve
is shown in Figure 3. OOMP succeeds in finding the correct
coefficients only in case k < 2. Perfect reconstruction for
k = 1 can be expected from the theoretical result in [8],
[10], since the average mutual coherence of our synthetical
dictionaries is 0.7 ± 0.05. In contrast, BOP is able to obtain
perfect reconstruction even up to k = 4 or almost k = 5.
Since the average mutual coherence is the same in all three
data generation scenarios, the performance of BOP and OOMP
is almost equal for all the scenarios, if the “true” dictionary
is known or a random dictionary is used for the coefficient
estimation. This is in contrast to the experiments where the
dictionary has to be learned from the training data, and where
the scenario has an influence on the ability of the learning
method to determine the “true” dictionary (as can be seen for
instance in Figure 1).

7

Random
dictionary elements

Independent
subspaces

Dependent
subspaces

2 4 6 8 10
0

0.5

1

k

E
h

(a)

HC−SGD(BOP)

K−SVD(BOP)

MOD(BOP)

2 4 6 8 10
0

0.5

1

k

E
h

(b)

HC−SGD(BOP)

K−SVD(BOP)

MOD(BOP)

2 4 6 8 10
0

0.5

1

k

E
h

(c)

HC−SGD(BOP)

K−SVD(BOP)

MOD(BOP)

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (d)

HC−SGD(BOP)

K−SVD(BOP)

MOD(BOP)

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (e)

HC−SGD(BOP)

K−SVD(BOP)

MOD(BOP)

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (f)

HC−SGD(BOP)

K−SVD(BOP)

MOD(BOP)

Fig. 4. Experimental results for MOD, K-SVD, and hard-competitive stochastic gradient descent. All methods employed the BOP algorithm with Kuser=50

in order to estimate the dictionary coefficients in the learning process. See text for details. HC-SGD(BOP): hard-competitive stochastic gradient descent
(α0 = 0.1, αfinal = 10−3). MOD and K-SVD: 100 learning iterations, each iteration using 1500 training samples. During learning for all methods the
coefficients were obtained from the BOP method with Kuser = 50. All experiments were repeated 50 times.

In Figure 4, we show the results we obtain with BOP in
the experiment described in Section IV. Now, for all methods
the dictionary coefficients were obtained from the best pursuit
out of Kuser = 50 pursuits that were performed according
to the “Bag of Pursuits” approach described in Section V.
Compared to the results of the first experiment (see Figure
1) it can be seen that the computationally more demanding
method for the approximation of the best coefficients leads to a
significantly improved performance of MOD, K-SVD and the
stochastic gradient descent with respect to the minimization
of the representation error Eh (see (a)-(c)). The most obvious
improvement can be seen in case of the dependent subspaces
scenario where also the dictionary reconstruction performance
significantly improves (see (c) and (f)). In the random dic-
tionary elements (see (a) and (d)) and independent subspaces
scenario (see (b) and (e)) there are only small improvements
with respect to the reconstruction of the true dictionary.

VII. SOFT-COMPETITIVE STOCHASTIC GRADIENT
DESCENT

In the experiments in Section VI, we have shown that the
learning performance can be significantly improved by using
the best coefficients from the set of solutions that are provided
by the BOP method. So far, only the best pursuit from a set
of Kuser pursuits has been used in the stochastic gradient
descent. If a sparse approximation method such as BOP is used
that subsequently improves on a set of intermediate solutions
towards the final solution, it is desireable not only to use the
final solution in the learning process but also to employ the

information that might be contained in the set of intermediate
solutions for the dictionary learning process. If possible, this
should be implemented such that the use of the intermediate
solutions does not introduce additional computational demand.

We now propose a soft-competitive learning strategy that
uses a set of approximations in order to solve the optimization
problem (1). The soft-competitive approach is motivated from
the domain of vector quantization. Vector quantization can be
understood as a special case of sparse coding where the coeffi-
cients of the dictionary are constrained according to ‖ai‖0 = 1
and ‖ai‖2 = 1. In vector quantization the coefficients are
chosen such that (ai)m = 1, (ai)l = 0 ∀l 6= m where
m = arg minl ‖cl−xi‖22. Many vector quantization algorithms
consider only the winner for learning, i.e., the dictionary vector
cm for which (ai)m = 1 holds. As a consequence of that type
of hard-competitive learning scheme, problems such as bad
quantization, initialization sensitivity, or slow convergence can
arise.

In order to remedy these problems, soft-competitive vector
quantization methods such as the NG algorithm [21], [22] have
been proposed. In the Neural Gas algorithm all possible en-
codings are considered in each learning step, i.e., a1

i , . . . ,a
M
i

with (aji)j = 1. Then, the encodings are sorted according to
their reconstruction error

‖xi − Caj0i ‖ ≤ · · · ≤ ‖xi − Ca
jp
i ‖ ≤ · · · ≤ ‖xi − Ca

jM
i ‖ .

(21)
In contrast to the hard-competitive approaches, in each learn-
ing iteration, every codebook vector cl is updated. The update
is weighted according to the rank of the encoding that uses the

8

Random
dictionary elements

Independent
subspaces

Dependent
subspaces

2 4 6 8 10
0

0.5

k

E
h

(a)

SC−SGD

HC−SGD(BOP)

true dict known

2 4 6 8 10
0

0.1

0.2

k

E
h

(b)

SC−SGD

HC−SGD(BOP)

true dict known

2 4 6 8 10
0

0.1

0.2

k

E
h

(c)

SC−SGD

HC−SGD(BOP)

true dict known

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (d)

SC−SGD

HC−SGD(BOP)

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (e)

SC−SGD

HC−SGD(BOP)

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (f)

SC−SGD

HC−SGD(BOP)

Fig. 5. Experimental comparison of hard- and soft-competitive stochastic gradient descent. See text for details. HC-SGD(BOP): hard-competitive stochastic
gradient descent (α0 = 0.1, αfinal = 10−3). SC-SGD: soft-competitive stochastic gradient descent (α0 = 0.1, αfinal = 10−3, λ0 = 50, λfinal = 0.1). All
experiments were repeated 50 times. In the random dictionary elements and dependent subspaces scenarios further performance improvements with respect to
the dictionary reconstruction can be observed in the soft-competitive case. For k > 6 a significant decrease of the mean reconstruction error is obtained. In the
dependent and independent subspace scenarios, for k > 8 the mean reconstruction error obtained from the soft-competitive approach is even smaller than the
mean reconstruction error obtained by using the “true” dictionary. This indicates that in these scenarios the methods are not forced to learn the true dictionary
but learn a dictionary that spans the subspaces where the data is located. Obviously there is a solution that is more incoherent than the true dictionary that
still spans these subspaces. All experiments were repeated 50 times.

codebook vector cl. It has been shown in [22] that this type
of update is equivalent to a gradient descent on a well-defined
cost function. Due to the soft-competitive learning scheme the
NG algorithm shows robust convergence to close to optimal
distributions of the codebook vectors over the data manifold.

Here we want to apply this ranking approach to the learning
of sparse codes. Similar to the NG algorithm, for each given
sample xi, we consider all K possible coefficient vectors aji ,
i.e., encodings that have at most k non-zero entries. The ele-
ments of each aji are chosen such that ‖xi−Caji‖ is minimal.
We order the coefficients according to the representation error
that is obtained by using them to approximate the sample xi

‖xi − Caj0i ‖ < · · · < ‖xi − Ca
jp
i ‖ < · · · < ‖xi − Ca

jK
i ‖ .

(22)
If there are coefficient vectors that lead to the same recon-
struction error

‖xi−Cam1
i ‖ = ‖xi−Cam2

i ‖ = · · · = ‖xi−CamV
i ‖ , (23)

we randomly pick one of them and do not consider the
others. Note that we need this due to theoretical consider-
ations while in practice this situation almost never occurs.
Let rank(xi,a

j
i , C) = p denote the number of coefficient

vectors ami with ‖xi −Cami ‖ < ‖xi −Ca
j
i‖. Introducing the

neighborhood hλt
(v) = e−v/λt , we consider the following

modified error function

Es =

L∑
i=1

K∑
j=1

hλt
(rank(xi,a

j
i , C))‖xi − Caji‖

2
2 (24)

which becomes equal to (1) for λt → 0. In order to minimize
(24), we consider the gradient of Es with respect to C, which
is

∂Es
∂C

= −2

L∑
i=1

K∑
j=1

hλt
(rank(xi,a

j
i , C))(xi − Caji)a

j
i

T
+R

(25)
with

R =

L∑
i=1

K∑
j=1

h
′

λt
(rank(xi,a

j
i , C)) (26)

·∂rank(xi,a
j
i , C)

∂C
‖xi − Caji‖

2
2 .

In order to show that R = 0, we adopt the proof given in [22]
to our setting. With eji = xi−Caji , we write rank(xi,a

j
i , C)

as

rank(xi,a
j
i , C) =

K∑
m=1

θ((eji)
2 − (emi)2) (27)

where θ(x) is the Heaviside step function. The derivative of
the Heaviside step function is the delta distribution δ(x) with
δ(x) = 0 for x 6= 0 and

∫
δ(x)dx = 1. Therefore, we can

9

write

R = 2

L∑
i=1

K∑
j=1

h
′

λt
(rank(xi,a

j
i , C))(eji)

2 (28)

·
K∑
m=1

((emi)(ami)T − (eji)(a
j
i)
T)δ((eji)

2 − (emi)2)

Each term of (28) is non-vanishing only for those aji for which
(eji)

2 = (emi)2 is valid. Since we explicitly excluded this case,
we obtain R = 0. Hence, we can perform a stochastic gradient
descent on (24) with respect to C by applying t = 0, . . . , tmax

updates of C using the gradient based learning rule

∆C = αt

K∑
j=1

hλt
(rank(xi,a

j
i , C))(xi − Caji)a

i
j

T
(29)

for a randomly chosen xi ∈ X where

λt = λ0

(
λfinal

λ0

) t
tmax

(30)

is an exponentially decreasing neighborhood-size. Again, αt
is an exponentially decreasing learning rate (see equation (7)).
After each update, the column vectors of C are renormalized
to one. Then the aji are re-determined and the next update for
C can be performed.

So far, for each training sample xi, all possible coefficient
vectors aji , j = 1, . . . ,K with ‖aji‖0 ≤ k have been
considered. K grows exponentially with M and k. Therefore,
this approach is not applicable in practice. However, since in
(24) all those contributions in the sum for which the rank
is larger than the neighborhood-size λt can be neglected, we
actually do not need all possible coefficient vectors. We only
need the first best ones with respect to the reconstruction
error. These are directly provided by the BOP method, at least
approximately.

VIII. EXPERIMENTS SOFT-COMPETITIVE STOCHASTIC
GRADIENT DESCENT

In the third experiment, we employed soft-competitive learning
in the stochastic gradient descent, i.e., the coefficients corre-
sponding to each of the Kuser = 50 pursuits were used in the
update step according to (29) with initial neighbourhood-size
λ0 = 50 and final neighbourhood-size λfinal = 0.1. The results
of this experiment are depicted in Figure 5. It can be seen
that for less sparse scenarios, i.e. k > 6, the soft-competitive
learning further improves the performance. Particularly in case
of the dependent subspaces scenario a significant improvement
in terms of dictionary reconstruction performance can be seen
for k > 4 (see (f)). For very sparse settings, i.e. k ≤ 4, the
hard-competitive approach seems to perform better than the
soft-competitive variant. Again, in case of the independent
subspaces only the representation error decreases (see (b))
whereas no performance gain for the dictionary reconstruction
can be seen (see (e)). Again, this might be caused by the
fact that in case of the subspace scenario it is sufficient to
learn dictionary elements that span the subspaces in order to
minimize the target function.

Finally, we evaluated the influence of both, the number of
given training data and performed training iterations/epochs,
on the ability of the methods to estimate the underlying “true”
dictionary. We again applied the soft-competitive stochastic
gradient descent approach and K-SVD to the synthetic data,
but now we varied the number of given training samples
and the number of training iterations/epochs. We only used
K-SVD for the comparison, since it performed best among
the non-gradient methods in the previous experiments. The
number of non-zero coefficients in the linear combinations
was set to 5. The results of the experiments are shown in
Figure 6. In the random dictionary elements scenario and the
dependent subspaces scenario, the dictionary reconstruction
performance of the stochastic gradient descent method can
be significantly improved by an increase of the number of
given training samples (see (a) and (c)). In contrast to this, the
performance of the K-SVD method increases only marginally
in these cases (see (d) and (f)). Furthermore, in the random
dictionary elements scenario with 1000 training samples, with
the stochastic gradient descent method the dictionary is ob-
tained after approximately 40 training epochs. For the gradient
descent method, the convergence to the “true” solution can be
seen even if only 500 training samples are given (see (a)). In
contrast to that, K-SVD does not converge at all to the “true“
solution (see (d)).

In the independent subspaces scenario, the dictionary recon-
struction performance of the gradient descent method can also
be improved by an increase of the number of given training
samples (see (b)). However, in this case, the results indicate
that it is not possible to estimate the dictionary with arbitrary
accuracy, i.e., due to the structure of the subspaces. At some
point, the method has learned a set of dictionary elements that
span the subspaces and a further increase of the number of
training samples does not lead to a better estimation of the
“true” dictionary. Again, convergence to the “true” solution
cannot be seen for the K-SVD method as well (see (e)).

IX. APPLICATION TO IMAGE DECONVOLUTION

In the following experiments, we demonstrate how to decon-
volve a given image by employing dictionaries that have been
learned from a set of training images that are similar to the
image that is to be deconvolved.

Let a vector qi from the set of vectors q1, . . . ,qNq
, qi ∈

RD be a patch of size d×d, d2 = D at position i in the image
Iq . The image Iq has been obtained by applying a known
convolution operator Q to the primal image Ip:

qi = Qpi i = 1, . . . , Nq . (31)

Nq denotes the number of valid patches of size d × d of
the given image Iq . For computational reasons, we only
considered those patches in the experiments that are located at
even coordinates. Q is a matrix that describes the convolution
operator. A vector pi ∈ RN is a patch of size n×n, n2 = N at
position i in the primal image Ip that is to be reconstructed. In
order to compute the primal image from the convolved image
the operator Q has to be inverted. However, if D < N holds,
generally Q cannot be inverted. Nevertheless, the problem

10

Random
dictionary elements

Independent
subspaces

Dependent
subspaces

20 40 60 80
0.5

0.6

0.7

0.8

0.9

1

#training epochs

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
)

(a)

SC−SGD, #data=250

SC−SGD, #data=500

SC−SGD, #data=1000

20 40 60 80

0.66

0.68

0.7

0.72

0.74

0.76

#training epochs

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
)

(b)

SC−SGD, #data=250

SC−SGD, #data=500

SC−SGD, #data=1000

20 40 60 80
0.55

0.6

0.65

0.7

0.75

0.8

#training epochs

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
)

(c)

SC−SGD, #data=250

SC−SGD, #data=500

SC−SGD, #data=1000

20 40 60 80
0.5

0.6

0.7

0.8

0.9

1

#training iterations

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
)

(d)

K−SVD(BOP), #data=250

K−SVD(BOP), #data=500

K−SVD(BOP), #data=1000

20 40 60 80

0.66

0.68

0.7

0.72

0.74

0.76

#training iterations

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
)

(e)

K−SVD(BOP), #data=250

K−SVD(BOP), #data=500

K−SVD(BOP), #data=1000

20 40 60 80
0.55

0.6

0.65

0.7

0.75

0.8

#training iterations

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
)

(f)

K−SVD(BOP), #data=250

K−SVD(BOP), #data=500

K−SVD(BOP), #data=1000

Fig. 6. Experimental results for soft-competitive stochastic gradient descent and K-SVD. The figures show the mean maximum overlap between the learned
and the “true“ underlying dictionary. k, the number of non-zero entries, was set to 5 in all three scenarios. Both methods employed the BOP algorithm with
Kuser=50 in order to estimate the dictionary coefficients in the learning process. We varied the size of the given training set and the number of training
iterations/epochs. It can be seen that soft-competitive stochastic gradient descent is able to determine the “true” dictionary even for small training sets.
In all scenarios SC-SGD convergences significantly faster to significantly better results than K-SVD. SC-SGD: soft-competitive stochastic gradient descent
(α0 = 0.1, αfinal = 10−3, λ0 = 50, λfinal = 0.1). All experiments were repeated 50 times.

can be approached in a sparse approximation framework by
exploiting sparseness properties of the primal image patches
pi.

The hypothesis that enables us to convert the problem into a
sparse approximation problem is that the patches of the primal
image can be represented as a sparse linear combination of
some dictionary C:

pi = Cai ⇒ qi = QCai (32)

with C ∈ RN×M and ‖ai‖0 ≤ k � M . In order to estimate
pi on the basis of qi, we consider the following sparse
approximation problem

âi = arg min
a
‖qi −QCa‖2 subject to ‖a‖0 ≤ k (33)

where p̂i = Câi is the approximation of pi. To obtain the
approximation p̂i, one has to solve two problems: (i) choose
an appropriate dictionary C and (ii) solve the optimization
problem (33).

In the experiments, we consider two images that have been
blurred using a Gaussian convolution kernel of size 7×7 with
standard deviation 2.33. The first image depicts a mediaeval
building of the city of Brugge (see Figure 7). It is also termed
house image in the following. The second image depicts a
closeup photograph of a flower (see Figure 9). It is termed
flower image in the following. The blurred versions of the
images are also depicted in Figure 7 and 9.

As already mentioned above, we use dictionaries that have
been learned from image data. To obtain suitable dictionaries,
we take training sets of images that are similar to the con-
volved images. The first training set, which is termed town
set in the following, consists of photographs of the city of
Brugge (see Figure 8). These images mainly depict mediaeval
buildings. The second training set, which is termed flowers
set in the following, is a collection of closeup photographs of
flowers (see Figure 10).

All images are linearly scaled such that the pixel val-
ues are in the interval [0, 1]. For each image class, from
the respective training images we extract a set of training
patches consisting of 150.000 patches of size 16 × 16, i.e.,
x1, . . . ,x150000, xi ∈ R256. The training patches are selected
randomly but with a variance within each patch of at least
0.1. Then we apply the hard- and soft-competitive stochastic
gradient descent (Sections III and VII) in order to learn
overcomplete dictionaries C ∈ R256×1681 that are optimized
to encode the respective training set using at most k non-zero
entries per sample. In the hard- and soft-competitive case, we
use the BOP method with Kuser = 10 in order to determine
the dictionary coefficients during learing. We evaluate different
choices of k, i.e., k = 12, 14, 16, 18, 20. We perform only one
learning epoch, i.e., a one-pass run over the entire training set.
For comparison purposes the deconvolution experiments were
repeated using an overcomplete Haar-wavelet frame which is

11

12 14 16 18 20
24

24.5

25

25.5

26

26.5

k

P
S

N
R

(d
B

)

HAAR−Wavelets

SC−SGD
training set town

HC−SGD(BOP)
training set town

SC−SGD
training set flowers

HC−SGD(BOP)
training set flowers

Fig. 7. Top Left: primal image, Top middle: blurred image (PSNR: 23.3dB),
Top right: best deconvolution result (PSNR: 26.3dB, SC-SGD, k = 20,
training set town, dictionary is depicted in figure 8). Bottom: PSNR of
deconvoluted image with respect to primal image for different choices of
k and methods. The larger k is, the better the deconvolution becomes. Best
results are obtained if the town set (see figure 8) is used for dictionary training
instead of the flowers set. See text for details.

depicted in Figure 11.
In order to solve the optimization problem (33), we first

apply the (known) convolution operator Q to the learned
dictionary C. Each dictionary element can be interpreted as
a 2-dimensional patch. These dictionary patches are blurred
using the same operater that was applied to the house and
flower image. The learned dictionary elements correspond to
16 × 16 image patches. Applying a 7 × 7 gaussian filter
to these dictionary elements leads to convolved dictionary
elements of size 10× 10 since it does not make sense to add
a padding region. Hence, the estimation of the coefficients
took place by using blurred image patches and dictionary
patches of size 10×10. The coefficients are determined using
the BOP method (Kuser = 10). This means that for each
tile pi of the primal image a set of approximations, i.e.,
p̂ji = Caji j = 1, . . . ,Kuser, is determined. Instead of just
using the best solution according to the reconstruction error,
we select from this set the approximation p̂j∗i that interferes
the least with the estimation of the primal image in the
neighbourhood of position i.

The interference of an approximation p̂ji with respect to
its neighbourhood is computed by considering the set of
approximations of those tiles of the primal image that overlap
position i. The tiles of the primal image that overlap with
position i are denoted as pk ∈ N(i) in the following.
Furthermore, let p̂lk, l = 1, . . . ,Kuser, pk ∈ N(i) denote the
set of approximations of these tiles that have been obtained
from the BOP method. Additionally, let O(i, k) and O(k, i)
be matrices that implement two mappings into a lower dimen-

Fig. 8. Top: Town training set. Bottom: Best performing dictionary obtained
from this set of images (SC-SGD, Kuser = 10, α0 = 10−1, αfinal =
10−3, λ0 = 50, λfinal = 0.1, k = 20). The dictionary consists of 1681
elements of size 16×16. The 2D-arrangment was obtained from a Kohonen-
Map.

sional subspace such that the vector representations of the two
tiles at position i and k only contain the corresponding pixels
of the tiles that are located in their overlapping region after the
mapping has been applied. Now, I(i, j), i.e., the interference
of the j-th approximation at position i, is defined as the sum of
the distances of the closest approximations of all overlapping
tiles in the neighbourhood of position i:

I(i, j) =
∑

pk∈N(i)

min
l=1,...,Kuser

‖O(i, k)p̂ji−O(k, i)p̂lk‖2 . (34)

For each tile, we sweep through the set of its approximations
and select the one that leads to the smallest interference:

j∗ = arg min
j
I(i, j) . (35)

The final estimation of the pixel value of the primal image at
position i is obtained as the mean of the approximations of all
tiles that overlap with position i. For each tile from the set of

12

approximations that has been obtained from the BOP method
the least interfering one is chosen accoding to (35).

A. Deconvolution results
The deconvolution results for the house and flower images

are depicted in Figure 7 and 9 respectively. In order to
compute a PSNR with respect to the original image all results
were scaled to the interval [0, 1] and centered such that the
PSNR was maximized. Furthermore, the images were cut
such that artifacts at the borders did not influence the PSNR
measurement.

In both cases, i.e. house and flower, the PSNR of the sparse
reconstruction improves compared to the PSNR of the blurred
image. In case of the house image, it can be improved from
23.3dB to 26.3dB whereas in case of the flower image it can
be improved from 25.6dB to 33.3dB. Figure 7 depicts the
PSNR values for the house image that are obtained with k =
12, 14, 16, 18, 20 and dictionaries learned by hard-competitive
as well as soft-competitive stochastic gradient descent. Figure
7 also depicts results that are obtained if a dictionary that has
been learned on the flowers training set is used in order to
reconstruct the house image. In Figure 9 the same kind of
results for the flower image are depicted. Additionally, both
figures show the results that have been obtained by using an
overcomplete Haar-wavelet frame.

It can be seen that for both images the learned dictionaries
outperform the Haar-wavelet frame. The larger the number of
non-zero entries k becomes, the better the obtained perfor-
mance is. Both figures show that the obtained performance
depends on the set of training images that have been used for
learning the dictionaries. In both cases the dictionaries that
have been obtained from the set of images that are similar
to the image that is subject to deconvolution outperform
those dictionaries that have been learned from images that
do not look similar to the convolved image. Due to com-
putational reasons the number of pursuits performed in the
BOP method was small (Kuser = 10) given the size of the
dictionary and the number of non-zero coefficients. Hence,
the hard-competitive and soft-competitive method are quite
similar. Therefore, also the performance of hard-competitive
and soft-competitive learning is rather similar though the soft-
competitive version more often slightly outperforms the hard-
comeptitive approach than the other way around. The PSNRs
obtained for the house image range from 25.5dB to 26.5dB,
whereas the PSNRs obtained in case of the flower image range
from 31dB to 33dB. Therefore, the same absolute variation
in the reconstruction quality leads to a higher variance in the
PNSR curves in case of the flower image.

The best performing dictionaries that have been learned
from the town- and the flowers training set are depicted in
Figure 8 and 10, respectively. It can be seen that there is a clear
difference between the two dictionaries, e.g., the dictionary
obtained from the town set contains more higher frequency
components.

X. CONCLUSIONS

We have proposed a novel algorithm for dictionary learning
that uses stochastic-gradient-descent on a cost function for

12 14 16 18 20
29

30

31

32

33

34

k

P
S

N
R

(d
B

)

HAAR−Wavelets

SC−SGD
training set flowers

HC−SGD(BOP)
training set flowers

SC−SGD
training set town

HC−SGD(BOP)
training set town

Fig. 9. Top left: primal image, Top middle: blurred image (PSNR:
25.6dB), Top right: best deconvolution result (PSNR: 33.3dB, SC-SGD,
k = 20,α0 = 10−1, αfinal = 10−2, λ0 = 10, λfinal = 10−2, training set
flowers, dictionary depicted in Figure 10). Bottom: PSNR of deconvoluted
image with respect to primal image for different choices of k and methods.
Best results are obtained if the flowers set (see Figure 10) is used for dictionary
training instead of the town set. See text for details.

sparse coding. Results obtained with typical synthetic bench-
mark data show that this simple and fast method is competitive,
and in many cases even superior to computationally more
intensive state-of-the-art methods such as MOD or K-SVD,
both in terms of how well the representation error is minimized
and how well the dictionary is reconstructed.

Moreover, we introduced the Bag of Pursuits (BOP) method
in order to obtain an even better estimation of the best
k-term approximation of the given data. The BOP can be
computationally expensive, but we have shown that both
the approximation of the data and the learned dictionaries
are significantly improved with BOP. Moreover, the BOP
method and a generalization of the Neural-Gas approach have
been used to derive the soft-competitive stochastic gradient
descent algorithm as a novel method for learning complete
and overcomplete dictionaries for sparse coding. This method
has further improved our results. One important observation is
that the performance of the methods proposed here degrades
much slower than that of MOD and K-SVD as a function of
the degree of sparseness, which makes the proposed methods
more robust and more versatile. This increased applicability is
further facilitated by the fact that our methods learn fast and
online.

Finally, we have applied the proposed methods to the
practical problem of image deconvolution. We have done this
for two different classes of images, namely buildings and
flowers. The dictionaries have been learned separately for each
class. We have then used both dictionaries to invert image

13

Fig. 10. Top: Flowers training set. Bottom: Best performing dictionary ob-
tained from this set of images (SC-SGD, Kuser = 10, α0 = 10−1, αfinal =
10−2, λ0 = 10, λfinal = 10−2, k = 20). The dictionary consists of 1681
elements of size 16×16. The 2D-arrangment was obtained using a Kohonen-
Map.

blur. When using the buildings dictionary for deblurring the
buildings, results are significantly better than when using the
flowers dictionary. Conversely, the flowers dictionary yielded
better results on the flowers images. We have therefore shown
that our method is able to learn dictionaries that adapt to a
particular class of images. Moreover, all results obtained with
our learned dictionaries are clearly better than those obtained
with the Haar-wavelets that we use as a reference.

Overall, we have proposed a number of improvements that
make the learning of sparse dictionaries faster and more
robust. The quality of the resulting dictionaries has also been
improved. This has been demonstrated on a comprehensive
set of synthetic data and by applying the methods to the real
problem of image deconvolution.

Fig. 11. The Haar-wavelet frame that has been used for comparison purposes.

ACKNOWLEDGMENT

The authors would like to thank Christoph Feilke, who
helped to perform the deconvolution experiments. Further-
more, the authors would like to thank the reviewers for their
comments which helped to improve the paper.

REFERENCES

[1] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
no. 381, pp. 607–609, 1996.

[2] K. Labusch, E. Barth, and T. Martinetz, “Simple Method for High-
Performance Digit Recognition Based on Sparse Coding,” IEEE Trans-
actions on Neural Networks, vol. 19, no. 11, pp. 1985–1989, 2008.

[3] D. Donoho and X. Huo, “Uncertainty principles and ideal atomic
decomposition,” IEEE Trans. Inform. Theory, vol. 47, pp. 2845–2862,
1999.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.
[Online]. Available: http://dx.doi.org/10.1137/S003614450037906X

[5] M. Elad and A. Bruckstein, “A generalized uncertainty principle and
sparse representation in pairs of bases,” IEEETrans. Inform. Theory,
vol. 48, pp. 2558–2567, 2002.

[6] D. Donoho and M. Elad, “Optimally sparse representation in general
(non-orthogonal) dictionaries via l1 minimization,” Proc. Natl. Acad.
Sci., vol. 100, pp. 2197–2202, 2003.

[7] R. Gribonval and M. Nielsen, “Sparse decompositions in unions of
bases,” IEEETrans. Inform. Theory, vol. 49, pp. 3320–3325, 2003.

[8] J. A. Tropp, “Greed is good: algorithmic results for sparse approxima-
tion,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp.
2231–2242, 2004.

[9] E. Candes and T. Tao, “Decoding by linear programming,” IEEETrans.
Inform. Theory, vol. 51, pp. 4203–4215, 2005.

[10] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of
sparse overcomplete representations in the presence of noise.” IEEE
Transactions on Information Theory, vol. 52, no. 1, pp. 6–18, 2006.

[11] E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Comm. Pure Appl. Math.,
vol. 59, pp. 1207–1223, 2006.

[12] A. M. Bruckstein, D. Donoho, and M. Elad, “From sparse solutions
of systems of equations to sparse modeling of signals and images,”
SIAMREVIEW, vol. 51, no. 1, pp. 34–81, 2009.

14

[13] K. Engan, S. O. Aase, and J. Hakon Husoy, “Method of optimal
directions for frame design,” in ICASSP ’99: Proceedings of the Acous-
tics, Speech, and Signal Processing, 1999. on 1999 IEEE International
Conference. Washington, DC, USA: IEEE Computer Society, 1999,
pp. 2443–2446.

[14] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Algorithm for
Designing Overcomplete Dictionaries for Sparse Representation,” Signal
Processing, IEEE Transactions on [see also Acoustics, Speech, and
Signal Processing, IEEE Transactions on], vol. 54, no. 11, pp. 4311–
4322, 2006.

[15] K. Labusch, E. Barth, and T. Martinetz, “Sparse Coding Neural Gas:
Learning of Overcomplete Data Representations,” Neurocomputing,
vol. 72, no. 7-9, pp. 1547–1555, 2009.

[16] ——, “Bag of Pursuits and Neural Gas for Improved Sparse Coding,”
in Proceedings of the 19th International Conference on Computational
Statistics, G. Saporta, Ed. Springer, 2010, pp. 327–336.

[17] G. Davis, S. Mallat, and M. Avellaneda, “Greedy adaptive approxima-
tion,” J. Constr. Approx., vol. 13, pp. 57–89, 1997.

[18] S.Mallat and Z. Zhang, “Matching pursuits with time-frequency dictio-
naries,” IEEE Transactions on Signal Processing, vol. 41, pp. 3397–
3415, 1993.

[19] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal Matching Pur-
suit: Recursive Function Approximation with Applications to Wavelet
Decomposition,” Proceedings of the 27 th Annual Asilomar Conference
on Signals, Systems,, November 1993.

[20] L. Rebollo-Neira and D. Lowe, “Optimized orthogonal matching pursuit
approach,” IEEE Signal Processing Letters, vol. 9, no. 4, pp. 137–140,
2002.

[21] T. Martinetz and K. Schulten, “A ”Neural-Gas Network” Learns Topolo-
gies,” Artificial Neural Networks, vol. I, pp. 397–402, 1991.

[22] T. Martinetz, S. Berkovich, and K. Schulten, ““Neural-gas” Network
for Vector Quantization and its Application to Time-Series Prediction,”
IEEE-Transactions on Neural Networks, vol. 4, no. 4, pp. 558–569,
1993.

Kai Labusch studied computer sci-
ence at the University of Lübeck,
where he graduated 2004. He now
works as research assistant at the In-
stitute for Neuro- and Bioinformatics
of the University of Lübeck, where
he pursues a PhD degree.

Erhardt Barth is a professor at the
Institute for Neuro- and Bioinfor-
matics at the University of Lübeck,
where he leads the research on human
and machine vision. He received his
Ph.D. in electrical and communica-
tions engineering from the Technical
University of Munich and has con-
ducted research at the Universities of
Melbourne and Munich, the Institute
for Advanced Study in Berlin, and
the NASA Vision Science and Tech-
nology Group in California. In 2000
Dr. Barth received the Schloessmann
Award from the Max-Planck Society.

Thomas Martinetz (M’91-SM’04)
studied Physics and Mathematics in
Munich and Cologne and got his
PhD with the Theoretical Biophysics
Group at the Beckman Institute of
the University of Illinois at Urbana-
Champaign. From 1991 to 1996 he
led the project Neural Networks for
automation control at the Corporate
Research Laboratories of the Siemens
AG in Munich. From 1996 to 1999
he was Professor for Neural Com-
putation at the Ruhr-University of
Bochum and head of the Center for
Neuroinformatics. Thomas Martinetz
is Chairman of the German Chapter
of the European Neural Network So-
ciety.

