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Abstract

We propose a new algorithm for the design of overcomplete dictionaries for
sparse coding, Neural Gas for Dictionary Learning (NGDL), which uses a set of
solutions for the sparse coefficients in each update step of the dictionary. In or-
der to obtain such a set of solutions, we additionally propose the bag of pursuits
method (BOP) for sparse approximation. Using BOP in order to determine the
coefficients of the dictionary, we show in an image encoding experiment that in
case of limited training data and limited computation time the NGDL update
of the dictionary performs better than the standard gradient approach that is
used for instance in the Sparsenet algorithm, or other state-of-the-art meth-
ods for dictionary learning such as the Method of Optimal Directions (MOD)
or the widely used K-SVD algorithm. In an application to image reconstruc-
tion, dictionaries trained with this algorithm outperform not only overcomplete
Haar-wavelets and overcomplete discrete cosine transformations (DCT), but also
dictionaries obtained with widely used algorithms like K-SVD.

Keywords: Dictionary Learning, Image Reconstruction, Vector Quantization,
Sparse Approximation

1. Introduction

Suppose, we are given an image that is incomplete. Our task is to reconstruct
the original image, i.e., determine its missing pixel values from the the remaining
pixels. Among other approaches, Wavelet representations have been successfully
used to tackle this task [1, 2]. They have also been applied to the closely related
problem of image denoising [3]. A key property for the success of certain Wavelet
bases in these tasks is that natural image patches can be represented as a sparse
linear combination of the Wavelets [4, 5]. Recently, for instance in [6, 7], it has
been proposed to use dictionaries that have been learned from image data in
order to solve these tasks. A possible advantage of the learned dictionaries is
that they can be adapted to the specific properties of a subclass of images which
is not always possible in case of Wavelet bases. However, in order to actually
exploit this advantage, one needs a method for dictionary learning that is able
to extract the subclass specific information from the training images.
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A central problem in many dictionary learning algorithms is that for the
update of the dictionary the hidden parameters of the underlying data model,
i.e., the dictionary coefficients, have to be fixed even though there might be many
different good configurations for the hidden parameters. In order to remedy this
problem, we here propose a soft-competitive dictionary learning approach that
can employ a large set of possible configurations of the hidden parameters in each
update step of the dictionary. The update step for the dictionary is independent
from the method that determines the configurations of the hidden parameters
which makes it suitable for a broad range of different data models.

In order to formalize the problem of image reconstruction, we consider a set
of vectors p1, . . . ,pP , pi ∈ RD. Each vector pi contains the pixels of a patch
of size d× d, d2 = D at position i in the given image where P is the number of
all the patches of size d × d of the original image. If some of the image pixels
are missing, this can be written as

pi = Siqi , i = 1, . . . , P (1)

where Si is a matrix that describes a projection to a lower-dimensional subspace.
qi ∈ RN contains the pixels of a patch of size n × n, n2 = N at position i in
the original image. The operator Si might differ for each position of the image
depending on the pixels that are missing.

In order to obtain the original image, one has to invert the mapping Si.
Since in the given image certain pixels are missing, D < N holds, i.e., in this
case linear algebra tells us that in gerneral Si cannot be inverted. A common
hypothesis is that the patches of the original image can be represented as a
sparse linear combination of some dictionary C plus additive noise:

qi = Câi + εi ⇒ pi = SiCâi + Siεi . (2)

C = (c1, . . . , cM ), cj ∈ RN , where ‖âi‖0 ≤ k � M and ‖Siεi‖ ≤ δ (M is
the number of dictionary elements)1. Based on this hypothesis, it has been
proposed (see [8] for review) to invert the mapping (2) by the solution of a
sparse approximation problem

al0i = arg min
a
‖a‖0 subject to ‖pi − SiCa‖2 ≤ δ (3)

where Cal0i is the best approximation of qi according to (3). It can be shown that

‖al0i − âi‖22 is upper-bounded by a constant that is proportional to the square

of the noise level δ under the condition that al0i is sparse enough [9, 10, 8].

How sparse al0i has to be depends on the mutual coherence of the projected
dictionary, i.e.,

H(SiC) = max
1≤i,j≤M,i6=j

|(Sici)TSicj | . (4)

On the one hand a smaller mutual coherence H(SiC) permits a larger number of
non-zero entries in al0i , on the other hand a smaller number of non-zero entries

1‖a‖0 is equal to the number of non-zero entries of a.
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‖al0i ‖0 permits a larger mutual coherence of the projected dictionary [9, 10, 8].
The more pixels are missing, i.e., the lower-dimensional the subspace obtained
from projection Si is, the larger the mutual coherence of the projected dictionary
is expected to be.

Unfortunately, (3) is an NP-hard combinatorial optimization problem [11].
Therefore, it has been proposed, for instance in [12], to solve an easier problem
instead, namely the following relaxed approximation problem

al1i = arg min
a
‖a‖1 subject to ‖pi − SiCa‖2 ≤ δ . (5)

It can be shown that the solution of (5) well approximates the solution of (3)
[13, 14] under realistic conditions. Among the methods that can be used to
find a solution of (5) (for a comprehensive review see [8]) there are approaches
based on linear or quadratic programming such as Basis Pursuit [15], itera-
tively reweighted least squares methods [16], stepwise methods as for instance
the LARS-LASSO algorithm [17], iterative shrinkage methods [18] and related
neuro-inspired dynamical systems [19].

In this work, we do not consider the relaxed optimization problem (5) but use
a greedy approach that directly tackles (3). The greedy methods Orthogonal
Matching Pursuit (OMP) [20] and Optimized Orthogonal Matching Pursuit
(OOMP) [21] are guaranteed to provide solutions that are close to the best
solution al0i if the number of non-zero entries in al0i is small enough. The smaller
the number of non-zero entries is, the closer these methods approximate the
best solution of (3) [22, 23, 9]. Also a neuro-inspired dynamical system has
been proposed which uses a hard-sparseness constraint on the coefficients [24].

Of course, the properties of the mapping Si strongly influence the quality of
the solution, but in our setting it is not possible to choose the mapping Si. Our
task is closely related to the domain of compressive sensing [25] where a mea-
surement setting is considered that tries to choose an optimal mapping Si that
supports easy reconstruction. Nevertheless, we can improve the performance
of the approximation methods by choosing an appropriate dictionary C that is
well adapted to the patches of the original image. For example in case of nat-
ural image patches obvious choices would be an (overcomplete) discrete cosine
dictionary (DCT) [5] or an (overcomplete) Haar-wavelet dictionary (HAAR) [5].
Here, we do not want to use a predefined dictionary but we want to learn an
appropriate dictionary.

Suppose that we have some knowledge about the content of the original
image. In that case we can find a set of images that are similar to the original
image and extract a large number of random patches x1, . . . ,xL,xi ∈ RN of
size n×n out of these similar images. We aim to learn a dictionary C ∈ RN×M
that enables a sparse representation of these random patches

min
C

1

L

L∑
i=1

min
ai

‖xi − Cai‖22 subject to ‖ai‖0 ≤ k . (6)

The joint solution of (6) with respect to C and a1, . . . ,aL is a difficult non-
convex optimization problem, whereas for given fixed coefficients one obtains
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a simple convex minimization problem. In the past, many dictionary learning
methods have been proposed that implement a two-step approach to tackle the
joint optimization problem. First the coefficients are determined for some fixed
dictionary, then the coefficients are considered fixed and an optimization step
with respect to the dictionary is performed.

If one aims to use the learned dictionary on unknown data in order to solve
some pratical problem such as image reconstruction, one is interested in its
encoding performance on that unknown data. Given a fixed dictionary, there
might exist several almost equally good configurations of the hidden coefficients.
We claim that an optimization method that uses only a single configuration of
the coefficients in the update of the dictionary can be suboptimal with respect
to the encoding performance on unknown data whereas a soft-competitive up-
date rule for the dictionary that employs a large number of different possible
configurations of the coefficients can lead to better performance on unknown
data.

In the image reconstruction experiments, we show that in case of a limited
number of training samples and limited computation time, the soft-competitive
approach outperforms other state-of-the-art approaches in terms of the obtained
performance on unknown data. In order to obtain several configurations of the
coefficients during the learning process, we propose the BOP method for sparse
approximation which is derived from OOMP. It is important to note that though
in this paper this BOP is used in order to determine the coefficients, the soft-
competitive dictionary update step is independent from the method that pro-
vides the coefficients. Hence, this dictionary update approach can be combined
with any sparse approximation method (that provides a set of solutions accord-
ing to some data model) as long as a minimization of the mean squared error is
obtained for some fixed coefficients. Note, that this is always the case within a
probabilistic linear generative model where the additive noise is assumed to be
Gaussian. Another advantage of the proposed approach is that it performs true
online learning and that it converges even with a highly overcomplete dictionary.
Furthermore, the update of the dictionary does not involve a matrix inversion
or a singular value decomposition as it is the case for some other state-of-the-art
methods.

Most of the methods for dictionary learning that have been proposed in the
past can be separated into two categories: The methods from the first category
use a regularization term which is scaling sensitive in order to enforce sparsity
on the coefficients of the representation. Therefore, a constraint on the norm of
the elements of the dictionary has to be introduced in order to obtain a non-
trivial solution for the dictionary. Many methods from this category possess a
probabilistic interpretation in terms of a maximization of the data likelihood or
the posteriori probability of the learned dictionary according to some generative
model.

The methods from the second category, the scaling invariant methods, use a
measure of sparsity of the dictionary coefficients that is insensitive with respect
to the scaling of the elements of the dictionary. The method which is proposed
in this work belongs to the second category. In the following, we provide a brief
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discussion of both categories.

2. Scaling sensitive dictionary learning

We call a dictionary learning method scaling sensitive if it uses a measure of
sparseness whose influence can be minimized by an increase of the norm of the
dictionary elements. This is for instance the case if one does not introduce
explicit constraints on the number of non-zero entries of the coefficients but
incorporates some scaling sensitive regularization term in the target function in
order to prevent non-sparse solutions from being selected:

min
C

L∑
i=1

min
ai

‖xi − Cai‖22 + βS(ai) . (7)

The user-defined parameter β controlls the trade-off between representation
error and sparseness of the coefficients. Popular scaling sensitive choices for the
regularization term S(a) are for instance:

S(a) =

{
‖a‖1

log(1 + aTa) .
(8)

The nested optimization problem (7) can be tackeled by a two-fold optimization
proccess. First the dictionary C is fixed and the coefficients of the dictionary
are determined by some optimization method. Then the coefficients are fixed
and an optimization step with respect to the dictionary is performed.

The Sparsenet algorithm [26, 27] implements such a two-fold optimization
process. First, for a fixed dictionary C, the coefficients are determined by
gradient descend, which is possible if the regularization term that is used is
differentiable as it is the case if S(a) = log(1 + a2). After the coefficients have
been determined, a gradient descent with respect to the dictionary is performed.
With learning rate η, the update of the dictionary is

∆C = η (X − CA)AT , (9)

where A = (a1, . . . ,aL) are the coefficients that have been determined before.
A problematic aspect is that the gradient optimization might run into local
minima if S(a) is not convex, which is the case for S(a) = log(1 + a2).

A convex optimization problem with respect to the coefficients is obtained if
S(a) = ‖a‖1 is used as a regularization term. However, the optimization cannot
be performed by gradient descent in this case, since the target function is not
differentiable anymore. Instead, all the relaxation methods for sparse approx-
imation that already have been mentioned can be used in order to determine
the coefficients.

In the Sparsenet algorithm, the related algorithms proposed in [28, 29], or in
the column normalized FOCUSS variant for dictionary learning, i.e., FOCUSS-
CNDL [30], the update of the dictionary is first performed as in an unconstrained

5



optimization, and then the dictionary is projected to the constrained solution
space by setting the norm of the dictionary elements to a fixed value. Since this
approach often leads to slow convergence, improved optimization approaches
have been proposed [31] that directly tackle the constrained optimization prob-
lem by an unconstrained optimization of the Langrangian dual of the target
function.

Let u > 0 be some constant, then the constraint optimization problem for
given fixed coefficients ai is

min
C

L∑
i=1

‖xi − Cai‖22 subject to ‖cj‖22 ≤ u . (10)

The corresponding lagrangian is,

LCNDL =

L∑
i=1

‖xi − Cai‖22 +

M∑
j=1

λj(‖cj‖22 − u)

= trace((X − CA)2) + trace(Λ(C2 − uI)) , (11)

where λ = (λ1, . . . , λM ), Λ = diag(λ) are the Lagrangian parameters. The
unconstrained minimization of (11) with respect to C and λ is equivalent to the
solution of the constrained minimization problem (10). In order to minimize
(11), one considers its derivative with respect to C:

∂LCNDL

∂C
= −2(X − CA)AT + 2CΛ . (12)

A global minimum for any Λ is obtained at

∂LCNDL

∂C
= 0

⇔ C = XAT (AAT + Λ)−1 . (13)

Inserting (13) in (11), one obtains the Lagrangian dual which shall be maximized
with respect to Λ. This can be done for instance by gradient descent or Newtons
method. If the maximum of the Lagrangian dual with respect to Λ, i.e., Λ∗, has
been determined (see [31] for details) the dictionary is obtained as

C = XAT (AAT + Λ∗)
−1 . (14)

The determination of the coefficients and the update of the dictionary according
to (14) are subsequently repeated until some stopping criterion is met or a
maximum number of learning iterations has been performed. The update (14)
can be understood as the scaling sensitive variant of the Method of Optimal
Directions [32], which is discussed in section 3.2.
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3. Scaling invariant dictionary learning

We call a dictionary learning method scaling invariant if it uses a measure of
sparsity whose influence can not be minimized by an increase of the norm of the
dictionary elements. This is the case if one aims to minimize the representation
error where constraints on the zero norm of the coefficients are explicitly given,
i.e., one tackles the following optimization problem

min
C

1

L

L∑
i=1

min
ai

‖xi − Cai‖22 subject to ‖ai‖0 ≤ k . (15)

The number M of dictionary elements and the maximum number of non-zero
entries k are user-defined model parameters. Examples from this category of
methods are for instance the Method of Optimal Directions (MOD) [32], the K-
SVD algorithm (KSVD) [6], the Sparse Coding Neural Gas algorithm (SCNG)
[33, 34], and the methods that are described in this work.

Vector quantization approaches such as the k-means algorithm [35], the
LBG-algorithm [36], and the Neural Gas algorithm [37, 38, 39] are closely re-
lated to methods from this category. The vector quantization methods consider
the problem (15) for k = 1 where an additional constraint on the coefficients
has been added that enforces the coefficients to be chosen from {0, 1}.

The nested optimization problem (15) can be tackled using the same two-
fold optimization approach that was already discussed for the scaling sensitive
methods. In order to determine the coefficients, greedy methods such as MP
[40], OMP [20], or OOMP [21] are used.

Due to the explicit constraint on the number of non-zero entries of the coef-
ficients, the optimization with respect to the dictionary itself is unconstrained.
By convention, the norm of the elements of the dictionary is set to some con-
stant value (one) after the update of the dictionary has been performed, though
this is not required in order to exclude trivial solutions. Of course, the dictio-
nary update mechanism of the scaling invariant approaches can also be used if
a scaling sensitive measure of sparseness is used, i.e., either as part of the target
function, or implicitly in the method that determines the coefficients. In this
case, the dictionary has to be projected to the constrained solution space by a
subsequent normalization of the elements of the dictionary.

3.1. Vector quantization

The most basic method that provides sparse coding is vector quantization. Vec-
tor quantization aims to find a dictionary, i.e., codebook, C that minimizes the
mean of the squared reconstruction error

E =
1

L

L∑
i=1

‖xi − Cai‖22 (16)

where the coefficients are subject to the constraint

(ai)k =

{
1 : k = arg minj ‖xi − cj‖22
0 : else .

(17)
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The k-means algorithm [35] is a batch method that can be used in order to
determine a codebook that minimizes (16) if the coefficients are constrained by
(17). In this algorithm, for each given sample xi, the coefficients are determined
according to (17). Now let Ll be the number of given samples xi with (ai)l = 1.
Considering the derivative of (16) with respect to the element cl

∂E

∂cl
=

∑
xi:(ai)l=1

2cl − xi = Llcl −
∑

xi:(ai)l=1

xi . (18)

A local minimum of (16) is obtained at

∂E

∂cl
= 0 (19)

⇔ cl =
1

Ll

∑
xi:(ai)l=1

xi . (20)

After each element of the codebook has been subsequently updated according
to (20), new coefficients are determined according to (17). The order in which
the codebook vectors are updated is not relevant, since due to the constraint
on the coefficients, which ensures that each sample is encoded by only one
codebook vector, the update of one codebook vector does not influence the
encoding performance of those samples where it has not been used. The update
of the codebook and the determination of the coefficients are repeated until some
stopping criterion is met. In the most common implementation the algorithm
stops if the change of the codebook is lower than some threshold.

The LBG-algorithm [36] is a pattern-by-pattern method for vector quantiza-
tion. At each iteration i, it considers one given sample xi whose coefficients ai
with respect to some codebook C have been determined according to (17). At
iteration i only the codebook element cl with (ai)l = 1 is updated. The update
is computed from the gradient of ‖xi − Cai‖22 with respect to cl:

∆cl = α (xi − cl) . (21)

where α is some learning rate. If the learning rate is slowly reduced over time,
the LBG algorithm performs a stochastic gradient descent on (16). Due to its
stochastic nature it is more likely to reach a global minimum.

3.2. Method of optimal directions

The Method of Optimal Directions (MOD) [32] can be interpreted as a gen-
eralization of the k-means algorithm. It considers data representations that
represent a given sample as an arbitrary linear combination of at most k dictio-
nary elements, i.e, the method is applied to (15) for k ≥ 1.

In the first step of the MOD algorithm, dictionary coefficientsA = (a1, . . . ,aL)
of the training samples are determined by a sparse approximation method such
as for instance OOMP. The dictionary can be initialized with randomly selected
data samples.

8



In order to improve the dictionary such that the representation error is
reduced, the gradient of

E = ‖X −A‖2F (22)

with respect to the dictionary C is considered:

∂E

∂C
= −2(X − CA)AT . (23)

A global minimum is obtained at

∂E

∂C
= 0

⇔ C = XAT (AAT )−1 . (24)

After the dictionary has been updated according to (24) new coefficients are de-
termined. The update of the dictionary and the determination of the coefficients
are subsequently repeated until some stopping criterion is met or a maximum
number of update steps have been performed.

MOD can be understood as the scaling invariant counterpart of the method
proposed in [31] which can be seen from a comparison of the constrained update
rule (14) and the MOD update rule (24).

3.3. K-SVD

The K-SVD algorithm is even more similar to the k-means algorithm and has
been proposed in order to improve on the MOD method. According to the
authors of [6] it provides better convergence speed and robustness against prob-
lematic local minima compared to the MOD method. Given fixed coefficients
that have been determined by some method, in the K-SVD approach a separate
update of each dictionary element is subsequently performed. Since in this case
an update of a single dictionary element depends on those updates that already
have been performed, the order of the updates is chosen randomly.

For the update of the l-th dictionary element only the data samples that
use this element in the encoding are selected. Let Sl = {xi | (ai)l 6= 0} be
the set of samples where the l-th dictionary element has been used. Now the
representation error is considered that is obtained for all xi ∈ Sl if the l-th
dictionary element is removed from the encoding:

El =
∑
xi∈Sl

‖xi − Câi‖2F = ‖Rl‖2F (25)

where

(âi)m =

{
0 : if m = l
(ai)m : else.

(26)

Here Rl is a matrix that contains all the residuals that are obtained if the
coefficients of the l-th dictionary element are set to zero. In order to choose a
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better dictionary element, i.e., to minimize El, a singular value decomposition
of the matrix Rl is performed:

Rl = UlΣlVl . (27)

Let Σl be a diagonal matrix that contains the singular values of Rl. Further-
more, let λl∗ be the singular value that has the largest absolute value. The
updated l-th dictionary element is the column of Ul that corresponds in (27) to
this largest singular value. After the l-th dictionary element has been updated
also its coefficients have to be modified, since they are likely to be used in subse-
quent updates of those elements of the dictionary that still have to be updated.
The updated coefficients of the l-th dictionary element are the entries of the
l∗-th row of Vl multiplied by the largest singular value λl∗ . In each iteration of
the K-SVD algorithm all the dictionary elements cl, l = 1, . . . ,M are updated
this way in a random order. Then the coefficients are re-determined. This is
repeated until some stopping criterion is met or a maximum number of update
iterations have been performed.

4. Soft-competitive dictionary learning

All the methods that are described in section 2 and section 3 perform hard-
competitive dictionary learning. Hard-competitive means that, for a given fixed
dictionary, only one solution for the coefficients is used in order to compute the
update of the dictionary. In the maximum likelihood interpretation of methods
such as the Sparsenet algorithm [26, 27] this corresponds to an approximation
of the data likelihood of the model by its maximum value in order to avoid an
intractable integration over the hidden parameters of the model. In [28, 29] it
has been proposed to use a better approximation of the problematic integral of
the hidden parameters that is based on the gaussian integral.

Soft-competitive dictionary learning can be understood as another way of
using a better approximation of the data-likelihood of the model. Instead of one
“best” solution for the coefficients that is used in each update step, a certain
subset of “good” solutions is used.

A pattern-by pattern soft-competitive approach for vector quantization is the
Neural Gas (NG) algorithm [37, 38]. At iteration i it considers all possible en-
codings of a randomly selected sample xi. This means that the possible choices
a1
i , . . . ,a

M
i with (aji )j = 1 for the coefficients where aji uses the j-th codebook

vector to represent xi are sorted according to the obtained reconstruction error:

‖xi − Caj0i ‖ ≤ ‖xi − Ca
j1
i ‖ ≤ · · · ≤ ‖xi − Ca

jp
i ‖ ≤ · · · ≤ ‖xi − Ca

jM
i ‖ . (28)

Now, in each learning iteration every codebook vector cl, l = 1, . . . ,M is up-
dated. Introducing the neighborhood hλi(v) = e−v/λi , the update is weighted
according to the rank of the encoding that uses the codebook vector cl

∆cl = αthλi(rank(xi,a
l
i, C)) (xi − cl) (29)
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where αi is an exponentially decreasing learning rate

αi = α0

(
αfinal

α0

) i
imax

, (30)

λi an exponentially decreasing neighborhood-size

λi = λ0

(
λfinal

λ0

) i
imax

, (31)

and imax the maximum number of learning iterations. It has been shown in [38]
that this type of update is equivalent to a gradient descent on a well-defined cost
function which for λi → 0 becomes equal to (16) where the coefficients are cho-
sen according to (17). The update rule (29) can be seen as the soft-competitive
variant of the LBG update rule (21) where additionally an exponentially de-
creasing learning rate has been added.

In [34], we proposed the SCNG algorithm which uses a similar update rule
in order to perform soft-competitive learning of the dictionary. However, the
SCNG algorithm performs the updates of the dictionary in a sequence of orthog-
onal subspaces, since it implements an Optimized Orthogonal Matching Pursuit
that modifies the dictionary during the pursuit.

Here, we want to more directly apply the NG ranking approach to sparse
coding. An advantage of this more direct approach is that it can be combined
with an arbitrary method for the determination of the coefficients. Similar to
the NG, for each given sample xi we consider all K possible coefficient vectors
aji , i.e., encodings that have at most k non-zero entries. Note that K grows

exponentially with M and k. The elements of each aji are chosen such that

‖xi−Caji‖ is minimal. We order the coefficients according to the representation
error that is obtained by using them to approximate the sample xi

‖xi − Caj0i ‖ < ‖xi − Ca
j1
i ‖ < · · · < ‖xi − Ca

jp
i ‖ < · · · < ‖xi − Ca

jK
i ‖ . (32)

If there are coefficient vectors that lead to the same reconstruction error

‖xi − Cam1
i ‖ = ‖xi − Cam2

i ‖ = · · · = ‖xi − CamV
i ‖ , (33)

we randomly pick one of them and do not consider the others. Note that we
need this due to theoretical considerations while in practice this situation almost
never occurs. Let rank(xi,a

j
i , C) = p denote the number of coefficient vectors

ami with ‖xi − Cami ‖ < ‖xi − Ca
j
i‖. we consider the following modified error

function

Es =

L∑
i=1

K∑
j=1

hλt
(rank(xi,a

j
i , C))‖xi − Caji‖

2
2 , (34)

which becomes equal to (16) for λt → 0. In order to minimize (34), we consider
the gradient of Es with respect to C, which is

∂Es
∂C

= −2

L∑
i=1

K∑
j=1

hλt(rank(xi,a
j
i , C))(xi − Caji )a

j
i

T
+R (35)
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with

R =

L∑
i=1

K∑
j=1

h
′

λt
(rank(xi,a

j
i , C))

∂rank(xi,a
j
i , C)

∂C
‖xi − Caji‖

2
2. (36)

In order to show that R = 0, we adopt the proof given in [38] to our setting.
With eji = xi − Caji , we write rank(xi,a

j
i , C) as

rank(xi,a
j
i , C) =

K∑
m=1

θ((eji )
2 − (emi )2) (37)

where θ(x) is the heaviside step function. The derivative of the heaviside step
function is the delta distribution δ(x) with δ(x) = 0 for x 6= 0 and

∫
δ(x)dx = 1.

Therefore, we can write

R =

L∑
i=1

K∑
j=1

h
′

λt
(rank(xi,a

j
i , C))(eji )

2 (38)

·
T∑

m=1

((aji )
T − (ami )T )δ((eji )

2 − (emi )2)

Each term of (38) is non-vanishing only for those aji for which (eji )
2 = (emi )2 is

valid. Since we explicitly excluded this case, we obtain R = 0. Hence, we can
perform a stochastic gradient descent on (34) with respect to C by applying
i = 0, . . . , imax updates of C using the gradient based learning rule

∆C = αi

K∑
j=1

hλi
(rank(x,aji , C))(xi − Caji )a

j
i

T
(39)

for a randomly chosen xi where the neighborhood-size λi and learning rate αi
are chosen according to (31) and (30). After each update has been applied the
norm of the column vectors of C is set to one. Then a new training sample
xi is selected, the corresponding aji are determined, and the next update of C
can be performed. We term this way of updating the dictionary Neural Gas for
Dictionary Learning (NGDL).

The update (39) is closely related to the standard gradient update of the
Sparsent algorithm (9). For λ0 = λfinal → 0, α0 = αfinal = η, and a batch size of
one both update rules are the same. In constrast to K-SVD, MOD (section 3.3
and 3.2) and the scaling sensitive variant of MOD (section 2) the update (39)
works in a pattern-by-pattern mode and does not invole a matrix inversion or
a singular value decomposition.

5. A bag of orthogonal matching pursuits (BOP)

So far, for each training sample x, all possible coefficient vectors aj , j = 1, . . . ,K
with ‖aj‖0 ≤ k have been considered. Since K grows exponentially with M and
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Figure 1: The figure depicts the tree-like search procedure of the BOP method. In this example
Kuser = 3 holds, i.e., the method determines three different solutions. The method starts by
sorting the dictionary elements according to their overlap with respect to the residual (root
of the tree). The dictionary element that has the largest overlap, i.e., element 5 is selected.
All other dictionary elements as well as the residual are orthogonalized with respected to
dictionary element 5. This procedure is repeated (elements 2 and 3 are selected) until the
norm of the residual drops below the threshold δ. Now, the second solution is determined.
Among all overlaps that have been computed so far the largest one is selected (element 1 at
root level). Again a sequence of orthogonalizations is performed until the norm of the residual
becomes small enough (after element 2 has been selected). The third solution is obtained by
repeating the entire procedure again. Solution 1: 5,2,3 Solution 2: 1,2 Solution 3: 5,4,2.
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k, this approach is not applicable in practice. However, since in (34) all those
contributions in the sum for which the rank is larger than the neighborhood-
size λt can be neglected, we only need the first best ones with respect to the
reconstruction error.

In the following, we extend OOMP so that not only the best but the first
Kuser best coefficients aj are determined, at least approximately. This is done
in a tree-like search procedure which is illustrated in Figure 1. OOMP itera-
tively constructs a given sample x out of the columns of the dictionary C. The
algorithm starts with U jn = ∅, Rj0 = (r0,j

1 , . . . , r0,j
M ) = C and εj0 = x. The set U jn

contains the indices of those columns of C that have been used during the j-th
pursuit with respect to x up to the n-th iteration. Rjn is a temporary matrix
that has been orthogonalized with respect to the columns of C that are indexed
by U jn. rn,jl is the l-th column of Rjn. εjn is the residual in the n-th iteration of
the j-th pursuit with respect to x.

In iteration n, the algorithm looks for that column of Rjn whose inclusion in
the linear combination leads to the smallest residual εjn+1 in the next iteration
of the algorithm, i.e., that has the maximum overlap with respect to the current
residual. Hence, with

yjn =
(
rn,j1

T
εjn)/‖rn,j1 ‖, . . . , (r

n,j
l

T
εjn)/‖rn,jl ‖, . . . , (r

n,j
M

T
εjn)/‖rn,jM ‖

)
(40)

it looks for
lwin(n, j) = arg max

l,l/∈Uj
n

((yjn)l)
2 . (41)

Then, the orthogonal projection of Rjn to rn,jlwin(n,j) is removed from Rjn

Rjn+1 = Rjn −
(
rn,jlwin(n,j)(R

j
n

T
rn,jlwin(n,j))

T
)
/(rn,jlwin(n,j)

T
rn,jlwin(n,j)) . (42)

Furthermore, the orthogonal projection of εjn to rn,jlwin(n,j) is removed from εjn

εjn+1 = εjn −
(

(εjn
T
rn,jlwin(n,j))/(r

n,j
lwin(n,j)

T
rn,jlwin(n,j))

)
rn,jlwin(n,j) . (43)

The algorithm stops if ‖εjn‖ ≤ δ or n = k. The j-th approximation of a, i.e.,
aj , can be obtained by recursively tracking the contribution of each column of
C that has been used during pursuit j. So far, we described how a pursuit is
performed. In order to obtain a set of approximations a1, ...,aKuser , where Kuser

is chosen by the user, we want to conduct Kuser different pursuits. To obtain
Kuser different pursuits, we implement the following function

Q(l, n, j) =


0 :

If there is no pursuit among all pursuits that have
been performed with respect to x that is equal to
the j -th pursuit up to the n-th iteration where in
that iteration column l has been selected

1 : else .

(44)

Additionally, we track all overlaps yjn that have been computed during a pursuit
j. Let sj be the number of iterations of the j-th pursuit. If m pursuits have
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Figure 2: The set of images where the training and test patches were extracted from.

been performed, among all previous pursuits, we look for the largest overlap
that has not been used so far:

jtarget = arg max
j=1,...,m

max
n=0,...,sj−1

max
l,Q(l,n,j)=0

((yjn)l)
2 (45)

ntarget = arg max
n=0,...,sjtarget−1

max
l,Q(l,n,jtarget)=0

((yjtargetn )l)
2 (46)

ltarget = arg max
l,Q(l,ntarget,jtarget)=0

((yjtargetntarget
)l)

2 . (47)

We replay pursuit jtarget up to iteration ntarget. In that iteration, we select
column ltarget instead of the previous winner and continue with the pursuit
until the stopping criterion has been reached. We repeat this procedure until
Kuser pursuits have been performed. See also Figure 1 for an illustration of the
BOP method.

6. Experiments

We studied the influence of the soft-competive update of the dictionary in com-
bination with the BOP method on the performance of the learned dictionary
under the condition of a limited number of training samples and limited time
being available for learning. The measure of performance was the representation
error obtained on unknown data.

We randomly extracted 6000 image patches of size 8 × 8 from a set of 11
images of size 400×600. Most of the training images are photographs of the city
of Brugge. They are depicted in Figure 2. The training patches were selected
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randomly but with a variance within each patch of at least 0.1. We divided the
set of random patches in a training and test part, each of size 3000. In a first
experiment, we evaluated the test error,

ETEST =
1

3000

3000∑
i=1

‖xi − Cai‖22 (48)

where xi are the elements of the test set, the coefficients ai were determined
by the BOP method with Kuser = 1, . . . , 17, and C was either an overcomplete
DCT dictionary of size 441 or an overcomplete HAAR dictionary of size 441.
The number k of permitted non-zero coefficients was varied between k = 3 and
K = 13. The results are shown in Figure 3. It can be seen that the DCT dic-
tionary performs better than the HAAR dictionary and that the reconstruction
error remains constant though the number of BOP-trials increases. Hence, in
this case, there is only a slight performance gain obtained by using the BOP
method instead of OOMP for the determination of the coefficients. Note, that
for Kuser = 1 BOP is equal to OOMP.

Next, we evaluated the performance that is obtained on the test set if the
dictionary has been learned on the training set. In this evalution, we included
the soft-competitive approach proposed here (NGDL plus BOP soft), the scaling
invariant methods for dictionary learning MOD and K-SVD that have been dis-
cussed in Section 3, and the simple gradient descent update rule of the Sparsenet
algorithm (9) (GRAD), which is discussed in Section 2. In order to evaluate if
soft-competitive learning actually makes a difference, we also learned a dictio-
nary where the neighborhood-size used in the NGDL+BOP method was prac-
tically zero (denoted by NGDL plus BOP hard, λ0 = λfinal = 10−10), which
corresponds to hard-competitive learning. Again the parameter Kuser was var-
ied from Kuser = 1 to Kuser = 17 and the number of non-zero coefficients was
varied between k = 3 and K = 13.

As already mentioned, we wanted to evaluate the best performance that can
be obtained when both the number of training samples and the available com-
putation time are limited. We used the training set consisting of 3000 samples of
size 8×8 that has been introduced above. The computational demand of all the
methods for dictionary learning that have been compared is dominated by the
computational effort for the estimation of coefficients of the dictionary. There-
fore, for all methods, we fixed computation time by permitting 30000 estimations
of the coefficients. In case of the pattern-by-pattern method NGDL+BOP this
corresponds to 10 runs over the entire training set, i.e., 10 training epochs. All
the other approaches are batch methods. For a fixed number of estimations of
the coefficients the number of updates of the dictionary is equal to 30000/B
where B is the batch size. Of course, the batch size is upper-bounded by the
number of training samples that are given. Using all the training data in each
update step would, due to the limited number of estimations of the coefficients,
correspond to only 10 updates of the dictionary. Since such a small number
of dictionary updates might be suboptimal the batch size B was varied and
30000/B updates of the dictionary were performed. We report the results for
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the best trade-off between number of updates of the dictionary and batch size.
Apart from the batch size, further parameters had to be chosen for some of the
methods. This was done in the following way:

• Simple gradient (GRAD): For a fixed learning rate η = 0.1 the batch
size was varied in 10 steps between 1 and 3000 and the obtained error on
the test set was evaluated. For each tested batch size 30000/B updates of
the dictionary were performed. The batch size was set to the value that
yielded the smallest error on the test set. Using the optimal batch size,
the learning rate was varied in 10 steps between 0.01 and 1.0. We report
the error on the test set for the optimal batch size and learning rate.

• NGDL+BOP soft: For λ0 = Kuser, α0 = 1.0, αfinal = 0.01 the final
neighborhood-size was varied in 10 steps between λfinal = 0.001 and
λfinal = Kuser. Using the optimal final neighborhood-size with respect
to the error on the test set the initial neighborhood-size was varied in
10 steps between λ0 = λfinal and λ0 = Kuser. Using the optimal initial
and final neighborhood-sizes the final learning rate was varied in 10 steps
between αfinal = 0.01 and αfinal = 1.0. Using the optimal initial and final
neighborhood-sizes and the optimal final learning rate, the initial learning
rate was varied in 10 steps between α0 = αfinal and α0 = 1.0. We re-
port the error on the test set that is obtained for optimal initial and final
learning rate and neighborhood-size. Note that for k > 3 the optimal final
neighborhood-size was always the largest tested value, i.e., λfinal = Kuser.
This was also the case for k = 3 for Kuser < 17 while in case of k = 3 and
Kuser = 17 as optimal final neighborhood-size λfinal = 11.9 was selected.

• NGDL+BOP hard: The same initial and final learning rates were used
that were optimal in the soft-competitive case. The initial- and final
neighborhood-sizes were set to λ0 = λfinal = 10−10.

• MOD: The batch size B was varied in 10 steps between 442 and 3000. For
each tested batch size 30000/B updates of the dictionary were performed.
We report the smallest error on the test set over all tested batch sizes.

• K-SVD: The batch size was varied in 10 steps between 442 and 3000. For
each tested batch size 30000/B updates of the dictionary were performed.
We report the smallest error on the test set over all tested batch sizes.

For all methods except NGDL+BOP only the coefficients of the best solution
provided by BOP were used for learning. In order to remove the DC-component
from the image patches, for all methods the first dictionary element was set to√

1/64 and kept constant during learning. It was also forced to participate in
each linear combination that was determined by the BOP method.

The results for the learned dictionaries are shown in Figure 4. It can be
seen that in contrast to the DCT and HAAR dictionaries the performance can
be improved by increasing the number of BOP trials (Kuser). NGDL+BOP
in soft-competitive mode performs best while K-SVD performs second best.
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Figure 3: Mean squared representation error of the 3000 patches of size 8 × 8 that were
randomly extracted from the images that are depicted in Figure 2. Either an overcomplete
DCT dictionary or an overcomplete HAAR dictionary were used for the encoding. In this
case, the BOP method provides only a slight improvement. Note that for Kuser = 1 BOP is
equal to OOMP.

NGDL+BOP in hard-competitive mode performs as good as the standard gra-
dient descent approach when using a constant learning rate (GRAD+BOP).
It has been shown in [41] that in certain circumstances K-SVD can be out-
performed by the gradient descend approach, however, in our experiment the
performance of K-SVD is slightly better. We tested whether the performance
gap between K-SVD+BOP and NGDL+BOP in soft-competitive mode can be
reduced by performing 10× more learning iterations. Therefore, also results
for 100 learning epochs with Kuser = 17 for K-SVD+BOP and NGDL+BOP
in soft-competitive mode are reported. It can be seen from (4) that the gap is
reduced but still noticeable.

6.1. Image reconstruction

In the last experiment, we evaluated the influence of the soft-competitive learn-
ing on the performance in an image reconstruction task. In this experiment
we used those methods that performed best in the previous experiment, i.e.,
K-SVD+BOP and NGDL+BOP.

We created a larger training set, which better resembles the statistics of the
images to be reconstructed. This larger set consists of 150000 image patches that
were extracted randomly from the images that are depicted in Figure 2. For all
methods, we used the optimal parameters that were determined in the previous
experiment except for K-SVD where we increased the batch size by a factor of
3. We performed only 1 learning epoch which means that each training sample
was presented exactly once to the learning algorithm. However, due to the much
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Figure 4: Mean squared representation error of the 3000 patches of size 8 × 8 of the test
set. Results for varying number of permitted non-zero coefficients k = 3, . . . , 13 are shown.
MOD+BOP: Dictionary learned with the Method of Optimal directions. K-SVD+BOP: Dic-
tionary learned with the K-SVD algorithm. NGDL+BOP(soft-competitive): Method pro-
posed in this paper in soft-competitive mode. NGDL+BOP(hard-competitive): Method pro-
posed in this paper in hard-competitive mode. GRAD+BOP: Gradient descent with constant
learning rate combined with BOP. Note that for Kuser = 1 BOP is equal to OOMP. It can
be seen that for all methods the performance improves if Kuser is increased. NGDL+BOP in
soft-competitive mode performs best, K-SVD second best. For all methods the user-defined
parameters were optimized (see text for details). All methods used a separate training set.
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larger training set this corresponds to an increase of the number of dictionary
updates by a factor of ≈ 2 in case of the K-SVD algorithm. Again, the number
of permitted non-zero coefficients was varied between k = 3 and k = 13. We
set Kuser to the value that performed best in the previous experiment which is
17 as can be seen from Figure 4. The computation time for each k and method
are shown in Table 5.

We used 78 test images of size 400 × 600 which are similar to the images
depicted in Figure 2. From each test image, we removed certain percentages of
pixels (0%,30%, 50%, 70%, 90%). Then, for each 8× 8 patch of the incomplete
images we computed the coefficients with respect to a given dictionary using
the BOP method (Kuser = 17). Only the remaining pixels were used, i.e., the
dimensions of the dictionary elements corresponding to the missing pixels were
not considered. This corresponds to solving (3) where Si is a projection into a
low-dimensional subspace.

The minimum norm of the residual for the BOP stopping criterion, δ, was
varied between 0.00032 = ‖0.00004 · 1‖, 0.0032 = ‖0.0004 · 1‖,0.032 = ‖0.004 ·
1‖,1 ∈ R64 which corresponds to an average error of approximately ±0.01,
±0.1, and ±1 in 8-bit grayscale images. Note that δ was dynamically ad-
justed according to the number of pixels that are actually present in an im-
age patch, i.e., a patch containing n pixels was approximated using a minimum
norm δn = δ

√
64/n. In order to reconstruct the image patch, we took the linear

combination of the complete dictionary elements using the coefficients that min-
imize the norm of the residual. We performed the estimation of the coefficients
only for non-overlapping patches since this is computationally more efficient.
Of course, the reconstruction can be improved by estimating the coefficients
for each possible patch of the image and using the mean value of all estimated
patches at a certain position as final estimator for the pixel value at that po-
sition. However, this is not required for the comparison of the performance of
different methods for dictionary learning.

For each setting of the number of permitted non-zero coefficients k and each
choice of the noise level parameter δ and for each method we computed the mean
PSNR value over all 78 test images. In Table 1 the best mean PSNR value for
different percentages of missing pixels and different methods are shown.

It can be seen that for all percentages of missing pixels the NGDL+BOP
soft-competitive approach provides the best mean PSNR value for a certain
choice of k and δ. Which k and δ the best choice are, can be seen from Table
3 and Table 4. From Table 3, which lists the best choice for the permitted
number of non-zero entries it can be seen that the more pixels are missing the
less coefficients should be estimated. From Table 4 it follows that the noise level
δ should be chosen smaller as more pixels are available for the estimation of the
coefficients.

The test images are quite different and, therefore, the standard deviation of
the PSNR values over the 78 test images is around 4. Also the differences of the
mean PSNR values are not that large. Therefore, we took a closer look at the
results and counted for each percentage of missing pixels how often each method
provided the best PSNR value over all 78 test images. The result is shown in
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percent DCT HAAR NGDL+BOP NGDL+BOP K-SVD
missing (soft) (hard)
0% 37 36.3 39.6 38.9 39.1
30% 31 28.4 32.9 32.5 32.4
50% 27.8 25.6 29.7 29.6 29.6
70% 24.6 23.4 26.8 26.7 26.6
90% 17.5 17.9 18.1 18.1 18.1

Table 1: Best mean PSNR values over 78 test images for a certain choice of k, the number of
permitted non-zero entries, and δ, the noise level parameter used as stopping criterion in the
reconstruction of the images. Which choices of k and δ correspond to these mean PSNR values
can be seen from Table 3 and Table 4. The dictionaries obtained with NGDL+BOP(hard/soft)
and K-SVD+BOP that performed best in case of 0% missing pixels are depicted in Figure 5.

percent DCT HAAR NGDL+BOP NGDL+BOP K-SVD+BOP
missing (soft) (hard)
0% 0 0 77 0 1
30% 0 0 69 9 0
50% 0 0 52 21 5
70% 0 0 57 15 6
90% 0 13 11 36 18

Table 2: For each percentage of missing pixels, the table shows how often a certain method
provided the best PSNR value over the 78 test images. Note, that the best k and δ values
were not chosen separately for each image, but are exactly the same over all images according
to Table 3 and Table 4.

Table 2. The best k and δ values were not selected for each image separately
but are exactly the same over all images according to Table 3 and Table 4. It
can be seen from Table 2 that the soft-competitive approach not only provides
the best mean PSNR value but that its performance is best for the majority of
the test images. The more pixels are missing, the less clear the result is. For
90% missing pixels all methods perform equally bad. Those dictionaries learned
with NGDL+BOP and K-SVD+BOP that perform best in the image encoding
task, i.e., where no pixels are missing, are depicted in Figure 5.

7. Conclusion

We proposed the novel bag of pursuits (BOP) method for sparse approximation
which determines a set of configurations of the dictionary coefficients where
each configuration leads to a small reconstruction error with respect to the
approximated sample. This is in constrast to many other sparse approximation
methods which provide just a single solution to the approximation problem.
This novel approach for sparse approximation is combined with a novel approach
for soft-competitive pattern-by-pattern learning of dictionaries (NGDL) that is
derived from the Neural Gas (NG) vector quantization method.

BOP and NGDL address a central problem in many dictionary learning al-
gorithms, namely, that for the update of the dictionary the hidden parameters
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percent DCT HAAR NGDL+BOP NGDL+BOP K-SVD+BOP
missing (soft) (hard)
0% 13 13 13 13 13
30% 11 13 11 11 11
50% 5 3 5 5 5
70% 3 3 3 3 3
90% 5 7 3 3 3

Table 3: Best choice for k, the number of permitted non-zero entries in the estimation of the
dictionary coefficients. For instance, in case of 30% missing pixels NGDL+BOP(soft) achieves
the best mean PSNR value over all 78 test images with k = 11 non-zero coefficients.

percent DCT HAAR NGDL+BOP NGDL+BOP K-SVD+BOP
missing (soft) (hard)
0% 0.00004 0.0040 0.00004 0.00004 0.00004
30% 0.0004 0.0040 0.00004 0.00004 0.0004
50% 0.0004 0.0040 0.0004 0.0004 0.0004
70% 0.0040 0.0040 0.0040 0.0040 0.0040
90% 0.0040 0.0040 0.0040 0.0040 0.0040

Table 4: Best choice for δ, the noise level parameter that is used as stopping criterion in the
estimation of the coefficients for reconstruction of the images. For instance, in case of 70%
missing pixels NGDL+BOP(soft) achieves the best mean PSNR value over all 78 test images
with δ = 0.0040 and k = 3 (see Table 3).

k NGDL+BOP NGDL+BOP K-SVD+BOP
(soft) (hard)

3 20 19.5 21.8
5 37.7 36.7 38.3
7 54.6 53.4 56.4
9 75 72.4 74.7

11 92 97.4 99.8
13 120.7 115.1 120.5

Table 5: Computation time in minutes on a recent desktop computer for each number of
permitted non-zero coefficients and method. For all method 150000 coefficient estimations
were performed. For all methods the coefficients were determined with BOP (Kuser = 17)
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Figure 5: The dictionaries for the image reconstruction obtained with Kuser = 17 and k = 13
permitted non-zero coefficients. Left: NGDL+BOP soft-competitive (λ0 = λfinal = 17),
Center: NGDL+BOP hard-competitive(λ0 = λfinal = 10−10), Right: K-SVD+BOP. The
dictionary size is 441. The training set consisted of 150000 randomly extracted image patches
of size 8× 8. The patches were extracted from 11 images of size 400× 600, which are shown
in Figure 2.

of the underlying data model, i.e., the dictionary coefficients, have to be fixed
even though there can be many different configurations of the hidden param-
eters that have a high probability according to the model. In the maximum
likelihood interpretation of methods such as the Sparsenet algorithm [26, 27]
this corresponds to an approximation of the data likelihood of the model by the
maximum value of the likelihood function. This approximation is used in order
to avoid an intractable integration over the hidden parameters of the model.
Improved methods that try to use a better approximation of the problematic
integral have been proposed in [28, 29]. NGDL can be seen as a novel way of
dealing with this problem. In contrast to many state-of-the-art methods for dic-
tionary learning, it can use a large set of possible configurations of the hidden
parameters in each update step of the dictionary.

NGDL is more versatile than the previously introduced sparse-coding-neural-
gas (SCNG) method for soft-competitive dictionary learning, since it can be
combined with different sparse approximation methods. For instance, it can be
applied in order to learn the dictionary whenever a probabilistic linear generative
model is used where the additive noise is assumed to be Gaussian. However, in
future work, new methods have to developed that can be used to determine a
set of solutions for the coefficients in order to apply NGDL to such problems
which often do not use the L0 norm as measure of sparseness.

NGDL is powerful because it avoids matrix inversion or singular value de-
composition and, due to its stochastic nature, should not so easily get trapped
in local minima. The potential of our novel approach is illustrated by image-
reconstruction results, which demonstrate that the soft-competitive learning
version can outperform a number of state-of-the-art methods.
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