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Abstract. Sparse coding employs low-dimensional subspaces in order to encode
high-dimensional signals. Finding the optimal subspaces is a difficult optimization
task. We show that stochastic gradient descent is superior in finding the optimal
subspaces compared to MOD and K-SVD, which are both state-of-the art methods.
The improvement is most significant in the difficult setting of highly overlapping
subspaces. We introduce the so-called ”Bag of Pursuits” that is derived from Or-
thogonal Matching Pursuit. It provides an improved approximation of the optimal
sparse coefficients, which, in turn, significantly improves the performance of the
gradient descent approach as well as MOD and K-SVD. In addition, the ”Bag of
Pursuits” allows to employ a generalized version of the Neural Gas algorithm for
sparse coding, which finally leads to an even more powerful method.
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1 Introduction

Many tasks in signal processing and machine learning can be simplified by
choosing an appropriate representation of given data. There are a number
of desirable properties one wants to achieve, e.g., coding-efficiency, resistance
against noise, or invariance against certain transformations. In machine learn-
ing, finding a good representation of given data is an important first step in
order to solve classification or regression tasks.

Suppose that we are given data X = (x1, . . . ,xL), xi ∈ RN . We want to
represent X as a linear combination of some dictionary C, i.e., xi = Cai,
where C = (c1, . . . , cM ), cl ∈ RN . In case of M > N , the dictionary is
overcomplete.

In this work, we consider the following framework for dictionary design:
We are looking for a dictionary C that minimizes the representation error

Eh =
1
L

L∑
i=1

‖xi − Cai‖22 (1)

where xopt
i = Cai with ai = arg mina ‖xi − Ca‖ ,‖a‖0 ≤ k denotes the best

k-term representation of xi in terms of C. The number of dictionary elements
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M and the maximum number of non-zero entries k are user-defined model
parameters.

It has been shown that finding ai is in general NP-hard (Davis et al.
(1997)). Methods such as Orthogonal Matching Pursuit (OMP) (Pati et al.
1993) or Optimized Orthogonal Matching Pursuit (OOMP, Rebollo-Neira and
Lowe (2002)) can be used in order to find an approximation of the coefficients
of the best k-term representation. The Method of Optimal Directions (MOD,
Engan et al. (1999)) and the K-SVD algorithm (Aharon et al. (2006)) can
employ an arbitrary approximation method for the coefficients in order to
learn a dictionary from the data. First, the coefficients are determined, then
they are considered fixed in order to update the dictionary.

Using data that actually was generated as a sparse linear combination of
some given dictionary, it has been shown (Aharon et al. (2006)) that methods
such as MOD or K-SVD can be used in order to reconstruct the dictionary
only from the data even in highly overcomplete settings under the presence
of strong noise. However, our experiments show that even K-SVD which per-
formed best in (Aharon et al. (2006)) requires highly sparse linear combina-
tions for good dictionary reconstruction performance. The SCNG algorithm
does not possess this deficiency (Labusch et al. (2009)), but, unlike MOD or
K-SVD, it is bound to a specific approximation method for the coefficients,
i.e., OOMP.

Here, we propose a new method for designing overcomplete dictionaries
that performs well even if the linear combinations are less sparse. Like MOD
or K-SVD, it can employ an arbitrary approximation method for the coef-
ficients. In order to demonstrate the performance of the method, we test it
on synthetically generated overcomplete linear combinations of known dic-
tionaries and compare the obtained performance against MOD and K-SVD.

2 From vector quantization to sparse coding

Vector quantization learns a representation of given data in terms of so-called
codebook vectors. Each given sample is encoded by the closest codebook
vector. Vector quantization can be understood as a special case of sparse
coding where the coefficients are constrained by ‖ai‖0 = 1 and ‖ai‖2 = 1,
i.e., vector quantization looks for a codebook C that minimizes (1) choosing
the coefficients according to

(ai)m = 1, (ai)l = 0 ∀l 6= m where m = arg min
l
‖cl − xi‖22 . (2)

In order to learn a good codebook, many vector quantization algorithms
consider only the winner for learning, i.e., the codebook vector cm for which
(ai)m = 1 holds. As a consequence of that type of hard-competitive learning
scheme, problems such as bad quantization, initialization sensitivity, or slow
convergence can arise.
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In order to remedy these problems soft-competitive vector quantization
methods such as the NG algorithm (Martinetz et al. (1993)) have been pro-
posed. In the NG algorithm all possible encodings are considered in each
learning step, i.e., a1

i , . . . ,a
M
i with (aji )j = 1. Then, the encodings are sorted

according to their reconstruction error

‖xi − Caj0i ‖ ≤ ‖xi − Caj1i ‖ ≤ · · · ≤ ‖xi − Cajpi ‖ ≤ · · · ≤ ‖xi − CajMi ‖ . (3)

In contrast to the hard-competitive approaches, in each learning iteration, ev-
ery codebook vector cl is updated. The update is weighted according to the
rank of the encoding that uses the codebook vector cl. It has been shown in
(Martinetz et al. (1993)) that this type of update is equivalent to a gradient
descent on a well-defined cost function. Due to the soft-competitive learn-
ing scheme the NG algorithm shows robust convergence to close to optimal
distributions of the codebook vectors over the data manifold.

Here we want to apply this ranking approach to the learning of sparse
codes. Similar to the NG algorithm, for each given sample xi, we consider
all K possible coefficient vectors aji , i.e., encodings that have at most k non-
zero entries. The elements of each aji are chosen such that ‖xi − Caji‖ is
minimal. We order the coefficients according to the representation error that
is obtained by using them to approximate the sample xi

‖xi − Caj0i ‖ < ‖xi − Caj1i ‖ < · · · < ‖xi − Cajpi ‖ < · · · < ‖xi − CajKi ‖ . (4)

If there are coefficient vectors that lead to the same reconstruction error

‖xi − Cam1
i ‖ = ‖xi − Cam2

i ‖ = · · · = ‖xi − CamV
i ‖ , (5)

we randomly pick one of them and do not consider the others. Note that we
need this due to theoretical considerations while in practice this situation
almost never occurs. Let rank(xi,a

j
i , C) = p denote the number of coefficient

vectors ami with ‖xi − Cami ‖ < ‖xi − Caji‖. Introducing the neighborhood
hλt

(v) = e−v/λt , we consider the following modified error function

Es =
L∑
i=1

K∑
j=1

hλt
(rank(xi,a

j
i , C))‖xi − Caji‖

2
2 (6)

which becomes equal to (1) for λt → 0. In order to minimize (6), we consider
the gradient of Es with respect to C, which is

∂Es
∂C

= −2
L∑
i=1

K∑
j=1

hλt
(rank(xi,a

j
i , C))(xi − Caji )a

j
i

T
+R (7)

with

R =
L∑
i=1

K∑
j=1

h
′

λt
(rank(xi,a

j
i , C))

∂rank(xi,a
j
i , C)

∂C
‖xi − Caji‖

2
2. (8)
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In order to show that R = 0, we adopt the proof given in (Martinetz et al.
(1993)) to our setting. With eji = xi − Caji , we write rank(xi,a

j
i , C) as

rank(xi,a
j
i , C) =

K∑
m=1

θ((eji )
2 − (emi )2) (9)

where θ(x) is the heaviside step function. The derivative of the heaviside
step function is the delta distribution δ(x) with δ(x) = 0 for x 6= 0 and∫
δ(x)dx = 1. Therefore, we can write

R =
L∑
i=1

K∑
j=1

h
′

λt
(rank(xi,a

j
i , C))(eji )

2
T∑

m=1

((aji )
T − (ami )T )δ((eji )

2 − (emi )2)

(10)
Each term of (10) is non-vanishing only for those aji for which (eji )

2 = (emi )2

is valid. Since we explicitly excluded this case, we obtain R = 0. Hence,
we can perform a stochastic gradient descent on (6) with respect to C by
applying t = 0, . . . , tmax updates of C using the gradient based learning rule

∆C = αt

K∑
j=1

hλt
(rank(xi,a

j
i , C))(xi − Caji )a

i
j

T
(11)

for a randomly chosen xi ∈ X where λt = λ0 (λfinal/λ0)
t

tmax is an expo-
nentially decreasing neighborhood-size and αt = α0 (αfinal/α0)

t
tmax an expo-

nentially decreasing learning rate. After each update has been applied, the
column vectors of C are renormalized to one. Then the aji are re-determined
and the next update for C can be performed.

3 A bag of orthogonal matching pursuits

So far, for each training sample xi, all possible coefficient vectors aji , j =
1, . . . ,K with ‖aji‖0 ≤ k have been considered. K grows exponentially with
M and k. Therefore, this approach is not applicable in practice. However,
since in (6) all those contributions in the sum for which the rank is larger
than the neighborhood-size λt can be neglected, we actually do not need all
possible coefficient vectors. We only need the first best ones with respect to
the reconstruction error.

There are a number of approaches, which try to find the best coefficient
vector, e.g., OMP or OOMP. It has been shown that in well-behaved cases
they can find at least good approximations (Tropp (2004)). In the follow-
ing, we extend OOMP such that not only the best but the first Kuser best
coefficients are determined, at least approximately.

OOMP is a greedy method that iteratively constructs a given sample x
out of the columns of the dictionary C. The algorithm starts with U jn = ∅,
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Rj0 = (r0,j
1 , . . . , r0,j

M ) = C and εj0 = x. The set U jn contains the indices of those
columns of C that have been used during the j-th pursuit with respect to x up
to the n-th iteration. Rjn is a temporary matrix that has been orthogonalized
with respect to the columns of C that are indexed by U jn. rn,jl is the l-th
column of Rjn. εjn is the residual in the n-th iteration of the j-th pursuit with
respect to x.

In iteration n, the algorithm looks for that column of Rjn whose inclusion
in the linear combination leads to the smallest residual εjn+1 in the next
iteration of the algorithm, i.e., that has the maximum overlap with respect
to the current residual. Hence, with

yjn =
(

(rn,j1

T
εjn)/‖rn,j1 ‖, . . . , (r

n,j
l

T
εjn)/‖rn,jl ‖, . . . , (r

n,j
M

T
εjn)/‖rn,jM ‖

)
(12)

it looks for lwin(n, j) = arg maxl,l/∈Uj
n
(yjn)l. Then, the orthogonal projection

of Rjn to rn,jlwin(n,j) is removed from Rjn

Rjn+1 = Rjn − (rn,jlwin(n,j)(R
j
n

T
rn,jlwin(n,j))

T )/(rn,jlwin(n,j)

T
rn,jlwin(n,j)) . (13)

Furthermore, the orthogonal projection of εjn to rn,jlwin(n,j) is removed from εjn

εjn+1 = εjn −
(

(εjn
T
rn,jlwin(n,j))/(r

n,j
lwin(n,j)

T
rn,jlwin(n,j))

)
rn,jlwin(n,j) . (14)

The algorithm stops if ‖εjn‖ = 0 or n = k. The j-th approximation of the
coefficients of the best k-term approximation, i.e., aj , can be obtained by
recursively tracking the contribution of each column of C that has been used
during the iterations of pursuit j. In order to obtain a set of approxima-
tions a1, ...,aKuser , where Kuser is chosen by the user, we want to conduct
Kuser matching pursuits. To obtain Kuser different pursuits, we implement
the following function:

Q(l, n, j) =


0 :

If there is no pursuit among all pursuits that have
been performed with respect to x that is equal to
the j -th pursuit up to the n-th iteration where in
that iteration column l has been selected

1 : else .
(15)

Then, while a pursuit is performed, we track all overlaps yjn that have been
computed during that pursuit. For instance if a1 has been determined, we
have y1

0, . . . ,y
1
n, . . . ,y

1
s1−1 where s1 is the number of iterations of the 1st

pursuit with respect to x. In order to find a2, we now look for the largest
overlap in the previous pursuit that has not been used so far

ntarget = arg max
n=0,...,s1−1

max
l,Q(l,n,j)=0

(y1
n)l (16)

ltarget = arg max
l

(y1
ntarget

)l . (17)
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We replay the 1st pursuit up to iteration ntarget. In that iteration, we select
column ltarget instead of the previous winner and continue with the pursuit
until the stopping criterion has been reached. If m pursuits have been per-
formed, among all previous pursuits, we look for the largest overlap that has
not been used so far:

jtarget = arg max
j=1,...,m

max
n=0,...,sj−1

max
l,Q(l,n,j)=0

(yjn)l (18)

ntarget = arg max
n=0,...,sjtarget−1

max
l,Q(l,n,jtarget)=0

(yjtargetn )l (19)

ltarget = arg max
l,Q(l,ntarget,jtarget)=0

(yjtargetntarget
)l . (20)

We replay pursuit jtarget up to iteration ntarget. In that iteration, we select
column ltarget instead of the previous winner and continue with the pursuit
until the stopping criterion has been reached. We repeat this procedure until
Kuser pursuits have been performed.

4 Experiments

In the experiments we use synthetic data that actually can be represented as
sparse linear combinations of some dictionary. We perform the experiments
in order to asses two questions: (i) How good is the target function (1) min-
imized? (ii) Is it possible to obtain the generating dictionary only from the
given data?

In the following Ctrue = (ctrue
1 , . . . , ctrue

50 ) ∈ R20×50 denotes a synthetic
dictionary. Each entry of Ctrue is uniformly chosen in the interval [−0.5, 0.5].
Furthermore, we set ‖ctrue

l ‖ = 1. Using such a dictionary, we create a training
set X = (x1, . . . ,x1500), xi ∈ R20 where each training sample xi is a sparse
linear combination of the columns of the dictionary:

xi = Ctruebi . (21)

We choose the coefficient vectors bi ∈ R50 such that they contain k non-zero
entries. The selection of the position of the non-zero entries in the coefficient
vectors is performed according to three different data generation scenarios:

Random dictionary elements: In this scenario all combinations of k dic-
tionary elements are possible. Hence, the position of the non-zero entries
in each coefficient vector bi is uniformly chosen in the interval [1, . . . , 50].

Independent Subspaces: In this case the training samples are located in
a small number of k-dimensional subspaces. We achieve this by defining
b50/kc groups of dictionary elements, each group containing k randomly
selected dictionary elements. The groups do not intersect, i.e., each dic-
tionary element is at most member of one group. In order to generate a
training sample, we uniformly choose one group of dictionary elements
and obtain the training sample as a linear combination of the dictionary
elements that belong to the selected group.
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Dependent subspaces: In this case, similar to the previous scenario, the
training samples are located in a small number of k-dimensional sub-
spaces. In contrast to the previous scenario, the subspaces do highly in-
tersect, i.e., the subspaces share basis vectors. In order to achieve this, we
uniformly select k−1 dictionary elements. Then, we use 50−k+1 groups
of dictionary elements where each group consists of the k−1 selected dic-
tionary elements plus one further dictionary element. Again, in order to
generate a training sample, we uniformly choose one group of dictionary
elements and obtain the training sample as a linear combination of the
dictionary elements that belong to the selected group.

The value of the non-zero entries is always chosen uniformly in the interval
[−0.5, 0.5].

We apply MOD, K-SVD and the stochastic gradient descent method that
is proposed in this paper to the training data. Let C learned = (clearned

1 , . . . ,
clearned

50 ) denote the dictionary that has been learned by one of these methods
on the basis of the training samples. In order to measure the performance
of the methods with respect to the minimization of the target function, we
consider

Eh =
1

1500

1500∑
i=1

‖xi − C learnedai‖22 (22)

where ai is obtained from the best pursuit out of Kuser = 20 pursuits that
have been performed according to the approach described in section 3. In
order to asses if the true dictionary can be reconstructed from the training
data, we consider the mean maximum overlap between each element of the
true dictionary and the learned dictionary:

MMO =
1
50

50∑
l=1

max
k=1,...,50

|ctrue
l clearned

k | . (23)

k, the number of non-zero entries is varied from 1 to 11. For the stochastic
gradient descent method, we perform 100×1500 update steps, i.e., 100 learn-
ing epochs. For MOD and K-SVD, we perform 100 learning iterations each
iteration using 1500 training samples. We repeat all experiments 50 times
and report the mean result over all experiments.

In the first set of experiments, for all dictionary learning methods, i.e.,
MOD, K-SVD, and stochastic gradient descent, a single orthogonal matching
pursuit is used in order to obtain the dictionary coefficients during learning.
Furthermore, the stochastic gradient descent is performed in hard-competitive
mode, which uses a neighborhood-size that is practically zero, i.e., λ0 = λfinal

= 10−10. The results of this experiment are depicted in table 1 (a)-(c) and (j)-
(l). In case of the random dictionary elements scenario (see (a) and (j)) the
stochastic gradient approach clearly outperforms MOD and K-SVD. From
the mean maximum overlap it can be seen that almost all dictionary ele-
ments are well reconstructed with up to 6 non-zero coefficients in the linear
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Table 1. Experimental results. See text for details. SC-SGD: soft-competitive
stochastic gradient descent (λ0 = 20, λfinal = 0.65). HC-SGD: hard-competitive
stochastic gradient descent (λ0 = λfinal = 10−10).
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combinations. If the dictionary elements cannot be reconstructed any more,
i.e., for k > 6, the mean representation error Eh starts to grow. In case of the
independent subspaces and dependent subspaces scenario the stochastic gra-
dient method also outperforms MOD and K-SVD in terms of minimization
of the representation error (see (b) and (c)) whereas in terms of dictionary
reconstruction performance only in the intersecting subspaces scenario a clear
performance gain compared to MOD and K-SVD can be seen ((k) and (l)).
This might be caused by the fact that in case of the independent subspaces
scenario it is sufficient to find dictionary elements that span the subspaces
where the data is located in order to minimize the target function, i.e., the
scenario does not force the method to find the true dictionary elements in
order to minimize the target function.

In the second experiment for all methods the dictionary coefficients were
obtained from the best pursuit out of Kuser = 20 pursuits that were per-
formed according to the “Bag of Pursuits” approach described in section 3.
The results of this experiment are depicted in table 1 (d)-(f) and (m)-(o).
Compared to the results of the first experiment (see (a)-(c)) it can be seen
that the computationally more demanding method for the approximation of
the best coefficients leads to a significantly improved performance of MOD,
K-SVD and the stochastic gradient descent with respect to the minimization
of the representation error Eh (see (d)-(f)). The most obvious improvement
can be seen in case of the dependent subspaces scenario where also the dictio-
nary reconstruction performance significantly improves (see (l) and (o)). In
the random dictionary elements (see (j) and (m)) and independent subspaces
scenario (see (k) and (n)) there are only small improvements with respect to
the reconstruction of the true dictionary.

In the third experiment, we employed soft-competitive learning in the
stochastic gradient descend, i.e., the coefficients corresponding to each of
the Kuser = 20 pursuits were used in the update step according to (11) with
λ0 = 20 and λfinal = 0.65. The results of this experiment are depicted in table
1 (g)-(i) and (p)-(r). It can be seen that for less sparse scenarios, i.e. k > 6,
the soft-competitive learning further improves the performance. Particularly
in case of the dependent subspaces scenario a significant improvement in
terms dictionary reconstruction performance can be seen for k > 4 (see (r)).
For very sparse settings, i.e. k ≤ 4, the hard-competitive approach seems to
perform better than the soft-competitive variant. Again, in case of the inde-
pendent subspaces only the representation error decreases (see (h)) whereas
no performance gain for the dictionary reconstruction can be seen (see (q)).
Again this might be caused by the fact that in case of the subspace scenario
learning of dictionary elements that span the subspaces is sufficient in order
to minimize the target function.
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5 Conclusion

We proposed a stochastic gradient descent method that can be used either for
hard-competitive or soft-competitive learning of sparse codes. We introduced
the so-called “bag of pursuits” in order to compute a better estimation of the
best k-term approximation of given data. This method can be used together
with a generalization of the neural gas approach to perform soft-competitive
stochastic gradient learning of (overcomplete) dictionaries for sparse coding.

Our experiments on synthetic data show that compared to other state-of-
the-art methods such as MOD or K-SVD a significant performance improve-
ment in terms of minimization of the representation error as well as in terms
of reconstruction of the true dictionary elements that were used to generate
the data can be observed. While a significant performance gain is already ob-
tained by hard-competitive stochastic gradient descend an even better per-
formance is obtained by using the “bag of pursuits” and soft-competitive
learning. In particular, as a function of decreasing sparseness, the perfor-
mance of the method described in this paper degrades much slower than
that of MOD and K-SVD. This should improve the design of overcomplete
dictionaries also in more complex settings.
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