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Abstract. We show how the “Online Sparse Coding Neural Gas” algo-
rithm can be applied to a more realistic model of the “Cocktail Party
Problem”. We consider a setting where more sources than observations
are given and additive noise is present. Furthermore, we make the model
even more realistic, by allowing the mixing matrix to change slowly over
time. We also process the data in an online pattern-by-pattern way where
each observation is presented only once to the learning algorithm. The
sources are estimated immediately from the observations. In order to
evaluate the influence of the change rate of the time dependent mixing
matrix and the signal-to-noise ratio on the reconstruction performance
with respect to the underlying sources and the true mixing matrix, we
use artificial data with known ground truth.

1 Introduction

The problem of following a party conversation by separating several voices from
noise focusing on a single voice has been termed the “Cocktail Party Problem”.
A review is provided in [1]. This problem has been tackled by a number of
researchers in the following mathematical setting:

We are given a sequence of observations x(1),...,x(t),... with x(t) € R
that are a linear mixture of a number of unknown sources a(1),...,a(t),... with
a(t) e RM:

x(t) = Ca(t) (1)
Here C = (c1,...,¢cm),¢cj € IRY denotes the mixing matrix. We may consider
the observations x(t) to be what we hear and the sources a(t) to be the voices
of M persons at time ¢. The sequence s; = a(1)j,...,a(t);,... consists of all

statements of person j. Is it possible to estimate the sources s; only from the
mixtures x(t) without knowing the mixing matrix C? In the past, a number of
methods have been proposed that can be used to estimate the statements s; and
C when only the mixtures x(t) are known and one can assume that M = N [2],
[3]. Moreover, some methods assume statistical independence of the sources [3].

Unfortunately the number of sources is not always equal to the number of
observations, i.e., often M > N holds. Humans have two ears but a large number
of persons may be present at a party. The problem of having an overcomplete



set of sources has been studied more recently [4-7]. Due to the presence of a
certain amount of additional background noise the problem may become even
more difficult. A model that introduces a certain amount of additive noise,
x(t) = Ca(t) + €(t) [le(t)]] <6, (2)
has also been studied in the past [8]. The “Sparse Coding Neural Gas” (SCNG)
algorithm [9,10] can be used to perform overcomplete blind source separation
under the presence of noise as shown in [11]. Here we want to consider an even
more realistic setting by allowing the mixing matrix to be time dependent:
x(t) = C(t)a(t) +e(t) [le(t)|| < 0. (3)
For the time dependent mixing matrix C(t) = (ci(t),...,cum(t)),c;(t) € RY,
we require ||c;(¢)|| = 1 without loss of generality. For instance, in the case of
the cocktail party setting, this corresponds to party guests who change their
position during the conversation. We want to process the observations in an
online pattern-by-pattern mode, i.e., each observation is presented only once to
the learning algorithm and the sources are estimated immediately. We do not
make assumptions regarding the type of noise but our method requires that the
underlying sources s; are sufficiently sparse, in particular, it requires that the
a(t) are sparse, i.e., only a few persons talk at the same time. The noise level &
and the number of sources M have to be known.

1.1 Source separation and orthogonal matching pursuit

We here briefly discuss an important property of the orthogonal matching pursuit
algorithm (OMP) [12] with respect to the obtained performance on the repre-
sentation level that has been shown recently [13]. It provides the theoretical
foundation that allows us to apply OMP to the problem of source separation.

Our method does not require that the sources s; are independent but it
requires that only few sources contribute to each mixture x(t), i.e., that the a(t)
are sparse. However, an important observation is that if the underlying sources
s; are sparse and independent, for a given mixture x(¢) the vector a(t) will be
sparse, too.

Let us assume that we know the mixing matrix C(t) at time ¢. Let us further
assume that we know the noise level §. Let a(t) be the vector containing a small
number k of non-zero entries such that equation (3) holds for a given observation
x(t). OMP provides an estimation a(t)°MF of a(t) by iteratively constructing
x(t) out of the columns of C(t). Let C(t)a(t)°M¥ denote the current approxi-
mation of x(t) in OMP and €(t) the residual that still has to be constructed.
Let U denote the set of indices of those columns of C(t) that already have been
used during OMP. The number of elements in U, i.e., |U|, equals the number
of OMP iterations that have been performed so far. The columns of C(t) that
are indexed by U are denoted by C(¢)Y. Initially, a(t)°MF = 0, €(t) = x(t) and
U = (. OMP works as follows:



Select ¢, () by ¢, (t) = arg maxe, (4, 1¢v (ci(t) " €(t))

Set U = U U lyin

Solve the optimization problem a(t)°MF = argmin, ||x(t) — C(t)Va||3
Obtain current residual €(t) = x(t) — C(t)a(t)°MP

Continue with step 1 until ||e(¢)|| < §

A

It can be shown that
la(t)°MF —a(t)[| < Aomp (4)

holds if the smallest entry in a(t) is sufficiently large and the number of non-zero
entries in a(t) is sufficiently small. Let

T
W) = | mase ea®)7e;(0) )
be the mutual coherence of the mixing matrix C(¢). The smaller H(C(t)), N/M
and k are, the smaller Aoyp becomes and the smaller min(a(t)) is allowed to be
[13]. Since (4) only holds if the smallest entry in a(¢) is sufficiently large, OMP
has the property of local stability with respect to (4) [13]. Furthermore it can
be shown that under the same conditions a(t)°M* contains only non-zeros that
also appear in a(¢) [13]. An even globally stable approximation of a(t) can be
obtained by methods such as basis pursuit [13, 14].

1.2 Optimized Orthogonal Matching Pursuit (OOMP)

The “Sparse Coding Neural Gas” algorithm is based on “Optimised Orthogo-
nal Matching Pursuit” (OOMP) which is an improved variant of OMP[15]. In
general, the columns of C(¢) are not pairwise orthogonal. Hence, the criterion of
OMP that selects the column c¢;,, (), lwin ¢ U of C(t) that is added to U is not
optimal with respect to the minimization of the residual that is obtained after
the column c¢;,, (t) has been added. Hence OOMP runs through all columns of
C(t) that have not been used so far and selects the one that yields the smallest
residual:

Select ¢, () such that ¢, (t) = arg ming, (),1¢v ming [|x(t) — C ()7 a]|
Set U = U U lwin

Solve the optimization problem a(t)°°MP = arg min, ||x(t) — C(t)Val|3
Obtain current residual €(t) = x(t) — C(t)a(t)OOMF

Continue with step 1 until ||e(¢)|| < §

A

Step (1) involves M — |U| minimization problems. In order to reduce the com-
putational complexity of this step, we employ a temporary matrix R that has
been orthogonalized with respect to C'(¢)V. R is obtained by removing the pro-
jection of the columns of C(t) onto the subspace spanned by C(¢)U from C(t)
and setting the norm of the residuals r; to one. The residual €(¢)V is obtained
by removing the projection of x(t) to the subspace spanned by C(¢)V from x(t).



Initially, R = (r1,...,1,...,ry) = C(t) and €(t)V = x(¢). In each iteration, the
algorithm determines the column r; of R with [ ¢ U that has maximum overlap

with respect to the current residual e(t)V:
lyin = arg ggg(rfE(t)U)2 : (6)

Then, in the construction step, the orthogonal projection with respect to r;

win

is removed from the columns of R and €(t)Y:
r=r; — (Iﬂinrl)rlwm (7)
e®)” = e(t)” — (xf,, ) )ru,,, - (8)

After the projection has been removed, lyi, is added to U, i.e., U = U U lyin.
The columns r; with [ ¢ U may be selected in the subsequent iterations of
the algorithm. The norm of these columns is set to unit length. If the stopping
criterion ||€(t)V|| < & has been reached, the final entries of a(t)°°MP can be
obtained by recursively collecting the contribution of each column of C(¢) during
the construction process, taking into account the normalization of the columns
of R in each iteration. The selection criterion (6) ensures that the norm of
the residual €(¢)V obtained by (8) is minimal. Hence, the OOMP algorithm
can provide an approximation of a(t) containing even less non-zeros than the
approximation provided by OMP.

2 Learning the mixing matrix

We want to estimate the mixing matrix C(t) = (c1(¢),..., cap(t)) from the
mixtures x(t) given the noise level 6 and the number of underlying sources
M. As a consequence of the sparseness of the underlying sources a(t), we are
looking for a mixing matrix C(¢) that minimizes the number of non-zero entries of
a(t)O9MP i e, the number of iteration steps required by the OOMP algorithm
to approximate a(t) up to the noise level §. Furthermore, let us assume that
the mixing matrix changes slowly over time such that C(t) is approximately
constant for some time interval [t — T, t]. Hence, we look for the mixing matrix
which minimizes
t

min la(t)9OMP||y  subject to ||x(t') — C(t)a(t)OOMP| <s5. (9)

RO ratys
Here ||a(t)°9MP||; denotes the number of non-zero entries in a(t')°°MP. The
smaller the norm of the current residual €(t')V is, the fewer OOMP iterations
have to be performed until the stopping criterion ||e(#')V|| < & has been reached
and the smaller ||a(#')°°MP||y becomes. In order to minimize the norm of the

residuals and thereby the expression (9), we have to maximize (r;, e(t')Y)2.
Therefore, we consider the following optimization problem
¢
max max (rle(t)V)? subject to |rj]| =1. (10)
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We maximize (10) by updating R and C(t) prior to the construction step (7) and
(8). The update step in each iteration of the OOMP algorithm is a combination
of Oja’s learning rule [16] and the Neural Gas [17,18]. As introduced in [9] one
obtains what we called “Sparse Coding Neural Gas” (SCNG) learning rule

Ar, = Acy, (t) = a(t)e POy (e(t) —yr,,) (1)
with learning rate
a(t) = ap (agnu/a0) /" (12)
and neighbourhood-size
A(t) = Ao (Asinar/Ao)"/ == (13)

where

2 2 2
—(@fe®V) <. < —(rfe@®¥) <. < - (rlTMi‘Ule(t)U> e ¢ U (14)
and y = r{ €(t)V. We have shown [10] that (11) implements a gradient descent
with respect to

t M
max Z Zh)\t(k(rl,e(t’)U))(rlTe(t')U)2 subject to ||| =1, (15)

ri,...,rpnr VT =1

with hy, (v) = e/ k(r;, e(t')V) denotes the number of r; with (rfe(t)V)? <
(roe(t’)U)Q, i.e., (15) is equivalent to (10) for A(t) — 0. Due to (11) the updates
of all OOMP iterations are accumulated in the learned mixing matrix C(t).
Due to the orthogonal projection (7) and (8) performed in each iteration, these
updates are pairwise orthogonal. The columns of the original matrix emerge in
random order in the learned mixing matrix. The sign of the columns of the mixing
matrix ¢;(t) cannot be determined because multiplying ¢;(¢) by —1 corresponds
to multiplying r; by —1 which does not change (15).

What happens for ¢ > t.x? Assuming that after ¢, learning steps have been
performed the current learned mixing matrix is close to the true mixing matrix,
we track the slowly changing true mixing matrix by setting «(t) = afna and
A(t) = /\ﬁnal-

3 Experiments

We performed a number of experiments on artificial data in order to study
whether the underlying sources can be reconstructed from the mixtures. We
consider sequences

x(t) = C(ta(t) + e(t), t=1,...,L, (16)

where [le(t)]| < 8, x(t) € RY, a(t) € RM. The true mixing matrix C(t) slowly
changes from state C;_; to state C; in P time steps. We randomly chose a



sequence of true mixing matrices C;, i = 1,...,[L/P] with entries taken from
a uniform distribution. The columns of these mixing matrices were set to unit
norm. At time ¢ with (i — 1)P <t < iP the true mixing matrix C(t) is chosen
according to

oft) = (1 - Mp””) Ci—1 + %@. (17)

The norm of the columns of each true mixing matrix C(¢) is then set to unit
norm. The sources a(t) were obtained by setting up to k entries of the a(t)
to uniformly distributed random values in [—1, 1]. For each a(t) the number of
non-zero entries was obtained from a uniform distribution in [0, k]. Uniformly
distributed noise e(t) € IR™ in [—1,1] was added such that

x(t) = C(t)(a(t) +e(t)) = C(t)a(t) + e(t) . (18)

We want to asses the error that is obtained with respect to the recontruction of
the sources. Hence, we evaluate the difference between the sources a(t) and the
estimation a(t)°°MF that is obtained from the OOMP algorithm on the basis
of the mixing matrix C'®®™"(¢) that is provided by the SCNG algorithm:

la(t) — a(t)* M|, (19)

With (sPOMP . sQPMINT = (a(1)0OMP | a(L)9OMF) we denote the esti-
mated underlying sources obtained from the OOMP algorithm. In order to eval-
uate (19) we have to assign the entries in a(t)?°MF to the entries in a(t) which is
equivalent to assigning the true sources s; to the estimated sources S]»OOMP. This
problem arises due to the random order in which the columns of the true mixing
matrix appear in the learned mixing matrix. Due to the time dependent mixing
matrix the assignment may change over time. In order to obtain an assignment
at time t, we consider a window of size s,,:

(w1 (£)OOMF L wo (1) OOMPYT = (a(t — 5,,/2)0OMF L a(t + s,,/2)09MF)
(20)
and
(wi(t),...,wau ()T = (a(t — 50/2),...,a(t + 54,/2)). (21)

We obtain the assignment by performing the following procedure:

1. Set Iipye : {1,..., M} and Dearned : {1,..., M}.
2. Find and assign w;(¢) and w;(#)°°MP with i € Iiyue, j € learned Such that

[w; (£)0OM wi (1)

is maximal.
[[wi (2)[[[[w; (£)OOMP |

3. Remove i from Iiyye and j from fearned-
4. If wj(t)OOMPw, ()T < 0 set w;(t)OOMP = —w,(t)OOMP,
5. Proceed with (2) until Iiyue = learned = 0.
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Fig. 1. Left: Mean distance between a(t) and a(t)°°™MF for different SNR and P. Right:
Best performing final learning rate for each P and SNR.

For all experiments, we used L = 20000 and «y = 1 for the learing rate as well
as \o = M/2 and Agna = 10710 for the neighbourhood size and #y,., = 5000.
We repeated all experiments 20 times and report the mean result over the 20
runs. For the evaluation of the reconstruction error the window size s, was
set to 30 and the reconstruction error was only evaluated in the time interval
tmax < t < L. In all experiments an overcomplete setting was used consisting of
M = 30 underlying sources and N = 15 available oberservations. Up to k = 3
underlying sources were active at the same time.

In the first experiment, we varied the parameter P which controls the change
rate of the true mixing matrix as well as the SNR. The final learning rate agpal
was varied for each combination of P and SNR such that the minimal recon-
struction error was obtained. For comparison purposes, we also computed the
reconstruction error that is obtained by using the true mixing matrix as well as
the error that is obtained by using a random matrix. The results of the first ex-
periment are shown in figure 1. On the left side the mean distance between a(t)
and a(t)°°MP is shown for different SNR and P. It can be seen that the larger
the change rate of the true mixing matrix (the smaller P) and the stronger the
noise, the more the reconstruction performance degrades. But even for strong
noise and a fast changing true mixing matrix, the estimation provided by SCNG
clearly outperforms a random matrix. Of course, the best reconstruction per-
formance is obtained by using the true mixing matrix. On the right side of the
figure the best performing final learning rate for each P and SNR is shown. It
can be seen that the optimal final learning rate depends on the change rate of
the true mixing matrix but not on the strength of the noise. In order to assess
how good the true mixing matrix is learned, we perform an experiment that is
similar to an experiment that has been used to asses the performance of the K-
SVD algorithm with respect to the learing of the true mixing matrix [19]. Note,
that the K-SVD algorithm cannot be applied to the setting that is described in
the following. We compare the learned mixing matrix to the true mixinig matrix
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Fig. 2. We sorted the 20 trials according to the number of successfully learned columns
of the mixing matrix and order them in groups of five experiments. The figure shows
the mean number of successfully detected columns of the mixing matrix for each of the
five groups.

using the maximum overlap between each column of the true mixing matrix and
each column of the learned mixing matrix, i.e, whenever

mae (1~ fes(1)e}™" (1)) (22)

is smaller than 0.05, we count this as a success. We repeat the experiment 20
times with a varying SNR as well as zero noise. For each SNR, we sort the 20
trials according to the number of successfully learned columns of the mixing
matrix and order them in groups of five experiments. Figure 2 shows the mean
number of successfully detected columns of the mixing matrix for each of the five
groups for each SNR and P. The smaller the SNR and the smaller the change
rate of the true mixing matrix is, the more columns are learned correctly. If
the true mixing matrix changes very fast (P = 100) almost no column can be
learned with the required accuracy.

4 Conclusion

We showed that the “Sparse Coding Neural Gas” algorithm can be applied to
a more realistic model of the “Cocktail Party Problem” that allows for more
sources than observations, additive noise and a mixing matrix that is time de-
pendent, which corresponds to persons that change their position during the
conversation. The proposed algorithm works online, the estimation of the un-
derlying sources is provided immediately. The method requires that the sources
are sparse enough, that the mixing matrix does not change too quickly and that
the additive noise is not too strong. In order to apply this algorithm to real-world
data, future work is required. The problem of (i) choosing the number of sources
M based solely on the observations, (ii) determining the noise level ¢ based solely
on the observations and (iii) obtaining the temporal assignment of the sources
based solely on the estimated sources, i.e., thereby not using the sliding window
procedure described in the experiments section have to be investigated.
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