
Incremental Support Vector Regression

for Steering Hot Rolling Mills

Diplomarbeit

im Rahmen des Diplomstudienganges Informatik

eingereicht von

Sascha Klement

Ausgegeben und betreut von

Prof. Dr. rer. nat. Thomas Martinetz

Institut für Neuro- und Bioinformatik, Universität zu Lübeck

Lübeck, November 2006

Zusammenfassung

Maschinelle Lernkonzepte, wie die Support Vector Machine (SVM), sind

mittlerweile theoretisch sehr gut verstanden und mathematisch fundiert; in

industriellen Anwendungen werden jedoch häufig eher konservative Verfah-

ren bevorzugt. Um zu zeigen, dass maschinelle Lernkonzepte Planung und

Steuerung von industriellen Abläufen signifikant verbessern und vereinfa-

chen können, wurde eine Kooperation mit der stahlverarbeitenden Industrie

geschlossen. Ziel war die Konstruktion eines Stichplanrechners für Warm-

walzstraßen. Der Kern des Stichplanrechners besteht aus dem MinOver-

Algorithmus für Regression, einem Trainingsverfahren für die SVM, um

physikalische Abhängigkeiten zu beschreiben, für die keine exakten Formeln

bekannt sind. So sollen Vorhersagen über die zu erwartenden Walzkräfte und

Dickenabnahmen während eines Walzvorganges getroffen werden.

Um verschiedene Arten von Vorwissen zu integrieren, wurden mehrere

Approximationsebenen eingeführt und MinOver erweitert, um gewichtete

Datenpunkte verwenden zu können. Desweiteren wurde die Laufzeit von

MinOver für Regression durch Kernel Caching und eine optimierte Auswer-

tung der Regressionsfunktion entscheidend verbessert. Durch die Verwen-

dung bekannter Verfahren zur Parameterselektion und Validierung werden

Fehlerraten für die Vorhersagen erzielt, die nur gering von der zu erwarten-

den Genauigkeit, bedingt durch die Sensorik, abweichen.

Ein Prototyp des Stichplanrechners wurde implementiert, getestet und

bei der Buderus Edelstahl GmbH als dauerhafter Ersatz für eine vorhandene

Stichplandatenbank installiert. Erste Betriebserfahrungen sind vielverspre-

chend und belegen die angekündigten Verbesserungen und Vereinfachungen

durch die Anwendung maschinellen Lernens.

i

Abstract

Machine learning concepts, such as the support vector machine (SVM), have

been theoretically discussed in great detail, but in industrial applications

still rather old-fashioned solutions are preferred. To show that learning

concepts improve industrial planning, scheduling, and steering processes, a

cooperation with a steel manufacturer was initiated to build a prototype

pass schedule calculator for a hot rolling mill. The core of this scheduler

consists of MinOver for regression estimation, an SVM training algorithm

to learn physical dependencies for which no exact equations exist — such as

the computation of rolling force or thickness reduction.

To incorporate different types of prior knowledge, MinOver is enhanced

to deal with weighted data points and two approximation layers are intro-

duced. Furthermore, the runtime of MinOver for regression is improved by

kernel caching and an optimsed evaluation of the regression function. Using

common parameter selection and validation methods results in error rates

close to the theoretically expectable minimum.

The prototype was implemented, tested and installed at a hot rolling

mill of Buderus Edelstahl GmbH as a permanent substitution for an old pass

schedule database. First experiences document the promised improvements

and simplifications due to the usage of machine learning concepts.

iii

Statement of Originality

The work presented in this thesis is, to the best of my knowledge and belief,

original, except as acknowledged in the text. The material has not been

submitted, either in whole or in part, for a degree at this or any other

university.

Ich versichere an Eides statt durch meine Unterschrift, dass ich die vor-

liegende Arbeit selbstständig und ohne fremde Hilfe angefertigt und alle

Stellen, die ich wörtlich oder annähernd wörtlich aus Veröffentlichungen ent-

nommen habe, als solche kenntlich gemacht habe. Darüber hinaus habe ich

mich keiner anderen als der angegebenen Literatur oder sonstiger Hilfsmittel

bedient. Die Arbeit hat in dieser oder ähnlicher Form noch keiner anderen

Prüfungsbehörde vorgelegen.

Lübeck, November 2006

v

Acknowledgements

First, I would like to thank my supervisor, Prof. Thomas Martinetz, for his

encouragement, faith in my work, and for his famous phone call during a

lecture — the beginning of this project.

I would like to thank the iba AG, Fürth, Germany for supporting this

work in many ways, especially Horst Anhaus for initiating and promoting

the project, Günter Sörgel for his various advice and ideas concerning neu-

ral networks, as well as Thomas George for developing the pass schedule

framework.

I would also like to thank the staff at Buderus Edelstahl Band GmbH,

Wetzlar, Germany for kind provision of data, metallurgical expertise, and

their objective to apply the results of this thesis in practice.

Thanks go to Michael Dorr for proofreading, especially for commas, and

for his eloquent suggestions and advice to clarify and polish the contents of

this thesis.

Thanks to Fabian Timm for our numerous discussions on machine learn-

ing, validation methods, and shortcomings of LATEX, Matlab, and Microsoft

Windows.

Finally, my biggest thanks go to Johanna for her continuous support,

motivation, patience, and love — even in times when I do not deserve it.

vii

Contents

1 Introduction 1

2 Problem Description 5

2.1 The Hot Rolling Mill . 5

2.2 The Pass Schedule . 7

2.3 Basics of Longitudinal Rolling 9

2.4 The Optimisation Problem 12

2.5 Architecture of a Pass Schedule Calculator 15

3 Learning from Examples 19

3.1 Statistical Learning Theory 19

3.1.1 Risk Minimisation . 21

3.1.2 Empirical Risk Minimisation 22

3.1.3 Vapnik-Chervonenkis Dimension 22

3.1.4 Structural Risk Minimisation 24

3.2 Optimisation Theory . 25

3.3 Support Vector Machines . 27

3.3.1 Maximal Margin Classifier 27

3.3.2 Introducing Nonlinearity — the Idea of Kernels 30

3.3.3 Support Vector Regression 32

3.3.4 Incorporating Prior Knowledge 35

3.4 Regularisation Theory . 36

3.4.1 A Generalised Framework for Function Estimation . . 36

3.4.2 Neural Network, Regularisation, and the SVM 38

ix

x CONTENTS

4 Training of Support Vector Machines 41

4.1 Quadratic Programming Toolboxes 42

4.2 Iterative Learning Algorithms 42

4.2.1 Rosenblatt’s Perceptron 42

4.2.2 Sequential Minimal Optimisation 45

4.3 MinOver . 45

4.3.1 Classification . 45

4.3.2 Regression . 47

4.3.3 Forgetting with MaxMinOver 50

4.3.4 SoftDoubleMinOver with Prior Knowledge 52

4.4 Implementation Issues . 54

4.4.1 Chunking . 54

4.4.2 Decomposition . 56

4.4.3 Validation . 57

4.4.4 Parameter Selection 57

4.4.5 Outlier Reduction . 59

4.4.6 MinOver Optimisation 59

5 Application to a Hot Rolling Mill 65

5.1 Feature Extraction . 65

5.1.1 Process Data Acquisition 66

5.1.2 Material . 67

5.1.3 Groove and Pass Number 68

5.1.4 Workpiece Dimensions 68

5.1.5 Furnace Temperature, Residence Time, and Radiation

Time . 69

5.1.6 Rolling Torque . 70

5.1.7 Rolling Force . 71

5.1.8 Determination of a Spread Formula 73

5.1.9 Plausibility Checks . 75

5.2 Feature Selection . 75

5.2.1 Temperature-Affecting Parameters 76

5.2.2 The Training Sets . 78

5.3 Two Approximation Layers 79

CONTENTS xi

5.4 Implementation . 84

6 Results 87

6.1 Parameter Selection . 87

6.2 Runtime Analysis . 93

6.3 Experience . 94

7 Discussion 97

7.1 Incorporation of Prior Knowledge to MinOver 97

7.2 Validation and Parameter Selection Methods 98

7.3 Online Learning . 101

7.4 Rolling Strategy . 103

7.5 Outlook . 104

Glossary 105

Bibliography 107

Chapter 1

Introduction

Neural networks have been used for more than 15 years in steel manufac-

turing, especially to control electric arc furnaces or hot rolling mills [18, 13].

Experience with these neural networks showed that machine learning con-

cepts significantly improve the accuracy of control systems. All these sys-

tems have in common that a set of sensory inputs is used to predict certain

other values. Since the physical dependencies are not fully understood, the

system learns its behaviour by a number of examples. Some systems only

get trained once by offline-training, others are able to continuously adapt

by online-training.

Another application is not only to control the system from one step

to the next, but to plan a longer sequence of tasks. The idea of using

neural networks for scheduling hot rolling mills to reduce the number of

processing steps was formulated at the beginning of a cooperation between

Buderus Edelstahl Band GmbH, iba AG and the Institute for Neuro- and

Bioinformatics, Lübeck (INB).

Buderus, one of the major steel producing companies in Germany, aims

to simplify and automate the generation of pass schedules for their blooming

mill — a special kind of hot rolling mill.

The iba AG designs individual solutions for automating steel works and

wants to improve their systems by the ability to learn from recorded data.

Finally, the INB intends to verify the advantages of the support vec-

1

2 CHAPTER 1. INTRODUCTION

Data Analysis

Design of

Learning

Algorithms

Simulation

Implementation

Prototype Testing

and Integration

Installation

Data Verification

Project

Management

Design of

Human Machine

Interface

Automation

Framework

Provision of

Process Data

Installation and

Maintenance of

Sensors

Metallurgical

Expertise

INB
Buderus Edelstahl

Band GmbH

iba AG

Figure 1.1: Responsibility assignment.

tor machine for learning tasks and to develop new training methods to be

used in practice. This includes an in-depth analysis of the available training

data provided by Buderus, as well as the incorporation of prior knowledge

to the machine learning algorithm. The various sources of defect influence

the sensors at the hot rolling mill — very high temperature, unpredictable

vibrations and various kinds of contamination — and require extremely ro-

bust methods for separating valid from invalid data and for predicting values.

3

The different responsibilities and tasks (see fig. 1.1) were scheduled so

that within six months after the project kickoff a prototype of the system

could be installed at Buderus.

The applied methods, techniques and algorithms, as well as the main

findings and suggestions for further work will be presented in this thesis. A

thorough problem description will follow — starting with an introduction to

longitudinal rolling and to the individual processing steps at the hot rolling

mill. Then, the concept of learning from examples with its mathematical

foundations in optimisation and regularisation theory will be presented. Af-

terwards, the support vector machine — a state-of-the-art approach to solve

various learning tasks — and the numerous ways to train this machine for

regression estimation will be described in detail. This includes methods for

parameter selection, validation, and runtime improvements. The presented

techniques will be applied to process data acquired at the hot rolling mill of

Buderus to evaluate the prediction capabilities of the support vector machine

in this special implementation.

Finally, the results and improvements that were achieved at the rolling

mill will be discussed and some ideas to further enhance the support vector

machine will be mentioned.

Chapter 2

Problem Description

Steel is a general term for a large number of metal alloys that consist pri-

marily of iron and various types of alloying materials — such as carbon,

chromium, or vanadium. These alloying materials are chosen to increase

hardness, elasticity, ductility, or tensile strength of the finished product to

apply it in such diverse fields such as cable-stayed bridges, engine blocks, or

surgical instruments. On the way from molten steel to the finished product,

various semi-finished products are manufactured.

In this chapter, the process of rolling a solid steel slab into a long bloom

by a hot rolling mill will be covered in detail. First, the hot rolling mill

and its role in the steel production process will be explained. Then, an

introduction to longitudinal rolling in general and its scheduling in particular

will follow. Finally, the idea of using adaptive systems for this scheduling

process will be elucidated.

2.1 The Hot Rolling Mill

The molten steel, heated by an electric arc furnace, is cast into conical

moulds of different geometries (see fig. 2.1). The solidified ingots will be

called slabs throughout this thesis but other terms are equally used in prac-

tice, many of them limited to one single steel processing company. The slabs

are temporarily stored in a slab yard and will be reheated to around 1250 ◦C

before further processing. Within a few minutes after the reheating, they are

5

6 CHAPTER 2. PROBLEM DESCRIPTION

Format Head (H) [mm] Foot (F) [mm] Length (L) [mm]

A28 475 376 1980

A34 516 434 2000

A41 535 415 2350

H

H

F

F

L

Figure 2.1: Workpiece dimensions.

transported to the blooming train — a hot rolling mill that is used for very

large steel dimensions. There, thickness and width of the slab are reduced

by a series of passes forth and back between the rolls. As volume stays

nearly the same, the length will increase simultaneously with each pass.

Since the ends of the slab may contain rolling defects or contaminations

from the casting process, they are cut off by a crop shear after the rolling

process is terminated. This semi-finished steel — now called a bloom — is

further processed by a finishing train or directly shipped to the customer

(see fig. 2.2). These blooms have a length of up to 20 m, whereas thickness

and width range between 100 mm and 400 mm.

The blooming train itself houses two reversing rolls within a stand. The

rolls are cylinders with a number of grooves — different in shape, width, and

depth — to stabilise the slab and limit its spread during a pass (see fig. 2.3).

The distance between the two rolls — the roll clearance — determines the

exit thickness of the slab within each pass. In front of and behind the rolls,

side guides move the slab laterally between the grooves. Additionally, a

tilting device in front of the stand tilts the slab after a certain number of

passes to ensure a proper ratio of width and thickness. Side guides, tilting

2.2. THE PASS SCHEDULE 7

device, roll clearance and the engine of the rolls are controlled and surveyed

via the human-machine interface (HMI).

2.2 The Pass Schedule

Whenever a slab is pulled from the reheat furnace, the monitoring system

identifies the slab, determines its geometry, goal dimensions, and material,

selects a pass schedule from a database and displays the information to

the operator via the HMI. The pass schedule exactly defines the intended

intermediate geometries after each single pass, as well as the groove number,

roll clearance and rolling speed to achieve these geometries (see fig. 2.4).

As the slab spreads, it may not fit into the current groove anymore. If

this happens behind the rolls an empty pass is necessary to transport the slab

Figure 2.2: Production steps and finished products. The blooming train is

the first processing step after the ingot casting, necessary for a wide range

of products (Source: Buderus, slightly modified).

8 CHAPTER 2. PROBLEM DESCRIPTION

to the front of the rolls, where it is tilted or moved to a different groove. By

installation of a second tilting device behind the rolls, empty passes would

be avoided and processing would decrease.

The pass schedule database contains hundreds of such individually con-

ceptualised pass schedules — one for each designated slab geometry. To

ensure a proper rolling process without damaging the rolls, the pass sched-

ules have to satisfy numerous more or less specific constraints. A short

introduction to the physics of longitudinal rolling is given to understand

these constraints.

Figure 2.3: The reversing rolls before the first pass. The rolls contain five

grooves numbered from right to left — four box-shaped grooves and one flat

groove at the left end of the rolls. The slab gets rolled by a series of passes

starting in the first groove. Small rolls (not depicted) push the slab forward

while the rolls drag it through the roll gap. As the slap looses its conical

shape and gets longer and longer, the smaller grooves are used for rolling.

Side guides move the slab laterally and stabilise it.

2.3. BASICS OF LONGITUDINAL ROLLING 9

2.3 Basics of Longitudinal Rolling

Rolling with two cylindrical rolls pivoted in parallel within a certain dis-

tance is the most general case of longitudinal rolling and will be used for a

simplified explanation of the forming operation and the occuring forces in

the blooming train. The basic terms needed for explanation are displayed

Pass schedule identifier: 475475.360135

Entry geometry: 475 x 475

Exit geometry: 360 x 135

Roll Exit Exit

Pass Groove clearance thickness width Tilting Velocity

[mm] [mm] [mm] [m/s]

1 1 323 415 x 488 4.0

2 1 263 355 x 502 1 4.0

3 1 333 425 x 371 3.8

4 1 273 365 x 385 1 4.0

5 1 213 305 x 384 3.8

6 1 178 270 x 393 1 4.3

7 2 215 350 x 280 4.0

8 2 265 350 x 280 1 4.5

9 1 118 210 x 370 3.9

10 1 63 155 x 388 1 4.1

11 4 215 350 x 164 4.0

12 4 265 350 x 164 1 4.5

13 5 125 135 x 360 4.9

14 5 175 135 x 360 5.3

Figure 2.4: Example of a pass schedule. The schedule identifier contains

information about the slab’s geometry before the first and after the last

pass. As each groove — except the last one — has a certain depth, the exit

thickness is usually larger than the roll clearance. The passes 8, 12, and 14

are empty passes as thickness is not reduced.

10 CHAPTER 2. PROBLEM DESCRIPTION

in fig. 2.5.

In order to pull a workpiece through the roll gap, the rolls must first

bite the workpiece and then drag it through the gap. The biting conditions

are fulfilled if the roll bite angle remains below a threshold depending on

temperature, material and roughness of rolls and workpiece, and the rolling

speed.

During each pass the geometry of the workpiece changes, as it is forced to

move through the roll gap. The continuity theorem states that the product

side view

top view

roll bite angle

roll gap

length of

contact arc

l
projected contact area

A

entry thickness

h
exit thickness

h

entry width

w

exit width

w

roll radius

r

upper roll

lower roll

0

0

1

1

cc

Figure 2.5: Terms around the deformation zone.

2.3. BASICS OF LONGITUDINAL ROLLING 11

of cross section and material velocity remains constant:

cross section× velocity

= width× height× velocity

= w · h · v

= const

Thus, as thickness decreases across the length of contact arc lc, material

velocity will increase (depicted by horizontal arrows of different length in

fig. 2.5) and the workpiece will spread, i.e. the exit width w1 will be larger

than the entry width w0. The spread depends on numerous geometric fac-

tors such as thickness reduction, roll diameter, aspect ratio of the workpiece,

and ratio of width to length of contact arc. Also, physical parameters as

temperature, velocity, material and roughness of the workpiece affect the

spread. Rolling with bounded spread means limiting the spread by using a

groove that is not much wider than the workpiece, so that the sides of the

groove constrain the geometry. The opposite of bounded spread, when the

groove does not get totally filled, is called free spread. In practice, the tran-

sition from free to bounded spread is smooth and depends on many material

parameters.

The rolling force F , needed for shaping within the roll gap, depends on

the deformation resistance kr and the projected contact area Ac:

F = kr · Ac (2.1)

The deformation resistance changes across the length of contact arc, so that

the mean deformation resistance krm is used instead of kr — again depend-

ing on material, temperature, and speed of the workpiece as well as its

geometry. Exceeding a certain rolling force would increase the wear of the

rolls and, in the worst case, would lead to roll fracture.

To drag the workpiece through the roll gap, sufficient rolling torque τ

must be available. The total torque needed for the deformation can be

calculated by

τ = 2 · F · a · lc (2.2)

12 CHAPTER 2. PROBLEM DESCRIPTION

where the lever-arm coefficient a can be approximated to 0.5. A more

accurate approximation can be found in [6]:

a =

0.385 if r
h1

> 25

0.78 + 0.017 ·

r
h1
− 0.163 ·

√
r
h1

otherwise

2.4 The Optimisation Problem

Physical reasons derived from the previous section and practical issues lead

to the following constraints when generating a pass schedule:

1. The rolling force F has to be kept below Fmax in order to limit the

wear of the rolls and to prevent roll fractures.

2. The rolling torque τ must be limited by τmax, otherwise the engine of

the rolls could not afford enough torque to drag the workpiece through

the roll gap.

3. The thickness reduction or draught per pass ∆h is limited to ∆hmax as

for larger geometries the biting conditions could no longer be satisfied

and the rolls would not bite the workpiece.

4. In order to fit into the groove dimensions, the entry width w0 has to

stay below the groove width wgroove of the current groove. Experiences

show that keeping w0/wgroove around 95% leads to best results.

5. Also the ratio of h0/w0 plays a major role. If it were too large the

workpiece might unintentionally tilt — if it were too small later tilting

would not be feasible any more. Thus, this ratio must be kept within

a certain range (cmin < h0/w0 < cmax).

6. The shape of the workpiece also depends on the ratios w0/h0 and lc/h0

when getting rolled with free spread. If the ratios are too large, bulges

along the sides are shaped; constrictions occur, if they are too small.

Both artifacts lower the quality of the product and have to be avoided

by constraining the ratios to an optimal range ((w0/h0, lc/h0) ∈ Sopt).

2.4. THE OPTIMISATION PROBLEM 13

Identifier Usage

g(pi) groove number

m0(pi) = (h0(pi), w0(pi)) entry geometry (entry thickness and width)

m1(pi) = (h1(pi), w1(pi)) exit geometry (exit thickness and width)

t(pi) indicates a tilting operation after the pass

wgroove(pi) groove width

dgroove(pi) groove depth

d(pi) roll clearance

dspring roll spring

∆h(pi) = h0(pi)− h1(pi) expected thickness reduction

F (pi) expected rolling force

τ(pi) expected rolling torque

w1(pi) expected exit width

Figure 2.6: Used function identifiers. Each function depends on the pass

number pi.

Now, the aim is to design a feasible pass schedule for transforming a

certain slab geometry into another with the least number of passes while

fulfilling all constraints. More formally, the pass schedule is a series of vectors

P = {p1, p2, . . . , pn(P)} with one vector for each pass. Given the entry

geometry mentry = m0(p1) and the exit geometry mexit = m1(pn(P)) the

task is to solve the following optimisation problem (the function identifiers

were chosen according to figures 2.5 and 2.6):

Minimise n(P)

subject to



m0(p1) = mentry entry geometry

m1(pn(P)) = mexit exit geometry

m0(pi+1) = m1(pi)

i ∈ {j|t(pj) = 0}

m0(pi+1) = (w1(pi), h1(pi))

i ∈ {j|t(pj) = 1}

succeeding geometries

14 CHAPTER 2. PROBLEM DESCRIPTION

subject to



t(pi) = 0 ∀i ∈ {1, 3, 5, . . .} tilting

h1(pi) = d(pi) +2 · dgroove(pi)

+dspring(pi) ∀i
exit thickness

0 ≤ F (pi) ≤ Fmax ∀i force constraints

0 ≤ τ(pi) ≤ τmax ∀i torque constraints

0 ≤ ∆h(pi) ≤ ∆hmax ∀i biting conditions

w0(pi) ≤ wgroove(pi) ∀i groove limits

cmin < h0(pi)
w0(pi)

< cmax ∀i ratio constraints

(w0(pi)
h0(pi)

, lc(pi)
h0(pi)

) ∈ Sopt ∀i shape constraints

The first five side conditions make the pass schedule feasible, i.e. it starts

with the given entry geometry and ends with the desired exit geometry. As

changes in geometry happen only during a pass, the exit dimensions of the

previous pass must match those of the next pass. When a tilting operation

is executed, thickness and width simply are swapped. The fifth condition

allows tilting only in front of the stand, because only one tilting device is

installed. The roll spring is a term that increases the exit thickness due to

the deformation of rolls and stand. The remaining constraints have already

been mentioned above.

Trying to solve the optimisation problem leads to a series of major prob-

lems:

1. The solution may not exist or may not be definite.

2. The search space is capacious, and using standard methods to find a

solution would likely lead to combinatorical or numerical issues. It is

also not clear how to formulate the problem in a normal form to apply

such standard methods.

2.5. ARCHITECTURE OF A PASS SCHEDULE CALCULATOR 15

3. The estimators for torque, force, thickness reduction and spread cannot

be stated as simple formulas. Either their input parameters are not

exactly measurable, not to mention the core temperature of the slab, or

they can only be derived via complicated characteristics. The rolling

force for example depends on more than 40 material factors — not

mentioned the influence of the particular rolling mill. Even rolling

mills identical in construction will show slightly different behaviour.

Thus, robust estimators are needed, taking all these issues into account

to predict a confident value.

4. It would not be possible to generate pass schedules online within a

few seconds, because the standard methods are too time-consuming.

However, online pass schedule calculation and even recalculations after

the start of a schedule should be possible. These recalculations are

necessary whenever an intermediate geometry is not reached, e.g. due

to variations in temperature or a material permutation.

The computing time is probably the most challenging constraint when

using standard methods.

2.5 Architecture of a Pass Schedule Calculator

Dividing the optimisation problem into a number of subproblems leads to a

novel architecture for pass schedule calculation that handles all these issues.

First, the most frequently used pass schedules at the blooming train of

Buderus were identified and analysed with regard to their common features

to derive a number of rolling strategies. Each strategy defines a groove se-

ries, geometries to achieve when entering and leaving a groove, and tilting

operations. Thus, only the total thickness reduction across a series of passes

is defined, but not yet the number of passes to be used for this reduction.

Such a series of passes will be called a sequence. Rolling strategy and sched-

ule as well as the distinction of passes and sequences are shown in fig. 2.7.

As the overall rolling process is documented by values taken from numer-

ous sensors — such as rolling force and rolling torque sensors — sufficient

16 CHAPTER 2. PROBLEM DESCRIPTION

G
ro

ov
e

H
ei

gh
t

W
id

th

T
ilt

in
g

1 1 355 x 502 1

2 1 365 x 385 1

3 1 270 x 393 1

4 2 350 x 280 1

5 1 155 x 388 1

6 4 350 x 164 1

7 5 135 x 360

G
ro

ov
e

H
ei

gh
t

W
id

th

T
ilt

in
g

1 1 415 x 488

2 1 355 x 502 1

3 1 425 x 371

4 1 365 x 385 1

5 1 305 x 384

6 1 270 x 393 1

7 2 350 x 280

8 2 350 x 280 1

9 1 210 x 370

10 1 155 x 388 1

11 4 350 x 164

12 4 350 x 164 1

13 5 135 x 360

14 5 135 x 360

Sequence

Pass

Rolling strategy Pass schedule

Figure 2.7: Rolling strategy vs. pass schedule. In this example the rolling

strategy consists of seven sequences, which are split into 14 passes in the

pass schedule.

data should be available to construct predictors for these values. The ar-

chitecture, construction, and robustness of these predictors will be covered

by the following chapters. Finally, with these predictors it will be possible

to split each sequence into a couple of passes. Therefore, the thickness re-

duction is estimated stepwise, by permitting the maximum rolling force and

rolling torque for each pass. So, the total thickness reduction is distributed

across a number of passes. The shape constraints may further reduce the

2.5. ARCHITECTURE OF A PASS SCHEDULE CALCULATOR 17

feasible thickness reduction. Once the reduction is fixed, the effective rolling

force, torque, and spread values are verified by the corresponding prediction

modules.

This novel architecture of a pass schedule calculator uses two major

components — rolling strategy and predictors in form of neural networks —

to generate a pass schedule. Although the resulting schedule may not be the

optimal one in terms of the original optimisation problem, it is revolutionary

in many ways. An overview of the intended architecture is shown in fig. 2.8.

The current pass schedule databases are static. Extensive manual cal-

culations and years of experience are necessary to add schedules for new

slab geometries. Furtermore, substantial modifications to the rolling mill,

e.g. the installation of a second tilting device, would require the complete

recalculation of all hand-crafted pass schedules. So, necessary improvements

to the rolling mill are avoided due to the great effort and complexity of the

consequential recalculations.

Pass Schedule Calculator

- selects the rolling strategy

- uses the predictors to distribute the total thickness reduction across a number of passes

Rolling Strategy

- defines groove series,

- total thickness

reduction and spread

within the groove, and

- tilting operations

Pass Schedule

- defines all parameters

for each single pass

Predictors

- estimates rolling force,

- rolling torque,

- thickness reduction, and

- spread

Figure 2.8: Architecture of pass schedule calculator.

18 CHAPTER 2. PROBLEM DESCRIPTION

In contrast, the new concepts will automate the schedule calculation

and will allow the simple introduction of new slab geometries as well as

substantial modifications to the rolling mill. Not only the precalculation of

pass schedules before the rolling process but also changes between two passes

are possible. Thus, the schedule calculator is able to react on permutations

of material or variations in temperature. In addition, the pass schedule

calculator will not only be applicable to a particular blooming train, but —

with slight customisations — to a wide range of hot rolling mills.

Chapter 3

Learning from Examples

Learning from examples is, among reasoning and planning, one of the basic

capabilities that constitute intelligence. Given some observations, it de-

scribes the ability to formulate universal rules that allow reliable prediction

of observations in the future. Machine learning, a major branch of artificial

intelligence, is engaged in constructing machines with this ability to learn.

Statistical learning theory explains under which circumstances the pro-

cess of learning will be successful, how fast learning can be done and suggests

good learning strategies.

The support vector machine (SVM) fulfils these requirements and can be

applied to a variety of learning tasks such as classification and regression.

Optimisation theory provides the necessary tools to transform and solve the

mathematical representation of the SVM.

Finally, a framework taken from regularisation theory shows the com-

monalities of neural networks, least-squares approximation, and the support

vector machine.

3.1 Statistical Learning Theory

A universal framework to describe the process of learning from examples

was first presented by Vapnik [23]. His function estimation model consists

of three components - a generator, a supervisor, and the learning machine.

The generator produces independently random vectors x ∈ X ⊆ Rn drawn

19

20 CHAPTER 3. LEARNING FROM EXAMPLES

Generator Supervisor

Learning Machine

x y

y′

Figure 3.1: Vapnik’s model of learning from examples. Generator and super-

visor supply the learning machine with the training data pairs x and y. The

learning machine adapts its output behaviour so that the difference between

the supervisor’s answer y and the learning machine’s answer y′ becomes less

and less.

from an unknown but fixed probability distribution function P (x). The su-

pervisor returns for each x an output value y ∈ Y according to the unknown

conditional distribution function P (y|x). The learning machine implements

a set of functions f(x, α) ∈ F with parameters α ∈ Λ. The input vectors

combined with the corresponding output values represent the training data

set

D = {(xi, yi) ∈ X × Y}li=1,

derived by taking l samples according to the joint probability density function

P (x, y). The joint density P (x, y) can be expressed in terms of the marginal

density P (x) and the conditional density P (y|x) by

P (x, y) = P (y|x) · P (x).

Given the set D, the learning machine has to find an estimator

f : X × Λ→ Y, f ∈ F

that predicts for each feature vector x the output value y. Selecting a proper

function family F as the basis for the learning machine is a crucial step and

will directly control the generalisation capabilities of the machine, i.e. it will

determine whether the machine is able to learn well or not.

3.1. STATISTICAL LEARNING THEORY 21

3.1.1 Risk Minimisation

In order to measure the quality of estimation, a loss function L(y, f(x, α))

needs to be defined. This function describes the discrepancy between the

supervisor’s answer y and the estimated answer y′ = f(x, α), derived by the

learning machine. Looking for the best estimator according to the predefined

loss function is the same as to minimise the expected error, i.e. the risk

functional

R(α) =
∫

L(y, f(x, α)) dP (x, y). (3.1)

Thus, the target function or ideal estimator f∗ fulfils

f∗(x) = f(x, α∗) with α∗ = arg min
α∈Λ

R(α).

Unfortunately, f∗ cannot be determined, because the probability distribu-

tion P (x, y) is unknown. In order to approximate α∗, a task-specific loss

function needs to be defined. Vapnik discriminates three major machine

learning tasks by their loss function [23]:

Pattern Recognition Suppose two classes of samples are given. The task

is to assign each new sample correctly to one of the two classes. Now,

the supervisor’s answer can only take two values — 0 and 1 — and the

estimated functions f(x, α) have to be indicator functions, i.e. they

are also limited to {0, 1}. Then, the loss function

L(y, f(x, α)) =

0 if y = f(x, α)

1 if y 6= f(x, α)

indicates whether a pattern was correctly classified by the estimated

function or not.

Regression Estimation If an arbitrary function has to be learned, the

supervisor’s answer can take all real values. The common least-squares

approach uses the loss function

L(y, f(x, α)) = (y − f(x, α))2

and results in the regression function

f(x, α) =
∫

y dF (y|x).

22 CHAPTER 3. LEARNING FROM EXAMPLES

Regression estimation will be the main concept to construct estimators

for describing the rolling process, as the output values are taken from

a continuous scale.

Density Estimation The third type of learning task is density estimation,

where a set of densities f(x, α) is given. The desired density function

is one that minimises the risk functional 3.1 with the loss function

L(f(x, α)) = − log f(x, α).

3.1.2 Empirical Risk Minimisation

As the distribution function P (x) is not known in an explicit sense but only

by a limited number of samples, the risk functional R(α) is replaced by the

empirical risk functional

Remp(α) =
1
P

l∑
i=1

L(yi, f(xi, α)). (3.2)

According to the law of large numbers, the arithmetic mean — in this case

Remp — will converge against the expectation R with increasing sample size l.

However, the arguments that minimise R and Remp are not necessarily the

same. In order to find α∗ only by minimising Remp, the principle of empir-

ical risk minimisation must be consistent, i.e. R and Remp must uniformly

converge:

lim
l→∞

P (sup
α∈Λ
|R(α)−Remp(α)| < ε) = 0 (3.3)

Necessary and sufficient conditions for consistency were defined by Vapnik

and Chervonenkis [25].

3.1.3 Vapnik-Chervonenkis Dimension

Vapnik and Chervonenkis defined a measure to describe the expressive power

of a family of classification functions. The set D of l training patterns can

be labelled with 0 and 1 in 2l different ways. Let N(D,F) be the number of

dichotomies for the set D that can be realized by a family F of classification

functions. Then, the growth function

G(l) = ln
(

max
D

N(D,F)
)
≤ ln 2l = l · ln 2

3.1. STATISTICAL LEARNING THEORY 23

is a measure of the maximum number of different labellings for an arbitrary

set of length l. The VC dimension of a function family is the maximum

number h of patterns, so that these patterns can be separated correctly for

each arbitrary labelling. Either the VC dimension is infinite or bounded

according to the type of growth function:

1.

G(l) = l · ln 2 ∀ l

Thus, for all arbitrary l there exists a dataset D so that the func-

tion family can discriminate all different labellings of D. The growth

function is linear and the VC dimension infinite.

2.

G(l)

= l · ln 2 if l ≤ h

≤ h ·

(
ln l

h + 1
)

if l > h

When the number of patterns exceeds the threshold h — the VC di-

mension — the growth function is bounded by a logarithmic function.

Now, the function family does not contain a discriminating function

for each possible labelling anymore.

A finite VC dimension is necessary and sufficient for uniform conver-

gence, as defined in (3.3), and will guarantee fast convergence [24, 25]. Thus,

learning by minimising the empirical risk will be successful, as the empirical

risk converges to the expected risk.

In order to generalise the VC dimension for regression, the loss function

L(y, f(x, α)) must be bounded:

lmin ≤ L(y, f(x, α)) ≤ lmax.

Then, the VC dimension of the binary indicator function

Θ(L(y, f(x, α))− β) with Θ(x) =

0 x ≤ 0

1 x > 0

24 CHAPTER 3. LEARNING FROM EXAMPLES

VC dimension, h

Error

Confidence interval

Training error

Guaranteed risk

· · · ≤ hn−1 ≤ hn ≤ hn+1 ≤ · · ·

· · · ⊂ Fn−1 ⊂ Fn ⊂ Fn+1 ⊂ · · ·

h∗

Figure 3.2: Tradeoff between training error and confidence interval. The

guaranteed risk is an upper bound for the sum of both learning performance

measures. Choosing a function class with VC dimension h∗ will yield the

smallest guaranteed risk ([5], slightly modified)

with parameter β ∈ [lmin, lmax] is used to characterise the continuous func-

tion class F with elements f(x, α). Now, the finiteness of the VC dimension

is only a sufficient condition but no longer necessary for uniform convergence.

Alon et al. introduced the Vγ dimension to describe necessary conditions as

well [1].

3.1.4 Structural Risk Minimisation

When constructing a learning machine, the challenge is to define a proper

function family that is both limited to achieve a low VC dimension and large

enough to contain the function that best describes the data. Vapnik proved

the generalisation error to be upper bounded by the guaranteed risk, which

is the sum of the training error and the confidence interval. The confidence

interval is a measure for the probability that a function, taken from the

3.2. OPTIMISATION THEORY 25

given function family, with small generalisation error can be found at all.

The confidence interval will increase with increasing VC dimension while

the training error will decrease. This trade-off between training error and

confidence interval is illustrated in fig. 3.2.

Now, the question is how to determine the function family that yields

the least guaranteed risk. The idea of structural risk minimisation [23] is to

define a series of nested hypothesis spaces

F1 ⊂ F2 ⊂ · · · ⊂ Fn

with increasing VC dimension

h1 ≤ h2 ≤ · · · ≤ hn.

The machine with the smallest guaranteed risk h∗ is chosen during the learn-

ing process. In practice this might be implemented in various ways, e.g. by

increasing h until the training error does not decrease significantly anymore.

A major feature of the support vector machine — which will be used for

training in the scope of the pass schedule calculator – is the simultaneous

minimisation of training error and VC dimension.

3.2 Optimisation Theory — Constrained Minimi-

sation

When dealing with the mathematical representation of the support vector

machine, some tools from optimisation theory are needed.

All types of support vector machines can be expressed in a representation

similar to the following constrained minimisation problem — the so-called

primal problem:

Minimise f(w), w ∈ Ω ⊆ Rn,

subject to

gi(w) ≤ 0 i = 1, . . . , k,

hi(w) = 0 i = 1, . . . ,m

(3.4)

26 CHAPTER 3. LEARNING FROM EXAMPLES

The so-called Lagrangian function combines both the objective function f

and the constraints within one equation.

L(w, α, β) = f(w) +
k∑

i=1

αigi(w) +
m∑

i=1

βihi(w). (3.5)

Each constraint is weighted with a positive Lagrangian multiplier αi or βi.

Kuhn and Tucker stated conditions for the optimum of (3.4) to exist de-

pending on the partial derivatives of the Lagrangian function [8]:

Theorem 3.1 Given the optimisation problem 3.4 where f is convex and

hi, gi are affine mappings. Necessary and sufficient conditions for an opti-

mum w∗ is the existence of α∗ and β∗ with

∂L(w∗, α∗, β∗)
∂w

= 0,

∂L(w∗, α∗, β∗)
∂β

= 0,

α∗i gi(w∗) = 0, i = 1, . . . , k,

gi(w∗) ≤ 0, i = 1, . . . , k,

α∗i ≥ 0, i = 1, . . . , k.

If f(w) is convex and gi and hi are both affine functions, the solution of

the primal problems equals the solution of the dual problem, which is to

Maximise minw∈Ω L(w, α, β)

subject to α ≥ 0.
(3.6)

So the task is no longer to find the minimum of the objective function, but

to find a saddle point of the Lagrangian function, which implicates a number

of significant advantages when dealing with the support vector machine.

3.3. SUPPORT VECTOR MACHINES 27

normal vector w
bias b

geometric margin γ

support vectors

Figure 3.3: Maximal margin classifier. The classifier is well-defined by a

normal vector w and the bias b. Points with geometric margin γ are called

support vectors.

3.3 Support Vector Machines

3.3.1 Maximal Margin Classifier

The simplest support vector machine is the one that implements a maximal

margin classifier.

Given the training data set

D = {(xi, yi) ∈ X × {−1,+1}}li=1,

the classification task is to find a hyperplane that separates the patterns

with y = −1 from those with y = +1. In terms of statistical learning the-

ory, we want to determine the linear hypothesis that leads to the smallest

generalisation error. This hyperplane is represented by a normal vector w

and a bias b that describes the distance of the hyperplane from the origin.

The minimal distance from the hyperplane to a pattern is called geometric

margin (see fig. 3.3). The maximal margin classifier selects that hyperplane

among the set of all separating hyperplanes with the largest margin.

28 CHAPTER 3. LEARNING FROM EXAMPLES

Suppose the maximal margin classifier is given by (w, b). Then, for all

points f(xi) = yi ·

(
wTxi + b

)
≥ 0 is satisfied. Furthermore, the length of

w is chosen so that the points with the least distance to the hyperplane

from both sides — x+ and x− — have a functional margin of +1 and −1

respectively:

wTx+ + b = +1

wTx− + b = −1

The geometric margin is derived by normalising w:

γ =
1
2

(
1
||w||2

· wTx+ − 1
||w||2

· wTx−
)

=
1

2||w||2
(
wTx+ −wTx−

)
=

1
||w||2

.

So, in order to maximise the margin, the 2-norm of the normal vector has

to be minimised, provided that all patterns are classified correctly:

Minimise wTw

subject to yi

(
wT

· x + b
)
≥ 1, i = 1, . . . , l

Thus the Lagrangian, according to (3.4) and (3.5) is

L(w, b, α) =
1
2
wTw −

l∑
i=1

αi

(
yi

(
wT

· xi + b
)
− 1
)
.

The factor 1
2 is used for convenience, as it gets eliminated when differenti-

ating to find the minimum of L(w, α, β):

∂L(w, b, α)
∂w

= w −
l∑

i=1

αiyixi = 0⇔ w =
l∑

i=1

αiyixi

∂L(w, b, α)
∂b

=
l∑

i=1

αiyi = 0

3.3. SUPPORT VECTOR MACHINES 29

Resubstitution delivers

L(w, b, α) =
1
2
wTw −

l∑
i=1

αi

(
yi

(
wTxi + b

)
− 1
)

=
1
2

l∑
i,j=1

yiyjαiαjxT
i xj −

l∑
i,j=1

yiyjαiαj +
l∑

i=1

αi

=
l∑

i=1

αi −
1
2

l∑
i,j=1

yiyjαiαjxT
i xj .

In total, the dual problem is to

maximise
∑l

i=1 αi − 1
2

∑l
i,j=1 yiyjαiαjxT

i xj

subject to


∑l

i=1 αiyi = 0

αi ≥ 0 i = 1, . . . , l

(3.7)

Suppose the optimum is found for α = α∗. Then the weight vector w∗ and

the bias b∗ of the maximal margin hyperplane are

w∗ =
l∑

i=1

yiα
∗
i xi

b∗ = −
maxi,yi=−1

(
xT

i w∗)+ mini,yi=+1

(
xT

i w∗)
2

.

The advantages of this dual representation are:

1. The optimisation problem is convex, so that a unique solution exists,

which can be obtained by quadratic programming.

2. The third Kuhn-Tucker condition in theorem 3.1 is satisfied if

α∗i ·

(
yi

(
xT

i w∗ + b∗
)
− 1
)

= 0, i = 1, . . . , l.

This implies that only those αi differ from 0 that have functional mar-

gin +1 or −1. Hence, the corresponding patterns xi are called support

vectors, and all other patterns can be omitted as their Lagrangian

30 CHAPTER 3. LEARNING FROM EXAMPLES

multipliers are 0

f(x) =
l∑

i=1

yiα
∗
i x

T
i x + b∗ (3.8)

=
∑

i∈S={s|αs>0}

yiα
∗
i x

T
i x + b∗

3. The concept of kernels, which allows more complicated decision bor-

ders to overcome the limitation to linear separable classes, requires the

dual problem.

This hard margin classifier is strongly affected by outliers — one single

outlier may avoid linear separation. Thus, a soft margin with so-called slack

variables is introduced. Different soft margin approaches will be discussed

in detail for support vector regression (see section 3.3.3).

3.3.2 Introducing Nonlinearity — the Idea of Kernels

Linear hypothesis spaces will occur only in very few real-world applications,

so a concept to deal with nonlinearity must be introduced. The idea of

kernels is to transform the low dimensional input space X into a high di-

mensional feature space X ′. With increasing dimension the probability of

linear separability rises so that a linear learning machine would be able to

determine a correct decision border.

A linear hypothesis is a function of the type

f(x) =
l′∑

i=1

wiΦi(x) + b

where Φ is a (non-linear) mapping from the input space to the feature space

with

Φ : X 7→ X ′

x = (x1, . . . , xl) 7→ Φ(x) = (Φ1(x), . . . ,Φl′(x)), l < l′.

According to 3.8 the separating hyperplane or linear hypothesis can be ex-

pressed in dual representation by

f(x) =
l′∑

i=1

αiyiΦ(xi)TΦ(x) + b.

3.3. SUPPORT VECTOR MACHINES 31

The mapping Φ only occurs in the inner product

K(xi,x) = Φ(xi)TΦ(x).

If this inner product can be expressed directly in terms of the input vectors,

then the mapping into the high dimensional feature space need not be done

explicitly for each vector. Such a function K is called a kernel and has some

interesting properties:

1. The kernel can be expressed by a kernel matrix

K = (K(xi,xj))
l
i,j=1 .

2. If the kernel is known, the decision rule can be evaluated efficiently by

f(x) =
l′∑

i=1

αiyiK(xi,x) + b.

Neither the mapping Φ nor the structure of the underlying feature

space must be known.

Some of the most widely used kernel functions are:

Polynomial kernels

K(x,y) = (xTy + c)p, p ∈ N, c ≥ 0

Radial basis function kernels (RBF or Gaussian kernels)

K(x,y) = e−
||x−y||2

2σ2 , σ > 0

Linear combinations of kernels

K(x,y) = c1 · K1(x,y) + c2 · K2(x,y), c1, c2 ≥ 0

32 CHAPTER 3. LEARNING FROM EXAMPLES

3.3.3 Support Vector Regression

The support vector machine can easily be extended to the regression esti-

mation task. Suppose the training data is given by

D = {(xi, yi) ∈ X × R}li=1.

In ε-support vector regression (ε-SVR), according to Vapnik [23], the aim is

to find a linear function

f(x) = wTx + b, w ∈ X , b ∈ R,

which deviates no more than ε from yi for each xi. Among the set of linear

hypotheses that fit all points into an ε-tube volume, the flattest one is pre-

ferred. This can be achieved by minimising the 2-norm of the weight vector

w. Thus, on the assumption that such a function exists, the problem can

be stated as a convex minimisation problem:

x

y

ε

ε

ξ > 0, ξ∗ = 0

ξ∗ > 0, ξ = 0

support vectors

Figure 3.4: Support vector regression. Within ε-support vector regression

the flattest regression function is found that allows at most an error of ε. As

normally outliers exist, the margin is softened by introducing slack variables

ξ and ξ∗ for each data point.

3.3. SUPPORT VECTOR MACHINES 33

Minimise 1
2 ||w||

2

subject to

yi −wTxi − b ≤ ε

wTxi + b− yi ≤ ε

(3.9)

Supposing all points fit into an ε-tube is often too restrictive, so a

mechanism to soften the tube is required. Cortes and Vapnik [2] introduced

slack variables to allow soft margin classification, so that some training pat-

terns may be within the margin or even misclassified. Vapnik extended

this concept for regression by declaring two slack variables ξi and ξ∗i for

each input point xi. If a data point is situated within the tube, both slack

variables are 0. The slack variable ξi measures positive deviation of more

than ε, while ξ∗i indicates negative deviations. Since no point can be on

both sides simultaneously, at least one of the two slack variables is always 0.

Mathematically, this corresponds to the so-called ε-insensitive loss function:

|ξ|ε =

0 if |ξ| ≤ ε

|ξ| − ε otherwise

The amount of outliers and their influence on the regression function

is adjusted by incorporating the weighted norm of the slack variables into

the objective function. The two most common approaches add the weighted

value of the 1-norm or the 2-norm.

The 1-Norm Soft Margin approach adds the regularisation term

C ·

(∑
i

ξi +
∑

i

ξ∗i

)
to the objective function, resulting in the following optimisation problem:

Minimise 1
2‖w‖

2 + C
l∑

i=1
(ξi + ξ∗i)

subject to


yi −wTxi − b ≤ ε + ξi

wTxi + b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

. (3.10)

34 CHAPTER 3. LEARNING FROM EXAMPLES

The regularisation parameter C determines the trade-off between flatness

and toleration of errors beyond ε. Parameter selection techniques such as

grid search to pick an appropriate C will be presented in chapter 4.4.4.

Applying the Lagrangian theory and substituting the inner product by the

kernel function K results in the dual representation:

Maximise


−1

2

l∑
i,j=1

(αi − α∗i)(αj − α∗j)K(xi,xj)

−ε
l∑

i=1
(αi + α∗i) +

l∑
i=1

yi(αi − α∗i)

subject to


l∑

i=1
(αi − α∗i) = 0

αi, α
∗
i ∈ [0, C]

(3.11)

The second constraint ensures that all Lagrangian multipliers are upper

bounded by C. Thus, the influence of outliers on the regression function

f(x) =
l∑

i=1

(αi − α∗i)K(xi,x) + b (3.12)

is limited.

A dual representation with fewer constraints is derived by using the 2-

norm instead of the 1-norm for regularisation. The primal problem is then

as follows:

Minimise 1
2‖w‖

2 + C
l∑

i=1
(ξ2

i + ξ∗i
2)

subject to


yi −wTxi − b ≤ ε + ξi

wTxi + b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

. (3.13)

Suppose the third constraint is not satisfied, i.e. ξ
(∗)
i < 0. Setting ξ

(∗)
i = 0

does not violate the first two constraints but decreases the value of the ob-

jective function. Therefore, the third constraint can be omitted. Converting

3.3. SUPPORT VECTOR MACHINES 35

this reduced optimisation problem into the dual representation results in:

Maximise


−1

2

l∑
i,j=1

(αi − α∗i)(αj − α∗j)
(
K(xi,xj) + δij

C

)
−ε

l∑
i=1

(αi + α∗i) +
l∑

i=1
yi(αi − α∗i)

subject to


l∑

i=1
(αi − α∗i) = 0

αi, α
∗
i ≥ 0

(3.14)

The usage of Kronecker’s delta with

δij =

1 if i = j

0 otherwise

can be interpreted as a modification of the kernel matrix. The support

vector machine based on this soft margin representation can be trained by

the same algorithms as in the hard margin case, but with a modified kernel

K̂(xi,xj) = K(xi,xj) +
δij

C
.

3.3.4 Incorporating Prior Knowledge

In many practical applications of machine learning some amount of prior

knowledge is available. Depending on its formulation there are different

techniques to incorporate this knowledge into the SVM to improve the gen-

eralisation capabilities.

Le, Smola, and Gärtner [10] introduced prior knowledge in binary clas-

sification by ensuring that for a certain subset of the training patterns the

classification must be correct. For scalar regression they defined prior knowl-

edge in form of upper and lower bounds, and for multiclass classification they

restricted the possible classes for a subset of the patterns.

Wu and Srihari [26] proposed the weighted margin support vector ma-

chine, where a confidence value is assigned to each training pattern. Patterns

with high confidence values affect the decision plane by a larger amount than

36 CHAPTER 3. LEARNING FROM EXAMPLES

low-confident patterns. Thus, the training set can be extended by pseudo-

training patterns to incorporate human prior knowledge.

3.4 Regularisation Theory

In general, approximating a function from data is an ill-posed problem, in

contrast to well-posed problems that have a unique solution for any input

and where the solution depends continuously on the input. The classical

way to solve such ill-posed problems is known as regularisation.

3.4.1 A Generalised Framework for Function Estimation

Expanding the empirical risk functional (3.2) by a stabiliser term to add

certain constraints to the regression function f leads to

H(f) =
1
l

l∑
i=1

L(yi, f(xi)) + λΦ. (3.15)

The first term minimises the distance between the regression function and

the set of examples, the second term adds certain flatness conditions. The

importance of both terms is weighted by the regularisation parameter λ.

This general formulation was used by Evgeniou et al. [4] to cover different

approximation problems by the same framework. Four major regularisation

problems can be distinguished by the choice of the loss function L, the

regularisation parameter λ, and the stabiliser Φ:

Least Squares Approximation

L(yi, f(xi)) = (yi − f(xi))2

λ = 0

The common least squares approximation does not use any type of

stabiliser. So, the parameters of the regression function f are not

constrained and will be prone to overfitting.

3.4. REGULARISATION THEORY 37

Classical Regularisation

L(yi, f(xi)) = (yi − f(xi))2

λ > 0

Φ = ‖f‖2K ,

The stabiliser term ‖f‖2K is a norm in a Reproducing Kernel Hilbert

Space (RKHS) defined by the positive definite function K. Classical

regularisation is also known as Ridge Regression or Tikhonov Regular-

isation.

Soft Margin Support Vector Regression

L(yi, f(xi)) = |yi − f(xi)|ε = ξi + ξ∗i

λ =
1

2C ′

Φ = ‖w‖2

Substitution in (3.15) delivers the optimisation problem

min
w,ξ,ξ∗

H(w, ξ, ξ∗) =
1
l

l∑
i=1

(ξi + ξ∗i) +
1

2C ′ ‖w‖
2

=
1
C ′

 C ′

l︸︷︷︸
C

l∑
i=1

(ξi + ξ∗i) +
1
2
‖w‖2



with the same constraints as in (3.10). After elimination of the factor
1
C′ the solution of both optimisation problems will be equal.

Soft Margin Support Vector Classification

L(yi, f(xi)) = |1− yif(xi)|+ =

1− yif(xi) if 1− yif(xi) > 0

0 otherwise

= ξi

λ =
1

2C ′

Φ = ‖w‖2

38 CHAPTER 3. LEARNING FROM EXAMPLES

Even for classification this framework is applicable with the assump-

tion that yi ∈ {−1,+1}. This results in the following quadratic pro-

gramme:

min
w,ξ

H(w, ξ) =
1
l

l∑
i=1

ξi +
1

2C ′ ‖w‖
2

=
1
C ′

 C ′

l︸︷︷︸
C

l∑
i=1

ξi +
1
2
‖w‖2


subject to

yif(xi) ≥ 1− ξi

ξi ≥ 0

So, regularisation and support vector theory are very closely related.

Both concepts use stabilisers or smoothness factors to limit the hypothesis

space and to ensure that no chaotic hypotheses may be the result of the

learning process. This correlates with most observations from the real world.

Normally, within systems above a certain complexity small changes of the

input parameters will result in small changes of the output variable — so

smoothness can be seen a a basic concept of real-world dependencies.

3.4.2 Neural Network, Regularisation, and the SVM

The architecture of the support vector machine can also be described graphi-

cally similar to neural networks with one hidden layer of neurons. The input

layer consists of n neurons as the dimension of each training pattern is n.

Each input neuron is connected to l hidden neurons — one for each training

pattern — to derive the inner product kernels. Each hidden layer imple-

ments the kernel function K. The hidden layer and an additional neuron to

incorporate the bias b are connected to the output neuron (see fig. 3.5).

In contrast to conventional neural networks, where the complexity is

directly controlled by the number of hidden neurons before training starts,

the support vector machine is self-organizing. Once training is finished, only

the support vectors and their Lagrangian multipliers affect the output — the

remaining hidden neurons are omitted. Thus, the architecture of the neural

3.4. REGULARISATION THEORY 39

network — especially the number of hidden neurons — has not to be known

in advance. On the other hand, the hidden neurons are strictly bound to

the training vectors, so that the hidden neurons have no ability to adapt.

Within classical multilayer networks the basis functions are normally not

fixed.

b

K(x,xl)

K(x,x2)

K(x,x1)

∑
x1

α1

α2

αl

x2

α1

α2

αl

xn

α1

α2

αl

y =
l∑

i=1
αiK(x,xi) + b

...
...

...

input layer hidden layer output layer

Figure 3.5: Interpretation of the SVM as a Neural Network. The hidden

layer determines the kernel function values, and the output neuron calculates

the weighted sum of the kernel values and the bias. Note: The input values

xi are the particular entries of the input vector x, whereas the vectors xi are

the training patterns. After training, only the hidden neurons with αi > 0

have an influence on the output y. The corresponding xi are the support

vectors.

Chapter 4

Training of Support Vector

Machines

Training of learning machines to derive a decision or regression function can

be done in many different ways. So, the aim is to find algorithms that are

simple to understand, easy to implement, and which have a runtime that

scales linearly within the number of training patterns.

Most implementation techniques to solve optimisation problems are based

on gradient descent. The straight-forward approach to use existing optimi-

sation toolboxes may often not be feasible as these toolboxes are expensive

and seldom error-free.

The Sequential Minimal Optimisation algorithm, proposed by Platt, is

probably the most widely used algorithm for support vector learning. This

algorithm breaks the entire problem into smaller ones based on some heuris-

tics to solve them analytically.

In contrast, the MinOver algorithm — an extension to Rosenblatt’s Per-

ceptron — processes the training set pattern-by-pattern and is very easy to

understand. Since MinOver works for classification as well as for regression,

it can be applied to a wide range of tasks.

Apart from the core algorithm, there are a number of implementation

issues that have to be considered, in order to construct an efficient algorithm

to be used in practice.

41

42 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

4.1 Quadratic Programming Toolboxes

Dual representations of support vector machines as in (3.7), (3.11), and

(3.14) are special cases of the quadratic programme

Maximise xTHx + fTx
(
x ∈ X ⊂ Rn, H ∈ Rn×n, f ∈ Rn

)
subject to

Ax = b

x ≥ 0.

(
A ∈ Rm×n, b ∈ Rm

)

Most available algorithms are based on sophisticated gradient ascent and

Newton iteration methods to find the optimum. As these techniques become

extremely complicated and numerically challenging for large dimensions, one

has to mistrust the correctness of many — also commercially available —

toolboxes.

Besides, the matrix H, which contains the kernel matrix with l2 entries,

would not even fit into the working memory when dealing with many thou-

sands of training patterns. Chunking and working set selection are methods

to successively choose small subsets of the training patterns for optimisation.

However, these techniques make the algorithms even more complicated.

So, one would like not to have algorithms that require such expensive

commercial optimisation toolboxes, but to use simple and fast techniques

that are adjusted for usage with support vector machines.

Probably the first incremental learning algorithm that implements a lin-

ear classifier — but not yet the maximal margin classifier — was the Per-

ceptron.

4.2 Iterative Learning Algorithms

4.2.1 Rosenblatt’s Perceptron

In the late 1950’s Rosenblatt proposed the first pattern-by-pattern learning

algorithm for binary classification [17]. The decision function or hypothesis

4.2. ITERATIVE LEARNING ALGORITHMS 43

f(x) to predict the class of an unlabelled pattern x is defined by

f(x) = sgn(wTx + b) =

1 if wTx + b ≥ 0

−1 otherwise,
(4.1)

taking two parameters — the weight vector w and the bias b.

Starting with an initial weight vector and bias, the algorithm successively

updates them by a trial-and-error method until all patterns are classified

correctly according to (4.1). If the patterns are not linearly separable, the

algorithm does not terminate, since correct classification of all patterns is

impossible.

It can be shown that for linear separable training sets, having margin γ

and a maximum distance to the origin of R = maxi ||xi||, the algorithm will

make at most
(

2R
γ

)2
mistakes. Thus, after a finite number of iterations it

will terminate, returning a separating hyperplane indicated by the weight

vector w and the bias b. If such a hyperplane does not exist, the algorithm

Input:

(xi, yi), i ∈ {1, . . . , l} — training patterns

Output:

w, b — normal vector and bias of separating hyperplane

w← 0

b← 0

R← maxi ||xi||
repeat

forall i do

if yi(wTx + b) ≤ 0 then
w← w + yi xi

b← b + yi R
2

end

end
until until no mistakes made within the forall loop

Figure 4.1: Perceptron learning algorithm in primal representation for linear

classification.

44 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

Input:

(xi, yi), i ∈ {1, . . . , l} — training patterns

Output:

α, b — dual coordinates and bias of separating hyperplane

α← 0

b← 0

R← maxi ||xi||
repeat

forall i do

if yi

(∑l
j=1 αj yj xT

j xi + b
)
≤ 0 then

αi ← αi + 1

b← b + yi R
2

end

end
until until no mistakes made within the forall loop

Figure 4.2: Perceptron learning algorithm in dual representation for linear

classification.

will oscillate forever between different hypotheses.

The Perceptron algorithm can be formulated either in primal or dual

representation (see figs. 4.1 and 4.2), due to the notation of the decision

plane as a linear combination

w =
l∑

i=1

αi yi xi (4.2)

of training patterns. Now the decision function is

f(x) = sgn
(
wTx + b

)
= sgn

(
l∑

i=1

αi yi xT
i x + b

)
.

Since the algorithm terminates as soon as a separating hyperplane is found,

the maximal margin solution is not found in general.

4.3. MINOVER 45

4.2.2 Sequential Minimal Optimisation

The idea behind Platt’s Sequential Minimal Optimisation algorithm (SMO)

is to optimise only two Lagrangian variables simultaneously [15, 16]. Con-

sider the dual representation of the soft margin SVM for classification:

Maximise −1
2

l∑
i,j=1

yiyjαiαjK(xT
i xj)−

∑l
i=1 αi

subject to


l∑

i=1
αi = 0

0 ≤ αi ≤ C

First, two Lagrangian multipliers, αp and αq, are selected according to some

heuristics, favouring those multipliers that violate the Kuhn-Tucker condi-

tions in theorem 3.1. Now the objective function gets maximised only with

respect to these two variables — all other variables remain constant. The do-

main of (αp, αq) is limited to a diagonal line, due to the equality constraint∑l
i=1 αi = 0 and bounded by the inequality constraints 0 ≤ αp, αq ≤ C.

This allows an analytical maximisation without the various problems arising

from numerical iteration methods. Selection and constrained maximisation

are repeated until the Lagrangian multipliers do not change anymore.

Besides sophisticated selection heuristics, there exist numerous speedup

methods that improve the performance of SMO. The algorithm does not

depend on complicated quadratic programming libraries, but still fails to

have the simplicity of a pattern-by-pattern algorithm such as the Perceptron.

4.3 MinOver

The following modification to the Perceptron learning rule, which preserves

the simple structure of the algorithm but achieves convergence to the max-

imal margin classifier, was presented by Krauth and Mézard [7].

4.3.1 Classification

The perceptron learning algorithm terminates as soon as a separating hy-

perplane is found and it uses the whole training set during each iteration

step — usually not resulting in the maximal margin solution.

46 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

Input:

(xi, yi), i = 1, . . . , l — training patterns

tmax — number of learning steps

Output:

α, b — dual representation of separating hyperplane

α← 0

b← 0

foreach t ∈ {1, . . . , tmax} do

foreach i do

ri ← yi

(∑l
j=1 αjyjK(xj ,xi) +

∑l
j=1 αjyj

)
end

k ← arg mini{ri}
αk ← αk + 1

b← b + yk

end

Figure 4.3: MinOver algorithm for classification in dual representation. In

contrast to the Perceptron algorithm, the pattern with the worst margin is

chosen and learning is continued even if there are no mistakes anymore.

In contrast, the MinOver algorithm (see fig. 4.3) selects, during each

learning step, the pattern with the minimal residual margin or overlap —

hence the name MinOver. Either, this is the pattern that is strongest mis-

classified or, if all patterns are correctly classified, the pattern that is closest

to the decision plane. Mathematically, a pattern k with

k = arg min
i

yi

(
wTxi − b

)
is added to the normal vector w. The bias b is updated by adding the

corresponding class label.

Furthermore, the algorithm is no longer terminated as soon as correct

classification for all training patterns is achieved, but after a predefined

number of learning steps tmax. The decision function remains the same as

4.3. MINOVER 47

for the Perceptron:

f(x) = sgn(wTx + b)

Again, the usage of the dual representation and kernel functions will

enable nonlinear decision borders. With transformations equivalent to (4.2)

the dual representation of the MinOver algorithm is derived:

f(x) = sgn

 l∑
j=1

αjyjxT
j xi +

l∑
j=1

αjyj


k = arg min

i
yi


 l∑

j=1

αjyjxj

T

xi +
l∑

j=1

αjyj


A first convergence proof was given by Krauth and Mezard, who showed

that MinOver converges at least as O(t−
1
2) to the maximal margin classifier.

Martinetz showed that MinOver even converges as O(t−1) with increasing

number of training steps [12]. Both simplicity and fast convergence qualify

MinOver for many classification tasks and there are many further extensions

that improve performance.

However, the solution does not only contain support vectors, but also

some other training patterns that were selected at an earlier stage of the

algorithm.

4.3.2 Regression

By modifying the pattern selection strategy and the update rule, MinOver

can easily be extended for regression tasks.

The starting point is the dual representation of the 2-norm soft margin

approach (3.14). For convenience, the Lagrangian multipliers are substituted

so that (αi − α∗i) becomes αi. Either αi or α∗i are 0 because a support vec-

tor cannot be simultaenously above and below the regression function. So,

(αi + αi) are substituted by |αi|. In total, we get the following optimisation

problem:

Maximise L(α) = −1
2

l∑
i,j=1

αiαj

(
K(xi,xj) + δij

C

)
− ε

l∑
i=1
|αi|+

l∑
i=1

yiαi

subject to
l∑

i=1
αi = 0

48 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

In order to meet the constraint, we have to select two Lagrangian multi-

pliers within each learning step and increment one of them, while the other

gets decremented. The partial derivative gives an idea which multipliers one

should select:
∂L(α)
∂αi

= yi − ε sgn(αi)− f(xi)−
αi

C

In the optimum the partial derivatives vanish. Thus, a good choice for the

next learning step is to increase αimin and to decrease αimax with

imin = arg min
i

(
yi − f(xi)−

αi

C

)
imax = arg max

i

(
yi − f(xi)−

αi

C

)

In the classification task only the sign of f was important, but for re-

gression the norm of the weight vector w is significant. So, the learning rate,

i.e. the amount of changes within one learning step, must be chosen with

care. The convergence proof for MaxMinOver [19], an extension to MinOver

with forgetting rule, showed that a learning rate of 1
t is a good choice.

Some remarks about the MinOver algorithm 4.4 should be made:

1. The MinOver algorithm for regression does not converge to the ε-

SVR solution in the sense that the discrepancy between exact and

approximated solution will become smaller and smaller. Within a cer-

tain learning step t′ the algorithm may observe that the residuals of

all training points are less than ε. Hence, the algorithm terminates,

allthough not all support vectors may have been identified. The re-

gression function, derived from this MinOver variant, is situated some-

where between a least squares solution for the given training patterns

and the ε-SVR solution.

2. A number of prefixes for MinOver is used to emphasise different fea-

tures. The prefix Soft indicates that a soft margin approach — no

matter which type of soft margin — is used.

When MinOver for classification was introduced, the class labels were

4.3. MINOVER 49

integrated implicitly into the training patterns with the mapping

xi → yi · (xi 1)T .

Thus, the bias b became part of the weight vector w. A more intuitive

way — indicated by the prefix Double — is to train with the original

patterns and update the bias afterwards. Additionally, not one but

two patterns with closest distance to the decision surface are updated

— one from each side. However, the Double version does not change

the convergence rate.

Input:

(xi, yi), i ∈ {1, . . . , l} — training patterns

ε, C, tmax — allowed error, softness, number of learning steps

Output:

α, b — weights of the support vectors and bias

α← 0

foreach t ∈ {1, . . . , tmax} do

foreach i do
ri ←

∑l
j=1(αjK(xi,xj) + αi

C)− yi

end

imin ← arg mini(ri)

imax ← arg maxi(ri)

if rimin − rimax > 2ε then
αimin ← αimin + 1

t

αimax ← αimax − 1
t

else
break

end

end

b← 1
2(rimin + rimax)

Figure 4.4: SoftDoubleMinOver algorithm for regression in dual representa-

tion with the 2-norm soft margin approach.

50 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

Finally, the prefix Max indicates the use of a forgetting rule, as de-

scribed in the next section.

3. The domains of the features, i.e. the single entries of the training vec-

tors, may vary by many orders of magnitude. Using these patterns

directly for classification or regression may lead to strange behaviour,

as the features with great numeric range dominate those with small

range. Thus, all training patterns should have normalised entries,

i.e. the range of each feature should be within [−1, 1] or [0, 1]. The

normalisation to zero mean and unit variance would be another pos-

sibility.

4.3.3 Forgetting with MaxMinOver

The main disadvantage of MinOver for regression is the lack of convergence

to the support vector solution.

The MaxMinOver algorithm for classification [9, 11] ensures that the

solution only contains support vectors and it improves the convergence to

the maximal margin solution. This is achieved by introducing a forgetting

rule. In addition to the pattern with minimal margin, also the pattern with

maximal margin ximax is determined. This pattern is the one that is best

classified, so this one should normally not be a support vector and can be

dememorised. It can be shown that the convergence improves, if the norm

of the weight vector is kept small [11]. This is the case if

wT (yimax(ximax − b)− yimin(ximin − b)) > 4 · R2

= 4 · max
i
||xi||.

Thus, whenever the above inequality is satisfied, αimax is decreased by 1,

while αimin is increased by 2. With this extension MinOver is still very

simple, but will surely converge to the support vector machine solution.

In the regression case, convergence to the ε-SVR solution is guaranteed

[19, 20]. In the following, the main parts of the algorithm (see fig. 4.5) will

be explained in detail:

4.3. MINOVER 51

Input: (xi, yi), i ∈ {1, . . . , l} — training patterns

ε, C, tmax — allowed error, softness, learning steps

Output: α, b — Lagrangian multipliers and bias

α← 0

R← radius of minimal enclosing sphere in kernel induced feature

space

foreach t ∈ {1, . . . , tmax} do

foreach i do
ri ←

∑l
j=1(αjK(xi,xj) + αi

C)− yi

end

imin ← arg mini(ri)

imax ← arg maxi(ri)

iminNSV ← arg mini, αi>0(ri)

imaxNSV ← arg maxi, αi<0(ri)

if (rimin − rimax) > 2 · ε then

if rimax − rimaxNSV > g(R)
t then

αimin ← αimin + 1
t +min

(
1
t , αiminNSV

)
αiminNSV ← αiminNSV −min

(
1
t , αiminNSV

)
αimax ← αimax − 1

t −min
(

1
t ,−αimaxNSV

)
αimaxNSV ← αimaxNSV +min

(
1
t ,−αimaxNSV

)
else

αimin ← αimin + 1
t

αimax ← αimax − 1
t

end

else if rimax − rimaxNSV > g(R)
t then

m ← min
(

1
t , αiminNSV , −αimaxNSV

)
αiminNSV ← αiminNSV −m

αimaxNSV ← αimaxNSV + m

end

end

b← 1
2(rimin + rimax)

Figure 4.5: SoftDoubleMaxMinOver for regression.

52 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

Multiplier selection is done as in the MinOver algorithm, but addition-

ally the support vectors with largest and smallest residuals are deter-

mined. Thus, up to four different multipliers are selected during each

learning step.

Dememorisation must be done for two different types of patterns. As sup-

port vectors have residuals of exactly ε, all points with other residuals

must be dememorised. The threshold for this procedure is determined

to be

g(R) = 4 · R2 + 16 · (3 · ε2 + 4 · ε + 1)

where R is the minimal enclosing ball containing all training patterns

in the kernel-induced feature space [19, 20].

Learning and forgetting rate are set to 1
t , but as the sum of all dual

coordinates must be 0, some effort has to be made to mutually increase

and decrease the αi. When dememorisation takes place, the forgetting

rate is upper bounded so that the corresponding αi vanish. When

choosing these rates the algorithm will converge to the support vector

solution as O(1
t) [20].

The usage of a forgetting rule is not essential for all regression tasks.

Often, the data is very noisy. Then, MinOver will not terminate before the

maximum number of learning steps tmax is reached, because the selected

multipliers can never have a distance of less than ε. In this case, the re-

gression function will converge against the support vector solution, but not

necessarily with the same support vectors.

4.3.4 SoftDoubleMinOver with Prior Knowledge

Within many applications one would like to incorporate prior knowledge into

the regression function. This knowledge is normally not available via exact

formulas but rather by significant points. At these points the residuals must

vanish or at least be much smaller than the allowed error ε at other points.

In the following, a novel extension to MinOver is presented, that in-

corporates prior knowledge by pseudo-data points and by the usage of a

4.3. MINOVER 53

data-dependent ε. Suppose training data is given by the two sets

D = {(xi, yi) ∈ X × R}li=1

P =
{(

x(P)
i , y

(P)
i

)
∈ X × R

}m

i=1
,

where D is derived by observations and P is a pseudo-training set describing

the prior knowledge. Now, both sets are combined and an additional entry

for each pattern indicates how confident this pattern is.

In a first approach, low confidence is indicated by 1 and high confidence

by H ∈ R+, resulting in the new training set

D′ =
{(

x1, y1, 1
)
, . . . ,

(
xl, yl, 1

)
,
(
x(P)

1 , y
(P)
1 ,H

)
, . . . ,

(
x(P)

m , y(P)
m ,H

)}
.

The confidence value is meant to directly adjust the allowed residuals and

weight the margin. In the hard margin case, all points having confidence

value 1 must have residuals less than or equal to ε. For prior knowledge

points the residuals are upper bounded by ε′ = ε
H . Thus, the margin of the

regression function varies (see fig. 4.6).

In this binary representation of the confidence the separation between

prior knowledge and observations is obvious, but this concept can be further

extended to arbitrary confidence values. A value c ∈ R+ is assigned to each

pattern to characterise its importance in advance. There are many ways to

derive the confidence value:

1. Whenever the feature space is derived by subjective human obser-

vations, it also makes sense to use an additional manual label as a

confidence value.

2. If the output values yi are derived by different measuring instruments,

then for each observation the accuracy of the used instrument may be

used as a confidence value.

3. In the case of clustered feature spaces, where the values for some clus-

ters are more accurate than for others, it may be useful to partition

the space and assign a different confidence value to each cluster.

4. Prior knowledge can be incorporated by high confidence values. But

the number and distribution of prior knowledge points should be se-

lected with care. If the restrictions to the learning machine get too

54 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

strong, the regression function would only depend on the prior knowl-

edge and not on the remaining training data, which in general is not

intended.

4.4 Implementation Issues

Besides the choice of the training algorithm there exist numerous ways to

improve machine learning algorithms. The following concepts are not re-

stricted to support vector machines and MinOver, but can be applied to

various other algorithms to improve performance.

4.4.1 Chunking

The concept of chunking — again a technique described by Vapnik [22] —

helps to solve large quadratic programmes such as the dual representation

of the support vector machine. Because for comprehensive training sets the

kernel matrix would not fit into the working memory, one needs to split

x

y

ε′

ε ε

ε′

Prior knowledge

Prior knowledge

Ordinary training points

Figure 4.6: Incorporating prior knowledge by weighted margin.

4.4. IMPLEMENTATION ISSUES 55

Input:

(xi, yi, vi), i ∈ {1, . . . , l} — training patterns and margin weights

ε, C, tmax — allowed error, softness, number of learning steps

Output:

α, b — Lagrangian multipliers and bias

α← 0

foreach t ∈ {1, . . . , tmax} do

foreach i do

ri ← vi ·

(∑l
j=1(αjK(xi,xj) + αi

C)− yi − b
)

end

imin ← arg mini(ri)

imax ← arg maxi(ri)

if (rimin − rimax) > 2ε then
αimin ← αimin + 1

t

αimax ← αimax − 1
t

else
break

end

foreach i do
ri ←

∑l
j=1(αjK(xi,xj) + αi

C)− yi

end

imin ← arg mini(ri)

imax ← arg maxi(ri)

b← 1
2(rimin + rimax)

end

Figure 4.7: SoftDoubleMinOver algorithm with prior knowledge.

56 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

the training set into small chunks. Normally, only very few support vectors

are among the large set of all training patterns. If we knew the support

vectors in advance we could train only on this subset and would get the

same solution as if training with the whole set. Unfortunately, this is not

the case, so by chunking we try to limit the number of non-support vectors

in the training set by some heuristics.

Chunking is an incremental procedure that utilises a modified training

set within each phase. This set contains all support vectors of the previous

phase and additionally N patterns that violate the Kuhn-Tucker conditions

most. After the quadratic programme is solved, all non-support vectors

are discarded and the next iteration is started. The algorithm terminates

when the training set only contains support vectors and no other pattern

violates any of the constraints. Thus, even large training sets can be used

— assuming that the number of support vectors is comparatively small.

However, there exist scenarios where chunking will not work as the set of

support vectors is too large. Then, chunking will achieve only approximate

solutions.

4.4.2 Decomposition

Osuna [14] proposed another kind of working set algorithm that also solves

a series of quadratic programmes. First, Osuna showed that adding at least

one pattern within each phase that violates the Kuhn-Tucker conditions will

improve the objective function. Thus, convergence is already guaranteed for

the above chunking method.

But in contrast to chunking, the decomposition algorithm operates on a

working set of constant size. It starts with an arbitrary subset of training

patterns B and solves the subproblem, while keeping the Lagrangians of all

other patterns constant. As long as the Kuhn-Tucker conditions are violated

by at least one sample xj from the remaining set N , an arbitrary sample

xi ∈ B is chosen, both are interchanged, and the new subproblem is solved.

With this method even problems with many thousands of support vectors

can be handled.

4.4. IMPLEMENTATION ISSUES 57

4.4.3 Validation

The performance of a learning machine should not only be specified by its

execution time, but primarily by its generalisation capabilities. Since by

definition of the learning task, only a finite set of samples is available, the

generalisation performance must be approximated.

The concept of cross-validation is to split the available samples into two

sets. The first set is used to train the learning machine, which is then

tested on the second set — the validation set. Depending on the learning

task, different measures to determine the generalisation performance can

be applied. Commonly, the percentage of falsely classified patterns is used

for classification while the mean squared error determines the quality of

regression estimation. Repeating this procedure several times will yield a

confidence value to describe the quality of the learning machine.

In k-fold cross-validation the initial training set is split into a partition of

k subsets, approximately equal in size. Cross-validation is repeated k times,

each time using a single subset for validation and all the other k− 1 subsets

for training. Even for small k this process is very time-consuming, but it is

an intuitive way to approximate the generalisation performance.

Setting k to the total number of samples leads to leave-one-out cross-

validation, which is even more time-consuming and seldom used in practice.

4.4.4 Parameter Selection

All support vector approaches take a number of free parameters that have

to be chosen in advance. Support vector regression with RBF kernels takes

three parameters — the margin ε, the softness C, and the standard devia-

tion σ of the kernel.

Grid search is a common but computationally very expensive technique

for parameter estimation. The range of each parameter is set to a finite set

of values so that the potential parameter combinations form a grid. Now,

for every parameter set, the corresponding model — the learning machine

— is evaluated by any validation method, resulting in a real number.

Given a support vector regression task with three parameters, each with

58 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

1st parameter

2nd parameter

Optimal parameter set

(1st phase)

Optimal parameter set

(2nd phase)

Figure 4.8: Sampling pattern based on design of experiments (DOE). During

each search level, 2d+3d parameter combinations are chosen (d = number of

dimensions, in this case d = 2) and the new search space is centered around

the best parameter set of the previous search.

10 potential values, the grid search with 5-fold cross-validation will require

10 · 10 · 10 · 5 = 5000 trainings and evaluations of a learning machine. In

practice, the parameters are chosen from a very coarse grid with exponen-

tially increasing steps, e.g. C = 10−4, 10−3, . . . , 105.

A gradient descent based technique for parameter selection is pattern

search, also known as compass search or line search. Starting with an initial

parameter, trial steps in each direction with a certain step width are eval-

uated. If performance improves in any direction, the new parameters are

selected to be the center of the next iteration. Otherwise the step width

is reduced and the search is repeated. To overcome the problem of local

minima, a coarse grid search serves to find a small number of initial points

for pattern search.

There exist further more sophisticated parameter selection algorithms,

of which only the algorithm proposed by Staelin [21] will be mentioned here.

4.4. IMPLEMENTATION ISSUES 59

Based on ideas from design of experiments (DOE), the method starts on

a very coarse grid, in fact two nested grids with 3d and 2d samples, where

d is the number of parameters to optimise in parallel (see fig. 4.8). The

best parameter set is chosen and a new grid with doubled resolution and

halved range is centered around it. Repeating this procedure results in a

robust and fast parameter selection. The parameter, derived by grid search

and DOE-base search, may differ significantly, whereas the qualities of the

corresponding learning machines are nearly equal. This confirms that the

quality measure has normally many local optima.

4.4.5 Outlier Reduction

Allthough the support vector machine is lesser affected by outliers than other

machine learning algorithms, the problem may occur that many outliers in-

crease the number of support vectors significantly. Thus, methods to reduce

the number of support vectors are desired.

A simple but effective way is to first train the SVM on the whole training

set. After having calculated the residuals, the 90th percentile is discarded,

and the SVM gets trained again on the reduced training set.

Downs et al. [3] proposed a method for exact simplification of support

vector solutions. They identified and discarded those support vectors that

were linearly dependent on other support vectors and updated the involved

Lagrangian multipliers. The largest reduction of support vectors was pos-

sible for RBF kernels with large standard deviation and polynomial kernels

with low degree. In some regression problems, up to 40% of the initial sup-

port vectors could be omitted without any loss of accuracy. Apparently,

linear dependency of support vectors really occurs in practice.

4.4.6 MinOver Optimisation

So far, optimisation strategies have been discussed that do not take the par-

ticular structure of MinOver into account. An optimised version of MinOver

for classification has been discussed in [9]. Now, the optimisation techniques

will be generalised for SoftDoubleMinOver in the regression case. Starting

with the algorithm in fig. 4.4, the computationally expensive parts are:

60 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

Input:

(xi, yi, vi), i ∈ {1, . . . , l} — training patterns and margin weights

ε, C, tmax — allowed error, softness, number of learning steps

Output:

α, b — Lagrangian multipliers and bias

initialise vector of Lagrangian multipliers α to 0

initialise vector of estimates for training patterns s to 0

initialise kernel cache H to 0

initialise cache pointers p to 0

forall t← 1, . . . , tmax do
calculate residuals by r← s− y

determine vectors imin = arg mini(ri) and imax = arg maxi(ri)

if (rimin − rimax) > 2ε then

forall i ∈ {imin, imax} do
determine cache line pi

if i is not cached then
delete a cache line if necessary

set cache pointer pi to free cache line

set cache line Hpi to (K (x1,xpi) , . . . ,K (xl,xpi))
end

update estimates s← s + 1
t · HT

pimin
− 1

t · HT
pimax

update estimate simin ← simin + 1
t ·C

update estimate simax ← simax − 1
t ·C

αimin ← αimin + 1
t

αimax ← αimax − 1
t

else
terminate

end

end

determine bias by b← 1
2(rimin + rimax)

Figure 4.9: Optimised variant of SoftDoubleMinOver. The concept of a

kernel cache and the optimised evaluation of the regression function can be

incorporated into all mutations of MinOver.

4.4. IMPLEMENTATION ISSUES 61

1. The evaluation of the kernel function has to be repeated many times.

In the worst case large parts of the kernel Matrix (K(xi, xj))
l
i,j=1 have

to be recalculated during each learning step. As mentioned in previous

sections, the complete storage of the kernel matrix in the working

memory is not feasible for large training sets. So, a method is needed

to minimise the number of kernel evaluations and to limit the memory

footprint.

2. During each learning step the sum of weighted kernels is recalculated

in order to get the residuals. However, only two weights differ between

consecutive steps, so that the evaluation of the regression function can

indeed be optimised.

3. Another expensive step is the determination of the minimal and the

maximal residual. Both values have to be recalculated during each

learning step, because all residuals may change within one iteration.

Optimised Evaluation of the Regression Function

The residual ri for an arbitrary input vector xi is determined by

ri =
l∑

j=1

(αjK(xi,xj)) +
αi

C
− yi − b.

The bias b does not depend on the training pattern, hence it is omitted

during the learning process:

ri =
l∑

j=1

αjK (xi,xj)− yi

= si − yi.

The number of arithmetic operations scales like O
(
tmax · l2

)
. Within every

iteration step only the two Lagrangian multipliers αimin and αimax are mod-

ified. So, by storing the sums s1, . . . , sl within every step, they only have to

be updated by

si = si +
1
t

(
1 +

δi imin

C

)
K (ximin ,xi)

− 1
t

(
1 +

δi imax

C

)
K (ximax ,xi) .

62 CHAPTER 4. TRAINING OF SUPPORT VECTOR MACHINES

Initialising the sums with 0 and applying the above iteration procedure will

reduce the number of operations to O (tmax · l). In order to avoid numerical

errors, the complete sum should be recalculated after a fixed number of steps

T . Selection of a large T , e.g. 1000, will not change the runtime significantly.

Kernel Caching

In general, the solution of a support vector machine only consists of a few

support vectors. After a certain number of learning steps the SoftDoubleMi-

nOver algorithm will only modify a small set of Lagrangian multipliers, and

therefore only a few kernel values will be accessed again and again to eval-

uate the above sum.

The kernel function values that had already been evaluated are stored for

later reuse in the kernel cache H, consisting of h lines, each with l entries.

Additionally, a vector p contains a pointer to the corresponding cache line

for each training pattern. The pseudo cache line 0 indicates that no line has

been cached for this pattern.

Hpi,j = K(xpi ,xj)

If there is no free cache line, a replacement algorithm discards one of the

cache lines and replaces it by the new one. Common replacement algorithms

are Random, Least Recently Used or First-In First-Out. A good choice for

the cache size h would be the number of support vectors to keep the memory

footprint small and to achieve a good speedup. Since the number of sup-

port vectors is not known in advance, h has to be determined experimentally.

Forgetting Rules and Prior Knowledge

The mentioned concepts can be applied in a straight-forward manner to the

SoftDoubleMaxMinOver algorithm to achieve the benefits of a forgetting

rule. Whenever the kernel function values of a vector are needed — either to

amplify or reduce the influence of a support vector — they are stored in the

kernel cache. After an αi was set to 0 the corresponding cache line is freed.

The sums are updated analogously to the SoftDoubleMinOver algorithm.

4.4. IMPLEMENTATION ISSUES 63

The incorporation of prior knowledge via pseudo-training sets and a margin

weight v does not affect these techniques. The kernel cache and the sum of

weighted kernel values can be administrated in the same way as before.

The SoftDoubleMinOver algorithm with kernel caching and the opti-

mised evaluation of the regression function is shown in fig. 4.9. The imple-

mentation of other mutations of MinOver is straight-forward. In total, the

number of operations scales like O (tmax · l); the memory footprint depends

mostly on the size of the kernel cache and scales like O (h · l).

Chapter 5

Application to a Hot Rolling

Mill

The mathematical foundations for machine learning theory are well under-

stood, convergence proofs can be given and equations for upper bounds of

the generalisation error exist. But the practical relevance of these methods

can only be evaluated by applying them to a variety of different problems.

In the case of the blooming train the input variables are noisy and only

very few sensory inputs are actually available. First, the data streams from

different sources are associated and the relevant features are extracted for

each single pass. The utilisable features are selected and plausibility checks

discard improper data. A 2-layer architecture for regression estimation is

introduced to incorporate prior knowledge and to allow local adaptations.

Details about the implementation and integration of the core learning

algorithm and the automisation framework at the rolling mill will conclude

the chapter.

5.1 Feature Extraction

Before the regression estimators for force, torque, spread, and reduction can

be trained, a sufficient number of training vectors needs to be extracted from

the core data that is stored by the material tracking system.

65

66 CHAPTER 5. APPLICATION TO A HOT ROLLING MILL

Feature
Extraction
(Matlab)

Material Table

Data Files
(CSV format)

Data Files
(proprietary

format)

Process Data
Acquisition

Pass
Number

Groove
Number

Roll
Clearance

Rolling
Force

Rolling
Torque

Database
(CSV format)

Database
(proprietary

format)

Workpiece
Database
Server

Material
Number

Pass
Schedule

Furnace
Temperature

Furnace
Residence

Time

Radiation
Time

Spread
Formula

Figure 5.1: Association of different data sources.

5.1.1 Process Data Acquisition

The process data at the blooming train, obtained by various digital and

analogue sensors, is processed and stored by the Process Data Acquistion

(PDA) workstation. For each slab a new data file is generated, labelled with

a unique identifier — the so-called working plan number. Additional infor-

mation, such as material, pass schedule, and furnace temperature, is stored

in a workpiece database. The PDA and the workpiece database use pro-

prietary file formates, which first are extracted to comma-separated values.

Then, a Matlab function combines information from data files and database,

5.1. FEATURE EXTRACTION 67

Material number DIN label High-temperature strength

1.2343 X38CrMoV5 1 2.08

1.2344 X40CrMoV5 1 2.38

1.2360 X48CrMoV8-1-1 2.22

1.2390 X32CrMoV4 1 1.85

1.2394 X32CrMoV4 2 1.99

1.2397 32MoCrNi20 4 2 1.76

1.2419 105WCr6 1.77

1.2510 100MnCrW4 2.15

1.2690 X29CrMoW6 1 1 2.12

1.2703 74NiCr2 1.49

1.2704 74NiCr4 1.40

1.2791 D6A (48CrMoNi49) 1.65

1.2795 65NiCrMo3 2 1.54

Figure 5.2: Example of the material table. The material number uniquely

identifies the DIN label and a value for the high-temperature strength.

and extracts a feature vector for each pass (see fig. 5.1).

5.1.2 Material

The material property that influences the rolling process the most is the

high-temperature strength — a measure for the hardness of the material at

the rolling temperature.

Each steel grade is identified by a unique material number according to

common industrial standards. All slabs with the same chemical composition,

and therefore the same material number, have identical high-temperature

strengths. The available hardness testing methods, such as Vickers hardness

test or the Rockwell scale, are based on the ability of the material to resist

indentation from a standard source. The particular measuring method at

Buderus is confidential, but a lookup-table of 170 material numbers and

corresponding high-temperature strength values was provided (see fig. 5.2).

Buderus certifies that these values are reproducible and do not vary among

different charges.

68 CHAPTER 5. APPLICATION TO A HOT ROLLING MILL

5.1.3 Groove and Pass Number

The groove number not only determines the shape of the workpiece, but it

influences also the occuring forces. A lot of parameters would have to be

introduced to describe the shape of the groove in total, but since only 5

grooves are available, the groove number is used for simplicity.

Throughout the rolling process the current groove number and the pass

number are recorded by the process data acquisition at a resolution of 10 ms.

5.1.4 Workpiece Dimensions

In geometric terms the slab is a frustrum. During each pass the volume

of this frustrum remains the same while thickness is reduced and width is

increased. In practice, the geometry of head and foot are different for the

first six passes. So, for training the mean values of thickness and width will

be used. By modelling the geometry of the slab and its deformation during

each pass, these mean values are derived by the following procedure:

1. Determine the initial geometry of the slab’s head (h0 and w0) by the

pass schedule and append the missing foot dimensions (h0 and w0)

from a lookup-table (see fig. 2.1).

Unfortunately, the data files delivered from the PDA do not contain

any information about the applied pass schedule and the entry dimen-

sions of the slab. However, this information is stored in the workpiece

database. Up to now, the schedule name contains only geometries, but

no information about the material. Two slabs with identical dimen-

sions but different high-temperature strength are rolled by the same

schedule. Thus, either the blooming train does not operate at full

capacity or the wear of the rolls is increased dramatically.

2. Set the entry dimension — entry thickness h0 and entry width w0 —

to the mean values of thickness and width respectively:

h0 =
1
2
(h0 + h0)w0 =

1
2
(w0 + w0)

3. Determine current groove g and roll clearance d from the data of the

current pass.

5.1. FEATURE EXTRACTION 69

4. Determine the sum s of groove depth and roll clearance. If the slab’s

head thickness is larger than s, set the new thickness to s. Proceed

the same way with the foot thickness.

5. Given the new thicknesses, calculate both width values of the slab.

Unfortunately, the exit width is not measured, so learning from ex-

amples to predict the spread is not feasible. But some approximation

formulas exist which yield a basic prediction of the spread, though

they do not take the material influence into account. According to lit-

erature [6], these formulas may only be applied to free spread and not

to bounded spread. Therefore, manual measurements were made to

determine a reliable spread approximation formula that also works for

bounded spread. However, the rolling mill crew measured only a few

workpieces this way, because of the unacceptable working conditions

near the hot slab. Besides, this procedure extends the rolling time,

and thus influences the temperature of the slab. So, this method gives

only a rough estimate of the spreading process.

6. Set the exit dimensions — exit thickness h1 and exit width w1 — to

the mean values of thickness and width respectively.

7. If the slab is tilted after the pass, swap thickness and width of the

model.

8. Continue with step 2 until no passes are left.

5.1.5 Furnace Temperature, Residence Time, and Radiation

Time

Besides the high-temperature strength, also the temperature distribution

within the slab is an important material parameter. This distribution can-

not be determined, as no sensors may be placed inside the workpiece. An

approach to approximate the inner temperature distribution is to measure

furnace residence time, furnace temperature, and radiation time.

The furnace residence time takes values between 10 and 80 hours. The

longer the workpiece is heated, the more likely it has an equally distributed

temperature, which would be best for the rolling process.

70 CHAPTER 5. APPLICATION TO A HOT ROLLING MILL

Rolling
Torque

Frequency

τ0 τ1

τ1

90th percentile

Time

Rolling
Torque

1 pass

Figure 5.3: Extraction of rolling torque value.

The regular furnace temperature is about 1200 to 1300 ◦C, but varies

with the filling degree of the furnace and the material of the workpieces.

The radiation time of a workpiece describes the time elapsed since the

furnace exit. With increasing radiation time the workpiece will cool down,

and the hardness will increase so that the rolling torque and force values

will be larger. Experience shows that the mean temperature loss of the

workpiece is about 0.2 ◦C/s. A temperature reduction of 100 ◦C causes an

increase in hardness of 40 %. However, this gives only a very rough estimate

of the real situation.

All three temperature-affecting parameters can be obtained directly from

the workpiece database.

5.1.6 Rolling Torque

The rolling torque measuring device determines the tension and compression

of the axis on which the rolls are mounted as an integer value with a resolu-

tion of 10 ms. This method is affected by temperature drift and vibrations

so that large variances occur. The following procedure compresses the many

5.1. FEATURE EXTRACTION 71

hundred torque values during one pass to a single value that best describes

the largest value that is not an outlier.

1. Looking at the processing time of a whole slab, the entire rolling time is

very short. During the remaining time — necessary for tilting, moving

and reversing the slab — only an idle rolling torque is measured. In

order to determine the periods of rolling, all intervals with idle rolling

torque must be identified.

First, the most frequent rolling torque value τ0 within a complete

rolling procedure is determined. The threshold between idle and non-

idle is set to τ1 = 2τ0 for all passes within this data file (see fig. 5.3).

2. Within each pass the longest continuous interval with rolling torque

values larger than the threshold is detected. Short intervals with a du-

ration of less than 200 ms are discarded, as passes always take longer.

3. The 90th percentile of the up to 500 values in the remaining interval

is selected as the rolling torque value of the current pass.

5.1.7 Rolling Force

The rolling force can be measured in three different ways:

1. The rolling force can be determined via the rolling torque according to

equation (2.2). Since the rolling torque is strongly affected by noise,

this should only be done when no force measurement device is avail-

able.

2. Strain gauges to measure the rolling force are mounted at the stand of

the rolls, but they own the same disadvantages as the torque measure-

ment. Additionally, these strain gauges are susceptible to damages

during the weekly roll change.

3. The probably most accurate and robust measuring technique uses load

cells and a complicated power transmission system. The only disad-

vantage of these load cells is the much longer reaction time in relation

to strain gauges.

72 CHAPTER 5. APPLICATION TO A HOT ROLLING MILL

F1

F2

Time

Rolling
Force

Time

Gradient

g−

g+

1st pass 2nd pass

Local maxima

Local minima

Figure 5.4: Extraction of rolling force values. The sequence between rising

and falling edge is determined by selecting adequate minima and maxima of

the gradient. Only those minima and maxima are selected which are below

or above the thresholds g− and g+ respectively to reduce the influence of

noise.

The first method was only used as long as no direct measuring devices

were installed, since it delivers no new information. The second method is

far too inaccurate because of various unpredictable influences on the sonsory

inputs. The following procedure determines a value that best describes the

maximal occuring rolling force across one pass, based on data obtained by

the load cells, again at a resolution of 10 ms. Suppose, the data, obtained

by the load cells at a resolution of 10 ms, is given by the series f .

5.1. FEATURE EXTRACTION 73

1. Determine the gradient-like series

g = f ∗

1 0 · · · 0︸ ︷︷ ︸
2k+1

−1

 (5.1)

with an apropriate k (≈ 5).

2. Detect all local maxima of g above a certain threshold g+ and all local

minima below a threshold g+.

3. Find the longest sequence within one pass that is enclosed by a maxi-

mum on the left and a minimum on the right (see fig. 5.4).

4. Determine the maximum value of f within this sequence. If the se-

quence is too short, set the maximum value to zero, since the pass was

probably an empty pass.

5.1.8 Determination of a Spread Formula

The relative spread of a workpiece is defined to be

C =
∆w

∆h
=

w1 − w0

h0 − h1
.

Since no continuous width measurements are available, approximation for-

mulas have to be used. A number of more or less complicated spread for-

mulas has been developed and used in practice [6], of which four will be

mentioned here:

∆w = k · ∆h with k = 0.35 (Geuze)

w1 = w0 +
∆h

6

√
2 · r

h0
(Tafel and Sedlaczek)

w1 = w0 +
w0
√

w0 · r∆h

3
(
w2

0 + h0h1

) (Tafel, Sedlaczek, and Emicke)

w1 = w0

(
h0

h1

)W

with W = 10−1.269
“

w0
h0

”“
h0
2r

”0.556

(Wusatowski)

74 CHAPTER 5. APPLICATION TO A HOT ROLLING MILL

Mean spread = 0.363,
RMSE=0.050

Groove filling percentage

M
ea

su
re

d
sp

re
ad

Tafel/Sedlaczek,
RMSE=0.105

Calculated spread

M
ea

su
re

d
sp

re
ad

Emicke,
RMSE=0.181

Calculated spread

Wusatowski,
RMSE=0.184

Calculated spread
0 0.25 0.50 0.25 0.50 0.25 0.5

0 0.25 0.5 0.75 1

0

0.25

0.5

0

0.25

0.5

0

0.25

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.5: Errors of different spread formulas. The top figure reveals that

the relative spread is nearly constant for different groove filling degrees.

There is no effect of bounded spread observable. The bottom figures show

the deviation of computed from measured spread for three formulas. In

general, these formulas predict a smaller spread than actually was observed.

The root mean square error (RMSE) specifies the numerical deviations.

Manual measurements of 6 blocks throughout the whole rolling process were

made and the effective spread was compared to the computed spread. Ac-

cording to the measurements, the relative spread at the blooming mill is

nearly constant for different entry widths. It became apparent that rolling

5.2. FEATURE SELECTION 75

with bounded spread has actually no observable effect on the maximum exit

width. The mean spread was 0.363, which is nearly the faktor k in the for-

mula of Geuze. All other formulas showed much larger errors (see fig. 5.5).

Often they predicted a significant smaller spread than was observed.

Thus, the spread is calculated using Geuze’s formula, after having deter-

mined entry and exit thickness by geometric means from the process data.

5.1.9 Plausibility Checks

The feature extraction provides a set V of vectors with 12 entries:

pass number

groove number

high-temperature strength

entry thickness

entry width

exit thickness

exit width

radiation time

furnace radiation time

furnace temperature

rolling torque

rolling force



=



p

g

α

h0

w0

h1

w1

trad

tfurn

T

τ

F


This set also contains vectors that are not suitable for learning. Data

of passes that violate the constraints described in section 2.4 should be

discarded to avoid confusion of the learning machine. So, feature vectors

where at least one value violates the predefined ranges or constraints were

discarded as well as vectors that describe empty passes.

5.2 Feature Selection

Now, as the features have been extracted, we have to determine which of

them are suitable for the learning task, and which have to be discarded. At

least the global tendencies are known for all input variables. For example,

76 CHAPTER 5. APPLICATION TO A HOT ROLLING MILL

with increasing radiation time, the slab cools down and hardness increases

which finally should require greater rolling torque.

Whenever an input variable has no observable influence on the output

or the sensory inputs contradict the prior knowledge, it would be better not

to use this variable to keep the estimators robust.

5.2.1 Temperature-Affecting Parameters

The influence of furnace temperature, furnace residence time, and radiation

time on the rolling torque will now be further investigated. It is clear that

these parameters have an influence, but it is unknown whether the current

measuring techniques are accurate enough to detect these effects. With

increasing furnace temperature and residence time the rolling torque within

the first pass should decrease. In contrast, a long radiation time should

lead to larger rolling torque values. In the following, these influences will

be quantified. To avoid the effect of the rolling process on the temperature,

only inputs derived from the first pass of each slab were analysed.

Furnace residence time [h]

D
ev

ia
ti

on
fr

om
m

ea
n

ro
ll
in

g
to

rq
u
e

0 20 40 60 80 100 120

-2

-1

0

1

2

Figure 5.6: Influence of furnace residence time on the rolling torque. Each

dot indicates the deviation from the mean rolling torque (of all slabs with

the same material and scheduling parameters) within the first pass. The

deviation is measured in multiples of the standard deviation. Additionally,

the line of best fit is shown.

5.2. FEATURE SELECTION 77

Radiation time [s]

D
ev

ia
ti

on
fr

om
m

ea
n

ro
ll
in

g
to

rq
u
e

0 200 400 600 800 1000
-2

-1

0

1

2

Figure 5.7: Influence of radiation time on the rolling torque. Again, the

deviation from the mean rolling torque and the line of best fit are shown.

First, for each combination of pass schedule and material number the

mean rolling torque value was determined. Systematic deviations from this

mean rolling torque, when changing only one input variable, would indicate

that this input indeed has an effect.

For analysing the furnace residence time, all input vectors with the most

frequent furnace temperature (1300 ◦C ≤ T ≤ 1305 ◦C) and radiation time

(300 s ≤ trad ≤ 360 s) were used. These intervals were kept as small as

possible, so that temperature and radiation time can be considered to be

equal for all input vectors. With increasing furnace residence time the rolling

torque does not significantly deviate from the mean, although the linear least

squares regression line shows a slightly negative gradient (see fig. 5.6). Using

other furnace temperatures and radiation times does not help to find any

tendencies.

Next, the radiation time of the feature vectors with the most frequent

furnace temperature and furnace residence time (10 h ≤ tfurn ≤ 12 h) was

plotted against their deviation from the mean rolling torque. As proposed,

the necessary rolling torque increases with rising radiation time (see fig. 5.7).

78 CHAPTER 5. APPLICATION TO A HOT ROLLING MILL

Temperature [◦C]D
ev

ia
ti

on
fr

om
m

ea
n

ro
ll
in

g
to

rq
u
e

1240 1260 1280 1300 1320

-2

-1

0

1

2

Figure 5.8: Influence of furnace temperature on the rolling torque. Again,

the deviation from the mean rolling torque and the line of best fit are shown.

But there is no significant dependency because omitting only a few data

points leads to a negative gradient.

The third parameter — the furnace temperature — was plotted against

the deviation from the mean torque for the most frequent residence and

radiation times. Again, there was no significant dependency observable (see

fig. 5.8).

All three temperature affecting parameters seemed to influence the rolling

torque slightly but the effects were not significant. Thus, the parameters

were discarded and a preprocessing step was introduced. As described above,

the mean temperature loss is about 0.2 ◦C/s, and a temperature loss of

100 ◦C increases the high-temperature strength by about 40%. The follow-

ing formula is used to approximate the modified high-temperature strength:

α′ = α ·

(
0.2 ·

0.4
100

· trad + 1
)

= α · (0.0008 · trad + 1) .

5.2.2 The Training Sets

Unfortunately, the number of available sensory inputs is very limited and

some of the inputs — all temperature-affecting parameters — are not usable.

5.3. TWO APPROXIMATION LAYERS 79

As the groove number is a discrete parameter for which no intuitive

order exists, it does not make sense to use it on a continuous scale. Thus,

for every groove a set of estimators is trained. Thus, the pass schedule

calculator needs four different sets of estimators:

1. The rolling torque, necessary to achieve a certain thickness reduction,

has to be predicted without knowing the rolling force. Thus, the train-

ing set

Dτ,g =
{

(xi, yi)
∣∣∣∣xi =

(
α(i) w

(i)
0 ∆h(i)

)T
, yi = τ (i), g(i) = g

}
will be used for groove number g. Again, ∆h(i) = h

(i)
0 − h

(i)
1 is the

thickness reduction.

2. The same features are used to predict the rolling force without knowl-

edge about the rolling torque.

DF,g =
{

(xi, yi)
∣∣∣∣xi =

(
α(i) w

(i)
0 ∆h(i)

)T
, yi = F (i), g(i) = g

}
3. Vice versa, the thickness reduction can either be determined via rolling

torque or rolling force.

D∆h(F),g =
{

(xi, yi)
∣∣∣∣xi =

(
α(i) w

(i)
0 F (i)

)T
, yi = ∆h(i), g(i) = g

}

D∆h(τ),g =
{

(xi, yi)
∣∣∣∣xi =

(
α(i) w

(i)
0 τ (i)

)T
, yi = ∆h(i), g(i) = g

}
So, each training set consists of three-dimensional input vectors and

a corresponding output value. Additionally, all input dimensions and the

output value are scaled to [0, 1] by dividing each variable by the maximum.

5.3 Two Approximation Layers

A major problem when using neural networks or support vector machines

for regression estimation is the behaviour in regions where sparse or no data

is available. The regression function may lead to very good results in areas

80 CHAPTER 5. APPLICATION TO A HOT ROLLING MILL

where lots of training points are available, whereas it might show chaotic

behaviour in all other areas. At the blooming train, the predictors should

yield at least the correct tendencies for areas without any data points. The

tendencies are derived from prior knowledge. Therefore, two approximation

layers are constructed by the following procedure:

1. Determine a monotonic regression function fsimple(x) that minimises

the mean squared error as a global approximation.

The reason for monotonicity is the following prior knowledge about the

physical dependencies of the input variables. Expansion of equations

(2.1) and (2.2) leads to the following approximations:

F = krm · Ac

= krm(α) · ld · b

≈ krm(α) ·

√
r · ∆h ·

w0 + 2w1

3

τ = 2 · a · ld · F

≈ 2 · a · krm(α) · r · ∆h ·

w0 + 2w1

3

The mean deformation resistance krm increases strictly monotonically,

thus, F and τ are strictly monotonically increasing with respect to ∆h,

α, and w0. Thickness reduction ∆h increases strictly monotonically

with respect to F (or τ) while decreasing strictly monotonically with

respect to α and w0. In detail, the monotonic regression functions

were:

fF,simple(α, w0,∆h) = c · α · w0 ·

√
∆h

fτ,simple(α, w0,∆h) = c · α · w0 · ∆h

f∆h(F),simple(α, w0, F) = c ·

(
F

α · w0

)2

f∆h(τ),simple(α, w0, τ) = c ·

τ

α · w0

5.3. TWO APPROXIMATION LAYERS 81

Figure 5.9: Simple approximation (first groove). Each ball represents one

pass; the colors indicate high (yellow) or low (red) rolling torque values.

The least-squares solution of the simple equation fsimple = c · α · ∆h · w0 for

α = 1.31 (top) predicts the correct tendencies, allthough the residuals are

rather large (bottom).

82 CHAPTER 5. APPLICATION TO A HOT ROLLING MILL

Figure 5.10: Reducing the residuals by support vector regression. A support

vector machine with Gaussian kernels is trained on the residuals (top), then

both approximations are added (bottom).

5.3. TWO APPROXIMATION LAYERS 83

Because all input parameters are greater or equal to zero, the prior

knowledge about F being proportional to
√

∆h (see equation (5.2))

can be incorporated into fF,simple and f∆h(F),simple (see fig. 5.9).

2. Augment the training sets by pseudo-data points to incorporate more

prior knowledge.

In this case, prior information is required to pull the regression surface

to zero when certain input variables are zero:

∆h = 0 ⇔ F = 0

∆h = 0 ⇔ τ = 0

w0 = 0 ⇒ F = 0

w0 = 0 ⇒ τ = 0

Therefore, pseudo-data sets are introduced for each output variable,

groove number. When estimating the rolling force, an appropriate

data set would be:

D+
F,g =

{(
(α w0 0)T , 0

) ∣∣∣∣α, w0 = 0,
1
t
, . . . , 1

}
∪{(

(α 0 ∆h)T , 0
) ∣∣∣∣α, ∆h = 0,

1
t
, . . . , 1

}
The number t of steps for each dimension must not be too large, so

that the number of pseudo-data points is small related to the number

of all data points. A value of t = 10 is a good choice when dealing with

a few thousand data points. All other data sets are constructed analo-

gously and the original data sets are augmented by their corresponding

pseudo-data sets.

3. Determine the residuals of the simple approximation by subtracting

fsimple(xi) from the output values yi:

y′i = yi − fsimple(xi) ∀xi ∈ D

This results in a modified training set D′ = {(xi, y
′
i)|}.

4. Determine the regression function fsvm(x) for the modified training

set by a support vector machine with Gaussian kernels. The usage of

84 CHAPTER 5. APPLICATION TO A HOT ROLLING MILL

Gaussian kernels ensures that this regression function differs from zero

only in the proximity of training points. Beyond this proximity the

regression function is zero (see fig. 5.10).

Additionally, a data-dependent ε is applied to weight pseudo-data

points by a larger amount than other points. This ensures the re-

gression function to address more importance to prior knowledge.

5. Combine both regression functions to the overall approximation

f(x) = fsimple(x) + fsvm(x).

Advantages of this 2-step approximation are the simple incorporation

of prior knowledge and the prevention of unpredictable global behaviour of

the regression function. First, a simple global approximation is derived by

incorporating prior knowledge. In this case, monotonic functions were used

to describe the general behaviour according to the physics of longitudinal

rolling. Within other applications, the derivation of prior knowledge may

be totally different, but can be incorporated in the same way as long as a

simple representation exists.

The application of a support vector machine with Gaussian kernels to

the residuals of the first approximation ensures that only in regions with

high training data density the global approximation is affected. In all other

regions no modifications are made to the simple regression function.

5.4 Implementation

Feature extraction and the training procedures were implemented in Matlab,

as well as the validation algorithms. The simple approximation fsimple was

determined by the common least-squares approach with help of QR decom-

position, while the SoftDoubleMinOver algorithm with kernel caching was

used to determine fsvm. The obtained coefficients, support vectors, weights

and parameters were exported to a plain text file. The steering of the rolling

mill is implemented in ibaLogic, a graphical programming tool for signal

processing and automisation. The single components have to be available

as dynamically linked libraries for Microsoft Windows. Therefore, a C++

5.4. IMPLEMENTATION 85

implementation for evaluation of the regression function was programmed,

which also contains parsing routines to import the obtained support vec-

tors and additional parameters. This library was then integrated into the

pass schedule calculator framework, together with the implementation of

the rolling strategy and various signal processing components to process the

sensory inputs.

All components were tested on a simulation of the hot rolling mill and

finally installed at Buderus.

Chapter 6

Results

A series of novel concepts has been introduced in the preceding chapters

to use the support vector machine for prediction of rolling mill parameters.

The 2-level approach and pseudo-data sets were proposed to incorporate

prior knowledge to the MinOver algorithm for regression. The algorithm

was further extended by kernel caching and an optimised evaluation of the

regression function so that it scales linearly with the number of training

patterns and learning steps.

Now, the optimal training parameters are selected by grid search and

the quality of estimation is evaluated numerically. A runtime analysis and

first experiences with the implementation of the pass schedule calculator at

Buderus will conclude the chapter.

6.1 Parameter Selection

The support vector machine minimises the error according to the ε-insensi-

tive loss function for each particular set of parameters ε, C and σ.

A quality criterion is needed to select the optimal parameter set among

all parameter sets within a specific range. Frequently used quality measures

are:

Mean Absolute Percentage Error (MAPE)

1
P

P∑
i=1

∣∣∣∣yi − f(xi)
yi

∣∣∣∣ · 100%

87

88 CHAPTER 6. RESULTS

The MAPE is an intuitive measure to derive the mean percentual

deviation of the approximation from the observation.

Root Mean Square Error (RMSE)√√√√ 1
P

P∑
i=1

(yi − f(xi))
2

In contrast to the MAPE, the deviation is squared, so that large de-

viations are much more important than small ones.

Root Mean Square Percentage (RMSP)√√√√ 1
P

P∑
i=1

(yi − f(xi))
2

y2
i

· 100%

The RMSP is the normalised version of the RMSE.

The following analysis is based on process data recorded during one

month at the blooming train of Buderus. About 6300 workpieces were rolled

within this period. Unfortunately, a large percentage of the data cannot

be used for training, as necessary information such as high-temperature

strength is not available for each single workpiece. Broken sensors as well

as the mentioned plausibility checks further reduce the number of training

data points so that only data from 4000 passes remained for training.

Now, the optimal parameter sets — according to the quality criteria

above — were estimated for each groove and output variable by 10-fold

cross validation on a grid with 1000 nodes (C = 10−4, 10−3, . . . , 105, ε =

2−5.5, 2−5, . . . , 2−1, σ = 2−7, 2−6, . . . , 22). Obviously, there exist local min-

ima (see fig. 6.1) and the grid node with least error is not necessarily the

global minimum on the continuous scale. So, further refinement of the grid

could yield better parameter sets. As the error varies by a large amount, an

automatic parameter selection is absolutely necessary.

Evaluating all grid searches for all output variables (see figs. 6.2, 6.3, and

6.4) demonstrates that the usage of the support vector machine significantly

reduces the validation error — no matter which type of error model is used.

When predicting thickness reduction, the validation error is reduced by up to

6.1. PARAMETER SELECTION 89

ǫ
C

σ

0.022
0.044

0.088
0.18

0.35

25

30

35

40

45

50

0.0001
0.01

1
100

10000

0.0078125

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

2

4

Figure 6.1: Example of grid search. The evaluation of the MAPE (torque

estimator, groove 1) for each parameter combination by 10-fold cross val-

idation shows that local minima exist. Numerically, the smallest error is

achieved when using C = 1, ε = 0.044 and σ = 0.25, but many other pa-

rameter sets yield nearly the same error (dark red areas). On the whole grid

the error varies between 20 and 55 %.

90 CHAPTER 6. RESULTS

Groove MAPE RMSE RMSP

Simple SVM Simple SVM Simple SVM

1 25.78 20.24 112.20 93.24 43.53 30.81

2 16.01 12.44 137.69 99.98 19.76 14.98

3 12.74 9.90 57.55 40.15 15.64 12.22

4 19.86 12.64 73.85 40.38 24.97 15.64

5 19.10 14.58 94.64 59.55 23.99 17.61

(a) Rolling torque prediction

Groove MAPE RMSE RMSP

Simple SVM Simple SVM Simple SVM

1 28.73 19.07 755.35 588.39 51.19 29.94

2 16.24 12.52 650.09 462.67 19.74 14.76

3 12.42 9.74 312.37 220.61 15.42 11.62

4 18.39 11.65 418.17 224.06 24.06 14.15

5 19.68 15.35 661.53 416.65 24.79 18.86

(b) Rolling force prediction

Figure 6.2: Results of 10-fold cross validation on a 10-by-10-by-10 grid.

The RMSE should be interpreted in relation to the particular ranges

(torque: 0, . . . , 1400 kNm, force: 0, . . . , 9000 kN).

75% and in most cases the resulting errors are between 10 and 20%. As the

accuracy of the current measuring techniques for rolling torque and rolling

force is about 15%, this is nearly an optimal result.

The remaining errors may be explained by numerous inaccuracies during

process data acquisition and by unavailable input variables. The temper-

ature of the workpiece is not measured and also the indirect temperature

prediction technique — with help of radiation time, furnace residence time,

and furnace temperature — fails due to the facts presented in 5.2.1. An

irregular temperature distribution in the workpiece mostly affects the first

passes and therefore the prediction capabilities in the first groove. Thus, the

prediction errors for rolling torque and force are largest in the first groove.

6.1. PARAMETER SELECTION 91

Groove MAPE RMSE RMSP

Simple SVM Simple SVM Simple SVM

1 18.13 10.43 8.26 6.62 24.08 13.40

2 15.48 6.22 15.20 6.62 18.65 9.05

3 12.92 5.43 9.85 4.06 15.75 6.60

4 21.56 17.49 13.75 10.40 29.76 23.12

5 18.52 9.14 9.35 4.13 22.53 10.27

(a) Prediction of thickness reduction by rolling torque

Groove MAPE RMSE RMSP

Simple SVM Simple SVM Simple SVM

1 35.16 15.98 16.72 9.37 43.26 22.26

2 32.01 9.60 30.71 9.44 37.41 12.70

3 26.76 6.87 19.83 5.10 31.80 8.66

4 42.96 21.58 26.21 13.72 60.88 30.55

5 36.79 11.95 17.90 6.02 43.87 15.37

(b) Prediction of thickness reduction by rolling force

Figure 6.3: Results of 10-fold cross validation on a 10-by-10-by-10 grid. The

RMSE should again be interpreted in relation to the range of the thickness

reduction (0, . . . , 85 mm).

Additionally, the much too simple spread approximation influences the

prediction errors indirectly. Starting with an initial entry width, the exit

width is determined by the spread equation of Geuze with an error of w′.

So, if the workpiece is tilted afterwards, the entry thickness of the next pass

is modified by w′ which leads to a modified assumed thickness reduction.

Thus, within each pass not only the rolling force and torque values are

subject to errors but also the thickness reduction.

Since different quality criteria were used, the best parameter set may

not be the same for each criterion — one has to be selected. In the scope

of this specific application the best parameters according to the MAPE

92 CHAPTER 6. RESULTS

1 2 3 4 5 1 2 3 4 5

MAPE

5

10

15

20

25

Rolling force Rolling torque

fsimple

fsvm + fsimple

1 2 3 4 5 1 2 3 4 5

MAPE

5

10

15

20

25

30

35

Thickness reduction
by rolling torque

Thickness reduction
by rolling force

Figure 6.4: Performance improvements with the 2-layer approach. The 2-

level approximation results in a MAPE between 10 and 20, whereas the

simple approximation without local adaptations by the support vector ma-

chine always produces much larger error rates.

6.2. RUNTIME ANALYSIS 93

are used, which is motivated by the different weighting of deviations by

the three criteria. The estimators tend to have larger relative errors for

small output values than for large output values. So, those quality criteria

that use the squared deviation, such as the RMSE and RMSP, attach too

much importance to low output values. However, the correct prediction for

large values is much more important, as wrong estimations will dramatically

increase the wear of the rolls. Despite of this, the optimal parameter sets

of the three quality criteria do not differ very much, i.e. the corresponding

grid nodes have short distance.

6.2 Runtime Analysis

The parameter selection for the learning machine is the most crucial step

with respect to time efficiency in the whole machine learning task (see

fig. 6.5). Format conversion and decompression as well as feature extrac-

tion and selection have to be done but once for each data file, while the

training and parameter selection has to be performed at regular intervals,

so that the learning machine will recognize a changed behaviour of the rolling

mill.

Step Runtime

Format conversions and decompression from pro-

prietary file formats to comma-separated values with

process data taken from one month

≈ 8 h

Feature extraction with Matlab functions ≈ 10 min

Feature selection and plausibility checks ≈ 1 min

Training with about 4000 data points and 10000

learning steps for a fixed set of parameters ε, C and σ

≈ 1 min

Grid search with 10-fold cross validation for 1000

nodes to estimate the optimal parameter set

≈ 65 h

Prediction of 400000 values, implemented in C++ ≈ 10 s

Figure 6.5: Runtime analysis. All calculations were made on an Intel Pen-

tium 4 with 3 GHz and 1 GB of working memory.

94 CHAPTER 6. RESULTS

One single training procedure of all four learning machines will only

take about one minute on a state-of-the-art computer with 3 GHz and 1 GB

of working memory, but using the proposed grid search and 10-fold cross

validation will last for nearly three days. In order to retrain the learning

machine periodically, there are various ways to improve the runtime.

1. The implementation of the Matlab routines in C will probably improve

runtime by a factor between 10 and 20, so that the above mentioned

grid search algorithm may take less than 5 hours. Thus, it would be

possible to retrain the learning machine every day with data from at

least one month.

2. The next step would be the implementation of an online learning al-

gorithm. It would no longer be necessary to retrain on the complete

data set, but only on the small set of all novel data points since that

last training. Such an online algorithm has the advantages of much

shorter runtime but training and validation will become more difficult.

Especially dememorisation should be done with care, in order not to

forget essential data points.

6.3 Experience with the Novel Pass Schedule Cal-

culator

The novel pass schedule calculator has not been in use long enough to quan-

tify the improvements derived by the introduced architecture and the use of

machine learning theory, but a number of observations concerning the new

system can already be mentioned here.

The design of new pass schedules for unconventional workpiece geometry

or new materials has been simplified by orders of magnitude. A pass schedule

is now generated automatically for each geometry and material and no longer

requires user interaction. This dramatically reduces development time.

The number of sensor defects as well as the mean time to repair is much

higher than was thought at the beginning of the project. Presently, the

6.3. EXPERIENCE 95

learning algorithms cannot learn anything from such fragmentary data vec-

tors and the preprocessing step will omit all those data points.

The prediction errors of rolling torque, force, and thickness reduction

were mostly within acceptable bounds. Although the estimation is only

based on a few input variables and strongly affected by noise, the generali-

sation capabilities are sufficient to be used in practice.

It became apparent that some of the predefined constraints, such as roll

bite angle or the upper bound of the thickness reduction, were too subjective.

The feeling what might be a good pass schedule differed widely between the

blooming mill operators. So, the number of manual changes to the pass

schedule during the rolling process increased because some operators did

not believe that the calculated values can be used in practice. They had

been working for decades with the former hand-crafted pass schedules and

a lot of convicing has to be done to introduce the novel schedules.

A thorough comparison of the novel pass scheduling system to similar

systems is quite difficult to achieve because no comparable systems exist.

Neural networks have been used in steel manufacturing for a long time, but

not at rolling mills with as few sensory inputs as at the blooming train.

So at the moment, automised pass schedule calculation with help of prede-

fined rolling strategies and regression estimation techniques to predict rolling

force, torque, and thickness reduction can be regarded as unrivalled.

Chapter 7

Discussion

The numerical results of the preceding chapter showed that even with few

and propably unconfident input parameters regression estimation with the

support vector machine is effective. In this case, effectiveness means that

errors close to the expected accuracy of the sensory inputs are achieved and

smaller errors compared to previous techniques. Although the process data

acquistion has to be improved, the results already show that the proposed

concepts work excellent in practice. Besides the simplification of the pass

schedule calculation also completely new application areas arise, such as

online recalculation.

Now a critical review of the applied techniques will follow and some novel

ideas on further work will be mentioned.

7.1 Incorporation of Prior Knowledge to MinOver

A major issue when dealing with regression estimation is an adequate and

simple incorporation of prior knowledge. In the scope of predicting values

at the hot rolling mill two different approaches were used. Either prior

knowledge is expressed by an explicit mapping or by single data points.

The explicit mapping takes a certain number of free parameters to be

determined by least-squares approximation. This concept is flexible, since

no restrictions to the mapping are made — not even all input variables

have to be used. The second step is to train a support vector machine

97

98 CHAPTER 7. DISCUSSION

with Gaussian kernels on the residuals of the first approximation. Thus, the

prior knowledge preserves the global tendencies, whereas the support vector

machine learns the local non-linearities.

Prior knowledge in the form of pseudo-data points can be incorporated

when no explicit mappings are known but only some high-confident data-

points. Then, the training set is augmented by these points and a data-

dependent ε-value is defined. By increasing the importance of pseudo-data

points the shape of regression surface is locally dominated by prior knowl-

edge points. This approach was implemented as an intuitive extension to

MinOver.

Once again, MinOver appeared to be extendable to more and more learn-

ing tasks in an intuitive way, that does not require complicated optimisation

techniques. In practice, the core learning algorithm for regression estimation

takes no more than 100 lines of code within a higher programming language.

Thus, especially in heavy industries where no dedicated machine learning

groups exist — such as steel manufacturing, the MinOver algorithm with its

different mutations is a user-friendly tool to establish artificial intelligence.

Further work should be done to reformulate the support vector machine,

so that arbitrary prior knowledge can be incorporated directly — by equal-

ities as well as by inequalites, information about monotonicity, local and

global extreme values or other mathematical properties.

7.2 Validation and Parameter Selection Methods

Unfortunately, the presented support-vector machine for regression takes

three parameters that have to be estimated by very time-consuming vali-

dation methods. No matter which type of parameter selection method is

used — grid search, pattern search, or combinations of both — they require

the training of hundreds to thousands of learning machines with the aim to

select but one of these machines. A more efficient way would be to include

those quality criteria that define the best learning machine already in the

entire training procedure. The drawback of this approach is the necessity to

reformulate the primal and dual representations of the support-vector ma-

7.2. VALIDATION AND PARAMETER SELECTION METHODS 99

chine for each novel quality criterion. This also demands modifications to a

training algorithm such as MinOver. Surely, it would be far too complicated

to design the algorithm each time by hand.

A novel approach would be to define a learning machine description lan-

guage. The learning task, quality criteria and prior knowledge could be

<svm task="regression estimation">
<input> x y z </input>
<knowledge>

x monotonically increasing
</knowledge>
<criterion>

minimise squared error
</criterion>

</svm>

SVM Parser

Maximisef(x, α, β)

Subject to
{

g(α)
h(β)

SVM Compiler

α← 0
foreach t ∈ {1, . . . , tmax} do

foreach i do
ri ←

∑l
j=1(αjK(xi,xj)+αi

C)−yi

end
...

end

Abstract definition:

Internal mathematical representation:

Training algorithm:

Figure 7.1: Concept of a learning machine compiler. After the abstract

definition of a learning machine is transformed into the mathematical rep-

resentation, the training algorithm is generated by the SVM-Compiler.

100 CHAPTER 7. DISCUSSION

stated as abstract definitions. These definitions are parsed and the mathe-

matical representation of the learning task is formulated as an optimisation

problem. Then, the SVM-Compiler generates the learning algorithm —

perhaps a variant of MinOver — in pseudo-code or any other programming

language. Thus, for each learning task an individually optimised training

algorithm could automatically be designed (see fig. 7.1).

With such a compiler the user would only have to state the type of

machine learning task and his prior knowledge about the problem. He would

not need to define how the machine should learn but what it should learn.

The common parameter selection methods are not only far too time-

consuming, but they are also far away from being robust. Pattern search

will only find local minima, while grid search not necessarily finds any locally

Parameter value

Error

p1

(global, unstable)

p2

(local, stable)

Figure 7.2: Stability of parameter selection methods. Allthough p2 does not

determine the global minimal point, it may be better to select p2 instead of

p1, since the variance in the neighbourhood of p2 is much lower than at the

global minimal point p1.

7.3. ONLINE LEARNING 101

optimal parameter set, as it works on a discrete grid. Both methods select

the parameter set that best fulfils the predefined quality criteria within the

search space. Thereby, no attention is paid to the variance of the quality

measure.

If the optimal set is located within an area of high variance, slight mod-

ifications of the training set may corrupt the generalisation capabilities sig-

nificantly. A robust learning algorithm should rather select the parameter

set within a region of low variance (see fig. 7.2). Thus, the parameter selec-

tion methods should be enhanced to find estimators that not only have high

quality but also low quality variance in their neighbourhood.

7.3 Online Learning

All the discussed learning algorithms are offline algorithms that have to be

retrained in certain intervals to ensure proper adaptation. This requires the

repetition of the whole learning algorithm — the parameter selection could

possibly be abbreviated, since large changes should normally not occur. Nev-

ertheless, an online algorithm that retrains the support vector machine as

soon as new data is available would yield better prediction capabilities and

have shorter reaction time. Online algorithms should have the ability to

dememorise information, but they should not demomorise essential infor-

mation. But this is a common problem when dealing with online adaption

— the learning machine may adapt to the data from the near past, but

forget everything about the distant past.

Again, approximation with different layers may be a solution. Starting

with an initial learning machine, trained with a handpicked high-confident

training set, offset learning machines may be trained in certain intervals on

the error derived by the first learning machine (see fig. 7.3). Each level tries

to reduce the error of the preceeding levels. To preserve former knowledge

the weighting of higher levels and the radius of the basis functions is reduced.

Thus, higher levels act more locally, while lower levels have global influences.

To decrease reaction time, the training intervals of the higher levels are

shortened (see fig. 7.3(a)).

102 CHAPTER 7. DISCUSSION

Initial 1st-Level
SVM

2nd-Level
SVM

3rd-Level
SVM

· · ·

Training intervalslong short

Radius of basis functionslarge small

Weighting of predictionlarger lower

(a) Layers of support vector machines

Installation

Maintenance (every weekend)

Roll change

Train
1st level

Train
2nd level

Retrain
2nd level

Train
3rd level Retrain 3rd level

· · ·· · ·

Lifetime of 1 set of rolls
(5 weeks)

1 day

1 week

(b) Example: Training of rolling mill predictors

Figure 7.3: An online-learning concept. A hierarchy of support vector ma-

chines is defined, each with a different training interval, basis function, and

weighting. In practice, the training interval should be linked to the differ-

ent maintenance intervals. So, the first day after the weekly maintenance is

used to collect data for training the third level. Data of the whole first week

after a roll change is used for training the second level. And the first level

is trained with a representative data set before the installation.

7.4. ROLLING STRATEGY 103

This concept can be further motivated by periodical maintenance inter-

vals in industrial applications. Whenever parts or the whole machine — in

this case the rolls of the rolling mill — are replaced, a new representative

data set is collected. When only small changes are made, the training can

be performed shortly after. But when the complete set of rolls is changed,

longer periods are needed to gain representative data sets (see fig. 7.3(b)).

7.4 Rolling Strategy

So far, the machine learning approach was only used for predicting values

of certain rolling mill sensors. The rolling strategy, i.e. the groove series, in-

termediate slab geometries, and tilting operations, is still selected statically.

A next step should be the appliance of intelligent search algorithms to

find an optimal rolling strategy. Therefore, more accurate definitions of

what is meant to be optimal are required. Some constraints, such as proper

aspect ratios, have already be defined. Others, such as shape constraints

and roll bite angles, need to be formalised more accurately.

The different slab geometries can be interpreted as nodes of a complex

network. Each pass that changes the geometry is represented by an edge

between two nodes. Now, exhaustive search algorithms such as Depth First

or Breadth First Search could be used to find the best rolling strategy that

converts the entry dimensions to the goal dimensions. One strategy may be

better than others if it requires less groove changes, less tilting operations,

or if it fulfils any other desired quality criterion.

The various geometry constraints limit the number of possible paths

through the network so that the above mentioned search algorithms may

be feasible in practice. Nevertheless, it would be much more efficient to use

more intelligent search algorithms such as genetic algorithms or simulated

annealing.

104 CHAPTER 7. DISCUSSION

7.5 Outlook

The cooperation with steel producing industry and automisation system

manufacturers showed that machine learning concepts cannot only optimise

production techniques but also simplify scheduling and planning of tasks. To

further improve the prediction of rolling mill parameters, the installation,

calibration, and continuous maintenance of new sensorical inputs is essen-

tial. The prediction capabilities should also be enhanced by online-learning

approaches — of special interest should be an online-variant of the MinOver

algorithm. Another major issue is the speedup of the core learning algo-

rithm not only to accelerate a single training procedure but also to enable

fine-grained grid or pattern search techniques for parameter selection.

Further optimisation of the rolling process at the blooming train would be

achieved by intelligent search techniques to derive optimal dynamic rolling

strategies.

Finally, there are numerous issues to deal with when making machine

learning user-friendly. Graphical user interfaces are needed that encapsulate

and hide the learning machine and its various parameters from the end user,

but allow him to select intuitively what has to be learned. A general learning

machine description language would enable a wider range of programmers

to incorporate artificial intelligence into their applications.

Glossary

billet Knüppel, Block

biting condition Greifbedingung

bloom Bramme, Block

blooming train Blockstraße

bounded spread beschränkte Breitung

cogging train Vorstraße

cold strip Kaltband

deformation resistance Formänderungswiderstand

drop forging Gesenkschmiedestück

drop forging press Gesenkschmiede

electric arc furnace Elektrolichtbogenofen

empty pass Leerstich

finishing train Fertigstraße

free spread freie Breitung

furnace residence time Ofenverweildauer

furnace temperature Ofenraumtemperatur

groove Kaliber

groove depth Kalibertiefe

groove width Kaliberbreite

high-temperature strength Warmfestigkeit

hot rolling mill Warmwalzstraße

105

106 GLOSSARY

hot strip Warmband

ingot Gussblock

ladle furnace Pfannenofen

length of contact arc gedrückte Länge

lever-arm coefficient Hebelarmbeiwert

pass Stich

pass schedule Stichplan

pass schedule calculator Stichplanrechner

projected contact area gedrückte Fläche

radiation time Abstrahlzeit

roll bite angle Greifwinkel

roll clearance Anstellung, Walzensprung

roll gap Walzspalt

rolling force Walzkraft

rolling speed Walzgeschwindigkeit

rolling strategy Walzstrategie

rolling torque Walzmoment

semi-finished steel Halbzeug

side guide Verschieber

slab Bramme, Block

spread Breitung

stand Gerüst

steel casting Stahlguss

thickness reduction Dickenabnahme

tilt kanten

tilting device Kanter

tilting operation Kantvorgang

Bibliography

[1] Noga Alon, Shai Ben-David, Nicolò Cesa-Bianchi, and David Haussler.

Scale-sensitive dimensions, uniform convergence, and learnability. J.

ACM, 44(4):615–631, 1997.

[2] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-

chine Learning, 20(3):273–297, 1995.

[3] Tom Downs, Kevin E. Gates, and Annette Masters. Exact simplification

of support vector solutions. Journal of Machine Learning Research,

2:293–297, 2001.

[4] Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. A

unified framework for regularization networks and support vector ma-

chines. Technical report, Cambridge, MA, USA, 1999.

[5] Simon Haykin. Neural Networks: A Comprehensive Foundation. Pren-

tice Hall PTR, Upper Saddle River, NJ, USA, 1998.

[6] Stefan Kern. Überarbeitung und Optimierung einer Blockstraßenkalib-

rierung. Master’s thesis, Institut für Bildsame Formgebung, Rheinisch-

Westfälische Technische Hochschule Aachen, 1997.

[7] Werner Krauth and Marc Mézard. Learning algorithms with optimal

stability in neural networks. J. Phys. A: Math. Gen., 20:745–752, 1987.

[8] Harold W. Kuhn and Albert W. Tucker. Nonlinear programming. In

Proceedings of the Second Berkeley Symposium on Mathematical Statis-

tics and Probability, pages 481–492. Berkeley, California, 1951.

107

108 BIBLIOGRAPHY

[9] Kai Labusch. MaxMinOver: Ein neues iteratives Verfahren zur

Supportvektor-Klassifikation mit Anwendungen in der Gesichtserken-

nung. Master’s thesis, University of Lübeck, 2004.

[10] Quoc V. Le, Alex J. Smola, and Thomas Gärtner. Simpler knowledge-

based support vector machines. In ICML ’06: Proceedings of the

23rd international conference on Machine learning, pages 521–528, New

York, NY, USA, 2006. ACM Press.

[11] Thomas Martinetz. MaxMinOver: A simple incremental learning pro-

cedure for support vector classification. In IEEE Proceedings of the In-

ternational Joint Conference on Neural Networks (IJCNN 2004), pages

2065–2070, Budapest, Hungary, 2004.

[12] Thomas Martinetz. MinOver revisited for incremental support-vector-

classification. In C.E. Rasmussen, H.H. Bülthoff, M. Giese, and

B. Schölkopf, editors, DAGM 2004, volume 3175 of LNCS, pages 187–

194. Springer-Verlag Berlin Heidelberg, 2004.

[13] Thomas Martinetz, Otto Gramckow, Peter Protzel, and Günter Sörgel.

Neuronale Netze zur Steuerung von Walzstraßen. atp - Automa-

tisierungstechnische Praxis, 10/96, 1996.

[14] Edgar Osuna, Robert Freund, and Federico Girosi. Improved training

algorithm for support vector machines, 1997.

[15] John Platt. Sequential minimal optimization: A fast algorithm for

training support vector machines. Technical Report MSR-TR-98-14,

Microsoft Research (MSR), April 1998.

[16] John Platt. Fast training of support vector machines using sequential

minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J.

Smola, editors, Advances in Kernel Methods — Support Vector Learn-

ing, pages 185–208, Cambridge, MA, 1999. MIT Press.

[17] Frank Rosenblatt. The perceptron: a probabilistic model for infor-

mation storage and organization in the brain. Psychological Review,

65:386–408, 1958.

BIBLIOGRAPHY 109

[18] Martin Schlang, Einar Broese, Björn Feldkeller, Otto Gramckow,

Michael Jansen, Thomas Poppe, Clemens Schäffner, and Günter Sörgel.

Neural networks for process control in steel manufacturing. In ICASSP

’97: Proceedings of the 1997 IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP ’97) -Volume 1, page 155,

Washington, DC, USA, 1997. IEEE Computer Society.

[19] Daniel Schneegaß. Der DoubleMaxMinOver Approach zur Bestimmung

der Support Vektoren bei Klassifikation und Regression mit Anwen-

dungen in der Prozessindustrie. Master’s thesis, Universität zu Lübeck,

2005.

[20] Daniel Schneegaß, Kai Labusch, and Thomas Martinetz. MaxMinOver

Regression: A Simple Incremental Approach for Support Vector Func-

tion Approximation. In Artificial Neural Networks - ICANN 2006,

pages 150–58, Berlin/Heidelberg, 2006. Springer.

[21] Carl Staelin. Parameter selection for support vector machines. Tech-

nical Report HPL-2002-354R1, Hewlett Packard Laboratories, Novem-

ber 19 2003.

[22] Vladimir N. Vapnik. Estimation of Dependences Based on Empirical

Data. Springer-Verlag, New York, 1982.

[23] Vladimir N. Vapnik. The Nature of Statistical Learning Theory (Infor-

mation Science and Statistics). Springer, November 1999.

[24] Vladimir N. Vapnik and Alexey Y. Chervonenkis. On the uniform con-

vergence of relative frequencies of events to their probabilities. Theory

of Probability and its Applications, 16(2):264–280, 1971.

[25] Vladimir N. Vapnik and Alexey Y. Chervonenkis. Necessary and suffi-

cient conditions for the uniform convergence of means to their expecta-

tions. Theory of Probability and its Applications, 26(3):532–553, 1982.

[26] Xiaoyun Wu and Rohini Srihari. Incorporating prior knowledge with

weighted margin support vector machines. In KDD’04, pages 326–333,

Seattle, Washington, August 2004.

	Introduction
	Problem Description
	The Hot Rolling Mill
	The Pass Schedule
	Basics of Longitudinal Rolling
	The Optimisation Problem
	Architecture of a Pass Schedule Calculator

	Learning from Examples
	Statistical Learning Theory
	Risk Minimisation
	Empirical Risk Minimisation
	Vapnik-Chervonenkis Dimension
	Structural Risk Minimisation

	Optimisation Theory
	Support Vector Machines
	Maximal Margin Classifier
	Introducing Nonlinearity --- the Idea of Kernels
	Support Vector Regression
	Incorporating Prior Knowledge

	Regularisation Theory
	A Generalised Framework for Function Estimation
	Neural Network, Regularisation, and the SVM

	Training of Support Vector Machines
	Quadratic Programming Toolboxes
	Iterative Learning Algorithms
	Rosenblatt's Perceptron
	Sequential Minimal Optimisation

	MinOver
	Classification
	Regression
	Forgetting with MaxMinOver
	SoftDoubleMinOver with Prior Knowledge

	Implementation Issues
	Chunking
	Decomposition
	Validation
	Parameter Selection
	Outlier Reduction
	MinOver Optimisation

	Application to a Hot Rolling Mill
	Feature Extraction
	Process Data Acquisition
	Material
	Groove and Pass Number
	Workpiece Dimensions
	Furnace Temperature, Residence Time, and Radiation Time
	Rolling Torque
	Rolling Force
	Determination of a Spread Formula
	Plausibility Checks

	Feature Selection
	Temperature-Affecting Parameters
	The Training Sets

	Two Approximation Layers
	Implementation

	Results
	Parameter Selection
	Runtime Analysis
	Experience

	Discussion
	Incorporation of Prior Knowledge to MinOver
	Validation and Parameter Selection Methods
	Online Learning
	Rolling Strategy
	Outlook

	Glossary
	Bibliography

