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Abstract. A Support-Vector-Machine (SVM) learns for given 2-class-
data a classifier that tries to achieve good generalisation by maximising
the minimal margin between the two classes. The performance can be
evaluated using cross-validation testing strategies. But in case of low
sample size data, high dimensionality might lead to strong side-effects
that can significantly bias the estimated performance of the classifier. On
simulated data, we illustrate the effects of high dimensionality for cross-
validation of both hard- and soft-margin SVMs. Based on the theoretical
proofs towards infinity we derive heuristics that can be easily used to
validate whether or not given data sets are subject to these constraints.

1 Introduction

Learning from examples in cases where many degrees of freedom but only few ex-
amples are available is commonly considered a challenging problem. Due to mas-
sively parallel data acquisition systems, such as microarray gene analysis [T2],
it easily happens that there are very few data points described by thousands
of features. In such cases, theoretical and practical issues such as generalisation
bounds, run-time, or memory-footprint considerations require sophisticated val-
idation methods to measure the performance of machine learning algorithms in
high-dimensional feature spaces.

Two commonly used methods in this context are support vector machines
(SVM, [3/4]) as a classification system and cross-validation (CV, [5]) as a val-
idation tool. Both methods are closely connected. Typically, when using the
SVM there is a tendency to increase the data dimensionality as the classifica-
tion problem is simplified in higher dimensions; on the other hand, CV is the
method of choice in scenarios with relatively few data points compared to the
dimensionality.

There is a well-known effect that if dimensionality is increased towards infinity,
a finite set of points will lose more and more of its spatial topology. In the limit,
the points will be located on the vertices of a regular simplex [6], i.e. all samples
have nearly the same distances to the origin as well as among each other, and they
are pairwise orthogonal. These properties were shown for multivariate standard
normal distributions with zero mean and identity covariance matrix but hold
under much weaker assumptions [7].
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Usually, the dimensionality will be finite, but we will show that even compar-
atively low dimensional data will behave as if being infinitely dimensional. So,
especially for low sample size data, infinity is rather small.

First, we show that the leave-one-out CV error for hard-margin SVMs will
approach 1 in high-dimensional feature spaces for equal-sized classes drawn from
the same distribution — despite the expected error rate of 0.5, which would be
the outcome for the same setting in low dimensions.

This first observation is generalised to two classes drawn from different dis-
tributions. Hall [6] showed that whenever these classes are too close together,
a hard-margin SVM will vote along the majority rule alone for a dimension to-
wards infinity. We will show empirically that this will occur even in quite finite
dimensions when the given sample size is small.

Finally, we show the soft-margin approach to make things even worse. One
might think that only simple hard-margin SVMs are prone to severe overfitting.
Soft-margin SVMs increase the margin to reduce the fat-shattering dimension
and should therefore reduce overfitting by allowing training errors. Unfortu-
nately, this does not increase the generalisation performance, again due to the
counterintuitive geometric properties of only few samples in high-dimensional
space and the asymmetries of a resampling scheme such as leave-one-out cross-
validation. In the soft-margin case infinity becomes even smaller.

It should be emphasised that especially dealing with high-dimensional but
small sample size data leads to various counterintuitive and unfamiliar side-
effects, which can significantly impact training and validation. In tasks such as
the analysis of genetic microarrays, practical and financial issues strictly limit the
maximum sample size but all the same rely on the analysis of high-dimensional
content. Therefore, we want to elucidate the constraints on dimensionality, sam-
ple size, and class distribution, which might help to make training with SVMs
still feasible in such scenarios.

2 Leave-One-Out and Hard-Margin SVM

Leave-one-out cross-validation is commonly used to estimate the generalisation
performance and to fine-tune training parameters for various machine learning
algorithms. The computational complexity limits the usage to small sample size
data, but there it is commonly regarded to give good approximations of the true
generalisation performance.

Still, it will fail in certain scenarios such as in the following example. Assume
a balanced two class random dataset, i.e. samples drawn from an arbitrary dis-
tribution with randomly assigned class labels. The best classifier for completely
random datasets is simply the majority voting rule [5]. Unfortunately, leave-
one-out cross-validation will indicate very poor performance, since the original
balanced dataset becomes unbalanced in each and every validation step. As the
left-out pattern reduces the size of one class, the majority classifier will always
vote for the other larger class, but the left-out pattern belongs to the smaller
class. Thus, the classifier will always vote wrong. This behaviour is independent
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of dimensionality or training set size but requires the prior knowledge of dealing
with completely random datasets.

In general, we do not have this knowledge and want to apply a generic classifi-
cation framework such as linear SVMs for separation. To examine this framework
in detail, we define a very simple unlearnable scenario with the training set

D = {xi,yi}i (1)

consisting of feature vectors x; € R? where each entry is drawn from the stan-
dard normal distribution and corresponding class labels y; € {—1, +1}. Without
loss of generality we set

y1=...=yn =—1 and (2)
y%+1:~-~:yn:+17 (3)

i.e. the training set represents two equal-sized classes drawn from the same dis-
tribution. For high-dimensional low sample size data d > n holds, and therefore
a separating hyperplane exists in general, except for cases with three or more
collinear data points having alternating class labels.

We used leave-one-out cross validation to approximate the generalisation per-
formance on this degenerated dataset by training a linear SVM n times using
the MinOver algorithm [4], each time on a different subset of size n — 1. The
resulting classification functions f;(x) are then used to classify the remaining
pattern and the leave-one-out error E' is determined by

1 n
E= n ; |fi(mi) - yi| .

This procedure was repeated 100 times for each n € {4,6,...,60} and fixed
d=1000 (see Fig. M left) as well as for m =20 and logarithmic-spaced
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Fig. 1. The leave-one-out error rate of a hard-margin SVM tends to 1 for fixed di-
mensionality d and decreasing sample size n (left) as well as for fixed sample size and
increasing dimensionality (right). Solid lines depict the mean of 100 trials, while dashed
lines mark the 5th and 95th percentiles.
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d € [10,107] (see Fig. [ right). Obviously, E depends on the training set size
and tends to 1 for n — 4 and d — oo. For larger training sets F tends to 50%,
which is what we would intuitively assume. In order to explain error rates of close
to 1 for small sample sizes, we switch from finite dimensionality to the remark-
able case of finite datasets and infinite dimensionality. We will give a proof for
this observation only using the geometric properties of high-dimensional small
sample size data and simple vector algebra.

Theorem 1. For any dataset D = {x;,y;}7, with ; € RY drawn from the
multivariate standard normal distribution, y1 = ... = yz = —1 and yz2 11 =
... = yp = +1 with n fized the leave-one-out error-rate of a hard-margin SVM
is 1 for d — oo.

Proof. For d — oo all ; € D will lie on the vertices of a regular n-simplex
as well as all pairwise angles will be orthogonal [6]. The total variability of D
is provided in the rotation of this simplex. Without loss of generality we set
x; = Vde;, so that for d — oo

l|&illo = Vd Vi
| — x)lls = |[Vdei — Vdeylls =vV2d  Vi#j

iij:deiTej:O Vi#£j .

xTr

Again without loss of generality we select «1,...,®,_1 for training. Now, we
can analytically determine the maximum margin classifier

f(x) =sgn ('wT:c +b)

that minimises ww

subject to  y; (wTa:i + b) >1 Vi

with simple vector algebra. Since all samples are pairwise orthogonal also the
centroids of both classes are orthogonal. Thus, the separating hyperplane with
maximum margin is orthogonal to the straight line through the centroids (see

Fig. 2)), i.e.

% 1 n—1
_+ [ . _+ —_—
= — th = de; d = de; .
w== T~ wi T Z-E_l Vde; and T | i,gn H\/_el
= =%

With p as the centre of this line we get the bias through

2d

- T 1 _ -
b:fpr:f(m+f:c ) —(:L‘++CC ):m

2

The left-out data point x,, gets misclassified, because
f(x,) =w'Vde, +b=b>0 .

This will be the case in each and every validation step, so the total leave-one-out
classification error is 1. O
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Fig. 2. Geometric sample configuration used in the proof of Theorem [Il Here, the case
of 7 samples is visualised. The samples from the larger class form a 4-simplex while
those from the smaller class form a 3-simplex. The centroids of both simplices are
denoted by £ and £~ respectively. The separating hyperplane with maximum margin
has the normal vector w and contains the point p.

As dimensionality decreases, the data points differ more and more from the
vertices of a regular simplex and are no longer orthogonal. So the conditions of
the above proof are only approximately fulfilled. Therefore, probability increases
for data points to be correctly classified, and the leave-one-out error-rate will be
less than 1 and will converge to the intuitive error-rate of 0.5 for n — oco.

3 Practical Bounds for Critical Scenarios

So far, we examined the leave-one-out error in the limit for d — oo which seems
to be unrealistic in practical cases. But for high dimensional low sample size data
infinity is rather small as our next experiment will stress. We show empirically
which size dimensionality needs to have to behave as if it were infinite. Again, we
sampled two classes independently and identically distributed from the standard
normal distribution and trained support vector machines for n € {4,6,...,40}
and logarithmic-spaced d € [10,10°]. For each configuration the procedure was
repeated 10 times and the mean leave-one-out error was determined.

The colour-coded results are shown in Fig. Bl For any fixed number of data
points n (e.g. n = 20) the leave-one-out error reaches 1 for a specific dimension-
ality (in this case at about d = 10000). Due to the probabilistic behaviour of the
dataset, a precise borderline does not exist, but the tendency is obvious. We il-
lustrate this by means of linear, quadratic and exponential extrapolation derived
from the approximate border points of n € {4,6,8}. A linear border is obviously
too low while exponential behaviour is too steep — a slightly super-quadratic
tendency is most promising. However, this heuristic suits only for illustrating
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Fig. 3. Colour-coded error-rates depending on sample size and dimensionality. White
colour indicates an error-rate of 1, i.e. the corresponding parameter sets behave as if
they had infinite dimensionality. Additionally, three candidates for the border function
are shown.

the asymptotic behaviour and should not be taken as an exact mathematical
coherence.

3.1 Real Two-Class Scenarios

Now, we will generalise the random scenario from Sect. 2lto the case where both
classes are drawn from different distributions. Assume the samples of the two
classes to be distributed as X = (X(1)7 .. .,X(d))T and Y = (:)7(1), . ,y(d>)T.
With d — oo the following conditions shall hold:

1
02 = lim =) var(x®)
d—oo d o)
1
2 _ lim = (@)
T fim G 2 )

d
1 . N2
2 _ i L @y _ gy
i _dhiilodi: (E(X )= E(Y ))

Any Gaussian or rectangular distributions in d dimensions fulfil these conditions.
Let k and [ be the number of data points of the data sets X and Y drawn from
X and Y, respectively. If we then train a hard-margin SVM on these data point
this leads to [6]:
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Theorem 2. Assume that % > 772 (otherwise interchange X andY ).

If p? > ‘7]: — ?, then the probability of a new datum from either population
to be correctly classified by the SVM converges to 1 as d — oo. Otherwise any
new sample will be classified as belonging to class Y as d — oo.

Again, we want to visualise how small infinite dimensionality in this case is.
We sampled two equal-sized classes each from the multivariate standard nor-
mal distribution so that 02 = 72 = 1 with the total number of data samples
n € {4,6,...,40} and logarithmic-spaced d € [10,10°]. We illustrate exemplarily
the dependency of sample size and leave-one-out error for an interclass distance
of u? = %. The mean colour-coded results of 10 independent runs are shown
in Fig. @ As stated in Theorem 2] a certain threshold exists — separating con-
vergence to zero error from convergence to an error rate of one. Obviously, the
threshold corresponds in this case to a total sample size of 12, i.e. 5 samples from
one class are trained vs. 6 samples from the other class within each validation
step. Then, the proposed ratio exceeds the critical interclass distance at

o2 7 1 1 1
E 1 5 6 30 M

which is perfectly the initially chosen value.

As a consequence of Theorem [2 it follows that two classes having different
means in one dimension and having the same mean in all other dimension will not
be separable, since p is close to zero. So, the leave-one-out error rate will always
converge to exactly 1 for any sample size as dimensionality goes to infinity.

3.2 Soft Margin and the Fat-Shattering Dimension

Hard-margin SVMs are prone to overfitting since one single outlier will strongly
affect the separating hyperplane and reduce generalisation performance.

In the simplest case of two equal-sized classes drawn from the same distribu-
tion — defined as in ([I)-(B]) — we can explicitly derive an upper bound for the
fat-shattering dimension fat according to [8] by

futty) < min { ﬁ_} af 1 ()

where R is the radius of the smallest enclosing sphere containing all samples
and 7 denotes the margin of separation. For randomly distributed datasets with
d — oo as used before the margin derives to

1 _ |d(n—1)
7*§||’w||* m .

Using @) and R = V/d the fat-shattering dimension is upper bounded by

dn(n —2)

fat(v) Smin{[mw ,d}+1—min{n1,d}+1—n .
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Fig.4. Colour-coded error-rates depending on sample size and dimensionality for
ur= %. White indicates an error-rate of 1, black an error rate of 0. The parame-

ter sets corresponding to black or white behave as if they had infinite dimensionality.

Here the bounds (n — 2) < % < (n — 1) are used. Since d > n and all

samples are pairwise orthogonal, fat(7y) is also lower bounded by n. Thus, in the

hard-margin case the fat-shattering dimension indicates that no generalisation

is possible, as expected. Considering a 2-norm soft-margin SVM, the following

kernel has to be used instead of the dot product in the dual representation [3]:
S5

K(zy @) = (ai) D(x)) = 2z + vl
where §;; is Kronecker’s delta. In the kernel space the data points are again
located on the edges of a regular simplex since

82| = /El@n @) = \/me e \/d+ L

|D(2i) — D(a;)]] = \/(@15(%') —B(x)))" (B(xi) - D(x;))
= \/K(wl,iﬂz) — 2K(£Bi,iL'j) + K(iL’j, CBJ‘)

2 1
= \/iBinBi‘f'iBjTin—f—a =4/2 (d—i— 5)

and all samples are pairwise orthogonal:

@(mi)T@(mj) =K(zi,xj) = :c;?ij =0 .
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So, when training a 2-norm soft margin SVM we intrinsically deal with a hard-
margin SVM of dimensionality (d+ %) For C > 1 the softness term is negligible
but for C' < 1 dimensionality will increase dramatically. Thus, with the soft-
margin approach we implicitly increase dimensionality so that the leave-one-out
error rate will be close to 1 already for a smaller number of dimensions.

At first glance, this is counterintuitive since soft margin approaches
increase the margin and therefore reduce the fat-shattering dimension so that
overfitting is reduced and generalisation performance improves. But in case of
high-dimensional low sample size data the asymmetries of leave-one-out
cross-validation stronger affect generalisation performance than overfitting prob-
lems do.

For 1-norm soft margin approaches we expect the same behaviour but a closed
mathematical formulation cannot be derived as simply as above.

4 Conclusions

Machine learning methods provide good results easily as long as large sample
sizes in connection with comparatively low dimensionality are given. However,
in practical applications such as the analysis of microarray data or other high-
dimensional data mining problems, we often have a reverse situation: Extremely
few points, for which it is not possible to increase the sample size significantly
and often a high-dimensional feature space resulting from massively parallel data
acquisition.

Increasing the dimensionality of artificial randomly distributed small sample
size data can be shown to result in a surprising reorganisation of the data on the
vertices of a regular simplex (see Theorem[I]). Exactly the same is happening for
non-random data, i.e. for true 2-class problems whenever the two classes fulfil the
proximity criterion of Theorem [2l Thus, for d — oo, random and non-random
data scenarios are not to distinguish anymore — by any metric-based measure.

We examined the practical impact of d — oo, i.e. how large infinity really
is. Our empirical simulations suggest that there might be a sub-exponential
relation between sample size and dimensionality. For an identically distributed
equal-sized two-class dataset consisting of 20 samples in 10000 dimensions we
already have an infinity-like behaviour. Here, we cannot learn anything from the
data by metric-based methods at all as distances are becoming approximately
equal. Apparently, infinite dimensionality is not that large.

In general, we do not know the true variances and true mean values of the
class distributions, so these values have to be estimated from the data. Again,
due to the counterintuitive properties of high-dimensional low sample size data,
the data might degenerate in just the same way for d — oo. Thus, whenever
acquiring degenerated data we can only speculate whether we have random or
non-random data. Although we focused on scenarios that are not learnable by
definition, the results are truly important in real-world scenarios. Avoiding an
asymmetric resampling scheme such as leave-one-out cross-validation may not
be possible due to the small sample size.
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We showed that a soft-margin approach does not improve the generalisation
performance of the SVM on high-dimensional low sample size data. We gave a
proof for the first data scenario that introducing softness has the same effect as
an increase of dimensionality. Thus, the soft-margin technique is making infinity
even smaller.

Especially biometric problems may suffer from artifacts of high-dimensional
low sample size data as we showed exemplarily for leave-one-out cross-validation
with support vector classification. Typically, these problems are supposed to have
a much lower intrinsic dimension than the observed dimension; thus, it should
be possible to reduce dimensionality to avoid the mentioned effects. Future work
should cover critical validation techniques of a widespread range of machine
learning methods to further investigate counterintuitive artifacts and to find
solutions to overcome these effects.
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