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Abstract. We propose the so-called Support Feature Machine (SFM)
as a novel approach to feature selection for classification, based on min-
imisation of the zero norm of a separating hyperplane. Thus, a classifier
with inherent feature selection capabilities is obtained within a single
training run. Results on toy examples demonstrate that this method is
able to identify relevant features very effectively.
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1 Introduction

The ever increasing complexity of real-world machine learning tasks requires
more and more sophisticated methods to deal with datasets that contain only
very few relevant features but many irrelevant noise dimensions. It is well-known
that these irrelevant features will distract state-of-the-art methods, such as the
support vector machine. Thus, feature selection is often a fundamental prepro-
cessing step to achieve proper classification results, to improve runtime, and to
make the training results more interpretable.

For many machine learning tasks, maximum margin methods have been con-
firmed to be a good choice to maximise the generalisation performance [1]. But,
besides generalisation capabilities, other aspects, such as fast convergence, ex-
istence of simple error bounds, straightforward implementation, running time
requirements, or numerical stability, may be equally important.

In recent years, as complexity and dimensionality of real-world problems
have dramatically increased, two other aspects have gained more and more im-
portance. These are sparsity and domain interpretability of the inference model.
Both are closely connected to the task of variable or feature selection. Primarily,
feature selection aims to improve or at least preserve the discriminative capabil-
ities when using fewer features than the original classifier, regression or density
estimator. In the following, we focus on feature selection for classification tasks.

Feature selection as an exhaustive search problem is in general computa-
tionally intractable as the number of states in the search space increases expo-
nentially with the number of features. Therefore, all computationally feasible
feature selection techniques try to approximate the optimal feature set, e.g. by
Bayesian inference, gradient descent, genetic algorithms, or various numerical
optimisation methods.



Commonly, these methods are divided into two classes: filter and wrapper
methods. Filter methods completely separate the feature selection and the clas-
sification task [2]. The optimal feature subset is selected in advance, i.e. filtered
out from the overall set of features without assessing the actual classifier. In
practise, one could, for example, select those features with the largest Pearson
correlation coefficients or Fisher scores before training the classifier.

Wrapper methods make use of the induction algorithm to assess the predic-
tion accuracy of a particular feature subset. Well-known contributions to this
class of feature selection algorithms are those of Weston et al. [3], who select
those features that minimise bounds on the leave-one-out error, and Guyon et
al. [4], who propose the so-called recursive feature elimination. Some types of
support vector machines already comprise feature selection to some extend, such
as the l1-norm SVM [5] or the VS-SSVM (Variable Selection via Sparse SVMs)
[6].

In the following, we propose the so-called Support Feature Machine (SFM)
as a novel method for feature selection that is both simple and fast. To assess
its performance, we will measure and discuss various aspects of feature selection
methods, such as improvements to the test error when using only the selected
features, sparsity of the solution, or the ability to identify relevant and irrelevant
features.

The following sections are organised as follows. First, we briefly introduce
the problem of finding relevant variables by means of zero norm minimisation.
This leads to our contribution, the mathematical definition of the SFM. Using
artificial linearly separable datasets, we illustrate various aspects of the SFM
and compare the results to other feature selection methods.

We conclude with a critical discussion of the achievements and propose fur-
ther extensions to the SFM.

2 Feature Selection by Zero Norm Minimisation

We make use of the common notations used in classification and feature selection
frameworks, i.e. the training set

D = {xi, yi}
n

i=1

consists of feature vectors xi ∈ IRd and corresponding class labels yi ∈ {−1,+1}.
First, we assume the dataset D to be linearly separable, i.e.

∃w ∈ IRd, b ∈ IR with yi
(

w
T
xi + b

)

≥ 0 ∀ i and w 6= 0 , (1)

where the normal vector w ∈ IRd and the bias b ∈ IR describe the separating
hyperplane except for a constant factor. Obviously, if w and b are solutions to
the inequalities, also λw and λ b solve them with λ ∈ IR+.

In general, there is no unique solution to (1). Our goal is to find a weight
vector w and a bias b which solve

minimise ‖w‖
0

0
subject to yi

(

w
T
xi + b

)

≥ 0 and w 6= 0 (2)



with ‖w‖
0

0
= card {wi|wi 6= 0}. Hence, solutions to (2) solve the classification

problem (1) using the least number of features. Note, that any solution can be
multiplied by a positive factor and is still a solution. Weston et al. [7] proposed
to solve the above problem with a variant of the Support Vector Machine by

minimising ‖w‖
0

0
subject to yi

(

w
T
xi + b

)

≥ 1 . (3)

Indeed, as long as there exists a solution to (2) for which yi
(

w
T
xi + b

)

> 0
is valid for all i = 1, ..., n, solving (3) yields a solution to (2). Unfortunately, (2)
as well as (3) are NP-hard and cannot be solved in polynomial time. Therefore,
Weston et al. [7] proposed to approximate (3) by solving

minimise

d
∑

j=1

ln (ǫ+ |wj |) subject to yi
(

w
T
xi + b

)

≥ 1 (4)

with 0 < ǫ ≪ 1. They showed that if w0 and w
∗ optimise (3) and (4), respec-

tively, then

‖w∗‖
0

0
≤ ‖w0‖

0

0
+O

(

1

ln ǫ

)

. (5)

They also showed that using the following iterative scheme at least a local min-
imum of (4) is found:

1. Set z = (1, . . . , 1).
2. Minimise |w| such that yi

(

w
T(xi · z) + b

)

≥ 1.
3. Set z = z ·w.
4. Repeat until convergence.

This iterative scheme simply applies linear programming.

2.1 Support Feature Machine

Instead of modifying the SVM setting as in (3), we slightly change (2) such that
we

minimise ‖w‖
0

0
subject to yi

(

w
T
xi + b

)

≥ 0 and w
T
u+ ȳb = 1 (6)

with u = 1

n

∑n

i=1
yixi and ȳ = 1

n

∑n

i=1
yi. The second constraint excludes

w = 0, since otherwise we would obtain ȳb = 1 and yib ≥ 0, which cannot be ful-
filled for all i (we have labels +1 and−1). As long as there is a solution to (2) with
yi
(

w
T
xi + b

)

> 0 for at least one i ∈ {1, ..., n}, also
∑n

i=1
yi
(

w
T
xi + b

)

> 0 is
satisfied. Hence, solving (6) yields a solution to the ultimate problem (2).

Since we have linear constraints, for solving (6) we can employ the same
framework Weston et al. [7] used for solving their problem. Also (5) applies.
However, our experiments show that by solving

minimise
d

∑

j=1

ln (ǫ+ |wj |) subject to yi
(

w
T
xi + b

)

≥ 0 and w
T
u+ȳb = 1

with the iterative scheme
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Fig. 1. Comparison of the SFM and the method proposed by Weston et al. The top
row shows results for n = 50 data points, the bottom row for n = 200 data points
(averaged over 100 runs).

1. Set z = (1, . . . , 1).
2. Minimise |w| such that yi

(

w
T(xi · z) + b

)

≥ 0 and w
T
u+ ȳb = 1.

3. Set z = z ·w.
4. Repeat until convergence

we obtain significantly better solutions to the ultimate problem then by solving
(4). It seems that the new cost function is much less prone to local minima.

2.2 Experiments

For learning tasks, such as classification or regression, one normally assesses
a method’s performance via the k-fold cross-validation error, or via the test
error on a separate dataset. For feature selection, besides the test error, also
the number of selected features and the amount of truly relevant features are
important. Since in real-world scenarios these values are almost never known,
we used artificial examples to compare the results of the SFM and the method
proposed by Weston. The toy examples were constructed according to Weston



et al. [7], i.e. the input data consist of 6 relevant but redundant features and 196
noise dimensions. Additionally, we required the datasets to be separable within
the 6 relevant dimensions. Figure 1 shows the results for 100 independent runs
using n = 50 and n = 200 data points. Apparently, the SFM returns both a lower
total number of features and a higher percentage of truly relevant features. The
convergence speed is also slightly better, and already after one iteration the SFM
solution is quite close to the final solution.

Next, we evaluated the generalisation performance of the SFM. Table 1 shows
mean and standard deviations in comparison to the SVM without feature selec-
tion and to the method proposed by Weston et al. For each method and training
set size, the experiment was repeated 100 times. Within each repetition 10000
data points were sampled (6 relevant, 196 noise dimensions), n data points were
used for training (n = 20, 50, 100, 200, 500) and the remaining for evaluating the
test error. Again, only linearly separable training datasets were allowed. Ob-
viously, the SFM significantly outperforms a standard SVM approach, but is
slightly worse than Weston’s method.

Table 1. Mean and standard deviation of the test error using different methods and
training set sizes for the toy example. The methods are: Standard hard-margin Support
Vector Machine (SVM), the method proposed by Weston et al. (Weston) and the
Support Feature Machine (SFM).

n SVM Weston SFM

20 28.8% (± 2.2%) 8.9% (± 8.0%) 17.5% (± 7.8%)
50 19.0% (± 1.9%) 2.7% (± 1.5%) 6.6% (± 3.7%)

100 12.2% (± 1.5%) 1.7% (± 0.7%) 3.8% (± 1.7%)
200 6.7% (± 0.9%) 1.2% (± 0.5%) 2.1% (± 0.9%)
500 3.1% (± 0.5%) 0.8% (± 0.2%) 1.1% (± 0.4%)

2.3 Implementation Issues

As with many machine learning algorithms, normalisation is an essential prepro-
cessing step also for the SFM. For all experiments, we normalised the training
datasets to zero mean and unit variance and finally scaled all vectors to have a
mean norm of one. This last step is necessary in high-dimensional scenarios to
keep the outcome of scalar products in a reasonable range. The test sets were
normalised according to the factors obtained from the corresponding training
sets.

For solving the optimisation problems, we used the MOSEK optimisation
software. To avoid numerical issues, numbers that differed by no more than a
specific implementation-dependent number — normally closely connected to the
machine epsilon — were considered to be equal.



3 Conclusions

We proposed a novel method for combined feature selection and classification
— the so-called Support Feature Machine. Experiments on artificial as well as
real-world datasets demonstrated that the SFM can identify relevant features
very effectively and may improve the generalisation performance significantly
with respect to an SVM without feature selection. The implementation only
requires linear programming solvers and may therefore be established in various
programming environments.

So far, we focused on linear classifiers, mostly for high-dimensional low-
sample size scenarios because these scenarios seem to be the most relevant ones
in practical applications, such as the analysis of microarray datasets.

In some scenarios, it is necessary to allow for nonlinear classification to
achieve proper classification performance. One might think of ways to incorpo-
rate kernels into the SFM to allow for arbitrary class boundaries. Nevertheless,
the main focus of the SFM was to provide results that may easily be inter-
preted both in terms of feature selection and classification, so nonlinearities
would slacken this demand.

In total, the results we obtained using the SFM approach are quite promising,
however, we need to justify our results on real-world datasets. In a follow-up
paper, we will show, that even an exponentially increasing number of irrelevant
features does not significantly reduce the performance of the SFM. Additionally,
we will extend the standard SFM approach to non-separable scenarios. Further
work will include experiments on more challenging real-world scenarios with
practical relevance. Finally, we seek for an iterative optimisation method to be
independent from proprietary optimisation toolboxes.
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