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By minimizing the zero-norm of the separating hyperplane, the support
feature machine (SFM) finds the smallest subspace (the least number of
features) of a data set such that within this subspace, two classes are lin-
early separable without error. This way, the dimensionality of the data
is more efficiently reduced than with support vector–based feature selec-
tion, which can be shown both theoretically and empirically. In this letter,
we first provide a new formulation of the previously introduced concept
of the SFM. With this new formulation, classification of unbalanced and
nonseparable data is straightforward, which allows using the SFM for
feature selection and classification in a large variety of different scenar-
ios. To illustrate how the SFM can be used to identify both the smallest
subset of discriminative features and the total number of informative fea-
tures in biological data sets we apply repetitive feature selection based
on the SFM to a functional magnetic resonance imaging data set. We
suggest that these capabilities qualify the SFM as a universal method
for feature selection, especially for high-dimensional small-sample-size
data sets that often occur in biological and medical applications.

1 Introduction

Recent developments of massively parallel data acquisition systems call
for sophisticated analysis methods that are capable of dealing with
data sets that have many dimensions but comprise few samples. Such
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high-dimensional small-sample-size scenarios occur especially in biological
and medical applications that rely on human data, such as tissue classifica-
tion based on microarray gene data (Golub et al., 1999; Lockhart & Winzeler,
2000), identification of disease-specific genome mutations (Samani et al.,
2007; McPherson et al., 2007; Raelson et al., 2007), or multivoxel pattern anal-
ysis (MVPA) in neuroimaging (Haynes, 2011). In these applications, theoret-
ical and practical issues such as generalization bounds, run time, or memory
footprint considerations require dedicated methods for the three basic ma-
chine learning tasks: classification, regression, and density estimation.

Maximum margin methods such as the support vector machine (Vap-
nik, 1999) have been shown to be a good choice for many classification
problems in biological applications due to their excellent generalization ca-
pabilities. However, these methods may fail especially in high-dimensional
small-sample-size scenarios (Weston et al., 2000). Moreover, in biological
and medical applications, the primary goal is often not to achieve high pre-
diction accuracy but to identify informative features. Thus, feature selection
is not only needed to improve run time and achieve proper prediction re-
sults, but also to allow meaningful inferences about biologically significant
features. Such feature selection methods have been proposed in a variety
of flavors (for an overview, see Guyon & Elisseeff, 2003). However, these
approaches have seldom addressed the question how the smallest subset of
features that is required to solve a classification problem can be obtained.

Recently we proposed the support feature machine (SFM) as a novel
method for feature selection that aims to identify the smallest subset of
features that separates two classes (Klement & Martinetz, 2010a, 2010b,
2011). The basic idea of the SFM is to find the smallest subspace (the least
number of features) in a data set such that within this subspace two classes
are linearly separable without error. By minimizing the zero norm of the
separating hyperplane, a classifier based on a minimal set of features is
obtained within a single training run. In contrast to most feature selection
methods that are conservative in the way they select features—they keep all
features that might ever be relevant for classification and discard only those
features that are irrelevant with high probability—the SFM is aggressive in
discarding features and keeps only those that are definitely required to
separate classes in the training data. Results on artificial data as well as
real-world data show that the SFM identifies truly relevant features very
effectively and in many cases more accurately than SVM-based feature
selection (Klement & Martinetz, 2010a, 2010b).

We suggest that this feature makes the SFM a powerful tool not only to
identify the most informative features within a data set but also to estimate
the total amount of informative features of this data set. If the SFM is
used for repetitive feature selection (RFS)—such that in each repetition,
all features returned by the SFM are discarded from the data set and in
the next repetition the SFM is trained on the remaining features only—
then the percentage of features discarded from the data set before the test
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error reaches chance level might provide an estimate of the total number
of informative features within this data set. Importantly, the accuracy of
this estimate strongly depends on the selectivity of the applied feature
selection method: if irrelevant (uninformative) features are falsely identified
as being relevant, then the number of informative features in the data set
is overestimated. In contrast, the estimate does not strongly rely on the
sensitivity of feature selection: even if only one (truly relevant) feature
is obtained in each repetition, the number of informative voxels will still
be estimated correctly. Since the SFM is very conservative in the way it
identifies relevant features, SFM-based RFS will likely provide an unbiased
estimate of the true number of informative features of a data set.

The remainder of this letter is organized in three sections. In section 2,
we review and reformulate the concept of the SFM. This new formulation
now permits classification of unbalanced and nonseparable classes, which
enables the SFM to be used for feature selection and classification in a large
variety of different scenarios.1 This is shown on artificial data in section
3. Finally, in section 4, we apply a repetitive version of the SFM to an
fMRI (functional magnetic resonance imaging) data set to illustrate how
the SFM can be used to identify not only the most informative features
but also the total number of informative features in biological data sets.
The appendix contains mathematical considerations as well as remarks on
implementation alternatives.

Note on notations. In this work, we use lowercase boldface letters (e.g.,
x, y) for vectors and uppercase boldface letters for matrices (e.g., A). Sets
are typeset in uppercase calligraphic letters (e.g., D).

We make use of the common notations used in classification and feature
selection frameworks; a data set D = {xi, yi}n

i=1 consists of feature vectors,
samples, or patterns xi ∈ R

d and corresponding class labels yi ∈ {−1,+1}.
The dimensionality of a vector is denoted by d, while n refers to the car-
dinality of the set. For simplicity, we define zi = yixi and Z = (z1, . . . , zn).
Further, for each class, we define a separate set of indices, I+ = {i |yi = +1}
and I− = {i |yi = −1}. The vectors 0 and 1 are vectors with all their entries
being zero or one, respectively. For readability, we omit the length of these
vectors where possible. The identity matrix Id is a square matrix containing
ones on the main diagonal and zeros elsewhere, and the zero matrix 0n,d
has n rows and d columns all set to zero.

2 The Problem and the Approach

In the terminology of feature selection, the SFM is an embedded method
that combines both feature selection and classification within a single

1A toolbox with source code and demo applications can be retrieved online from
http://www.inb.uni-luebeck.de/tools-demos/support-feature-machine.
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framework. The principle of structural risk minimisation is implemented
by limiting the family of classification functions to those with the fewest
number of parameters—in this case, dimensions or features. In this section,
we first review and reformulate the basic concept of the SFM originally pro-
posed in Klement and Martinetz (2010a, 2010b). As we will see, this new
formulation of the SFM is more compact and intuitive than the original for-
mulation and can easily be extended to unbalanced and nonseparable data.
We conclude this section with some considerations regarding the behavior
of the SFM in the limit.

2.1 SVM-Based Feature Selection. To introduce the basic concept of
the SFM, we first show how it relates to the SVM-based feature selction
proposed by Weston, Elisseeff, Schölkopf, and Tipping (2003). Let us assume
that the data set D is linearly separable,

∃ w ∈ R
d, b ∈ R with yi

(
wTxi + b

) ≥ 0 ∀ i and w �= 0 , (2.1)

where the normal vector w ∈ R
d and the bias b ∈ R describe the separating

hyperplane except for a constant factor. Obviously if w and b are solutions
to the inequalities, λw and λ b solve them with λ ∈ R

+. In general, there
is no unique solution to equation 2.1. A solution with the least number of
features,

minimizes ‖w‖0
0

subject to yi

(
wTxi + b

) ≥ 0 ∀ i

and w �= 0,

(2.2)

with ‖w‖0
0 = card{wi|wi �= 0}. Note that again any solution of equation 2.2

can be multiplied by a positive factor and is still a solution. Weston et al.
(2003) proposed solving equation 2.2 with a variant of the SVM by

minimizing ‖w‖0
0

subject to yi

(
wTxi + b

) ≥ 1 ∀ i .
(2.3)

Indeed, as long as there exists a solution to equation 2.2 for which
yi(w

Txi + b) > 0 for all i = 1, ..., n, solving equation 2.3 yields a solution
to 2.2. Unfortunately, both equations are NP-hard and cannot be solved in
polynomial time. Therefore, Weston et al. (2003) proposed to approximate
equation 2.3 by

minimizing
d∑

j=1

ln
(
ε + |w j|

)
subject to yi

(
wTxi + b

) ≥ 1 ∀ i

(2.4)
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with 0 < ε 	 1. If w0 and w∗ optimize equations 2.3 and 2.4, respectively,
then

∥∥w∗∥∥0
0 ≤ ∥∥w0

∥∥0
0 + O

(
1

ln ε

)
, (2.5)

that is, both solutions coincide as ε → 0. Thus, by minimizing equation 2.4,
an approximate solution to equation 2.3 is found. However, equation 2.4
is not convex, has many local minima, and is still hard to solve. Weston
et al. (2003) proposed the following iterative scheme, which finds a local
minimum of equation 2.4 by solving a sequence of linear programs:

1 Initialize z = (1, . . . , 1).
2 repeat
3 Minimize |w| such that yi

(
wT(xi ∗ z) + b

) ≥ 1
4 Update z = z ∗ w

5 until convergence

This modification of the SVM effectively reduces the feature space used
for classification. However, this approach does not necessarily return the
least number of features required for classification. The number of features
may be further reduced by discarding any margin maximization induced
by the constraints yi(w

Txi + b) ≥ 1. This is the basic idea of the SFM.

2.2 The Support Feature Machine: Basic Algorithm. The approach of
Weston et al. (2003) performs a mixture of feature selection and margin
maximization, which might be conflicting objectives. Taking a different ap-
proach, we adapt the definition of linear separability, equation 2.2, slightly,
such that we

minimize ‖w‖0
0

subject to yi

(
wTxi + b

) ≥ 0 ∀ i

and wT
(
μ+ − μ−) = 1

(2.6)

with μ+ = 1
n+

∑
i∈I+ xi and μ− = 1

n−
∑

i∈I− xi as the class-specific means. The
first constraint is insensitive to any margin. The second constraint excludes
the trivial solution w = 0. As long as the input data are linearly separable
with yi

(
wTxi + b

)
> 0 for at least one i ∈ {1, ..., n}, we have

wT(
μ+ − μ−) = 1

n+
∑
i∈I+

yi

(
wTxi + b

) + 1
n−

∑
i∈I−

yi

(
wTxi + b

)
> 0, (2.7)

and the equality constraint can be satisfied by scaling w and b appropriately.
Hence, as long as the input data are linearly separable with yi

(
wTxi + b

)
> 0
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for at least one i ∈ {1, ..., n} (not all i as in Westons’s approach), solving
equation 2.6 yields a solution to the ultimate problem, equation 2.2. Com-
pared to the first version proposed in Klement and Martinetz (2010a, 2010b),
the equality constraint is now more compact since the bias b no longer oc-
curs. In this formulation, an extension to unbalanced and nonseparable
classes is straightforward.

The framework Weston et al. (2003) used to solve equation 2.4 is also
suited to solve equation 2.6 (see Weston et al., 2003). Thus, we

minimize
d∑

j=1

ln
(
ε + |w j|

)
subject to yi

(
wTxi + b

) ≥ 0

and wT
(
μ+ − μ−) = 1

(2.8)

with a similar iterative scheme (note that in practice, no choice for ε is
needed as we never optimize the above equation directly):

1 Initialize z = (1, . . . , 1)

2 repeat
3 Minimize |w| such that yi

(
wT(xi ∗ z) + b

) ≥ 0 and wT
(
μ+ − μ−) = 1

4 Update z = z ∗ w

5 until convergence

Thus, by successively minimizing the one-norm, we aim to approximate
the zero-norm minimizing solution as accurately as possible. By that, the
SFM is a combinatorial feature selection method working on the original
set of input features and taking class information into account. Importantly,
in contrast to dimension-reduction methods like principal component anal-
ysis (PCA), which reduce the dimensionality of a transformed space, SFM
reduces the dimension of the original feature space.

2.3 Extending the Support Feature Machine to Soft Separability. In
general, if n ≤ d + 1, then the data will be separable and the SFM has a
solution. In the following, we introduce slack variables similar to a soft-
margin SVM to allow for misclassifications during training. This is done for
two reasons. First, if the input data are not separable in the intrinsic feature
space (i.e., if the classes overlap), irrelevant features will be added to achieve
separation of the training data. This might lead to an overestimation of the
number of truly relevant features and diminish generalization performance.
Second, even if the classes are in principle separable in the intrinsic feature
space, the true separating hyperplane might not be identified correctly due
to outliers. To address these problems, a mechanism is needed that allows
for misclassifications and thereby provides a better estimate of the true
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dimensionality. (Note that we do not address the problem of intrinsically
nonlinear decision borders here.)

We introduce slack variables ξi for each data point and a softness pa-
rameter C (Klement & Martinetz, 2010a) in the same way this is done for
soft-margin SVMs; we

minimize
∥∥w

∥∥0
0 + C

∥∥ξ
∥∥0

0

subject to

⎧⎪⎪⎨
⎪⎪⎩

yi(w
Txi + b) ≥ −ξi ∀ i

wT(μ+ − μ−) = ±1

ξi ≥ 0 ∀ i.

(2.9)

As classification errors are allowed, yi

(
wTxi + b

)
may become negative and

the pathological case where equation 2.7 is smaller or equal to zero may
occur. Therefore, the optimizer needs to fulfill the latter constraint with
+1 or −1. In practice, one needs to optimize for both variants and finally
choose the solution with the lower objective function. To solve equation 2.9,
we use the iterative approximation scheme described above. Importantly,
one property of this approach is that the objective function explicitely trades
off the number of features ‖w‖0

0 and the number of misclassified training
samples ‖ξ‖0

0.

2.3.1 Unbalanced Data Sets. An important problem of classifiers with
soft margins is their sensitivity to unbalanced data sets. If one class con-
tains more samples than the other, many classifiers tend to behave like a
majority classifier and ignore the smaller class. Several solutions to this
problem have been proposed, such as rebalancing the data artificially, ad-
justing the output threshold of the classifier according to the class ratio,
one-class classifiers, and cost-sensitive methods (Provost, 2000; Japkowicz,
2000; Chawla, Japkowicz, & Kotcz, 2004; He & Garcia, 2009).

Here we propose an approach in which the softness of the SFM is adjusted
according to the class ratio by assigning individual misclassification costs
to each class. The optimization problem then becomes

minimize
∥∥w

∥∥0
0 + C+∥∥ξ+∥∥0

0 + C−∥∥ξ−∥∥0
0

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi

(
wTxi + b

) ≥ −ξ+
i for all i ∈ I+

yi

(
wTxi + b

) ≥ −ξ−
i for all i ∈ I−

wT
(
μ+ − μ−) = ±1

ξ+
i , ξ−

i ≥ 0 .

(2.10)

By scaling C+ and C− appropriately, one can avoid the situation that a much
smaller class tends to be ignored. In practice, choosing C+ and C− such that



The Support Feature Machine 1555

C+n+ = C−n− enforces the proportion of misclassified samples to be equal
for both classes.

2.3.2 Behavior in the Limit. The extension to soft separability reduces the
impact of single outliers on the number of obtained features by trading
off the number of features and the number of misclassified samples. To
complete our softness extension, we consider the behavior of the soft SFM
in the limit for C± → ∞ and C± → 0. In the first case, dominance of the
slack term C+|ξ+‖0

0 + C−‖ξ−‖0
0 is equivalent to setting the slack variables

to zero such that we obtain the hard SFM. The converse case, C± → 0,
allows arbitrary choices of the slack variables ξ+

i and ξ−
i such that the

objective function becomes independent of the misclassification rate. Thus,
the inequality constraints are fulfilled for all w and b. In the limit, the
optimization problem, equation 2.10, simplifies to

minimize ‖w‖0
0

subject to wT
(
μ+ − μ−) = 1 .

The minimum, of course, is ‖w‖0
0 = 1. The SFM approximates the zero-norm

by the one-norm. We prove that the SFM finds the optimum ‖w‖0
0 = 1 (i.e.,

exactly one feature) with using the proposed approximation. Assume that
k > 1 features are obtained by minimizing ‖w‖1. Without loss of generality,
we assume that these are the first k features. Further, without loss of gener-
ality we assume |μ+

1 − μ−
1 | > |μ+

i − μ−
i | for all 1 < i ≤ k (note that equality

has probability 0). We may rewrite the equality constraint as

(
w1 +

k∑
i=2

wi
μ+

i − μ−
i

μ+
1 − μ−

1

)
︸ ︷︷ ︸

w′
1

(
μ+

1 − μ−
1

) = 1 .

Thus, the equality can be fullfilled using only one feature but with a modi-
fied weight w′

1. Since

∥∥w′∥∥
1 = ∣∣w′

1

∣∣
1 = ∣∣w1

∣∣ +
k∑

i=2

∣∣∣∣wi
μ+

i − μ−
i

μ+
1 − μ−

1

∣∣∣∣ <
∣∣w1

∣∣ +
k∑

i=2

∣∣wi

∣∣ = ∥∥w
∥∥

1,

we would obtain a smaller objective function using exclusively feature 1,
in contradiction to our initial assumption. Thus, in the limit for C± → 0, no
more than one feature is obtained.

A very soft SFM will identify one and only one feature to be relevant,
that is, the weight vector differs from zero in exactly one entry. Let j be
the index of this nonzero entry. Then the equality constraint is solved with
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respect to w j by

w j =
1

μ+
j − μ−

j

,

where μ+
j and μ−

j are the projection of the class-specific means onto the axes
of feature j. As the SFM approximates the zero-norm by minimizing the one-
norm, it will select the feature that minimizes |w j| and therefore maximizes
the distance of the class-specific means |μ+

j − μ−
j |. This is closely related

to correlation-based feature selection methods such as the Fisher score and
statistical distance measures such as Student’s t-test. Consequently, we ex-
pect soft SFM to favor those features that maximize the correlation between
feature value and class label, or the distance between the feature values of
the two classes. In other words, the soft SFM is a trade-off between a hard
SFM and correlation-based feature ranking.

3 Experiments on Artificial Data

Having reviewed and reformulated the basic principles of the SFM, we
continue to show that the SFM outperforms Weston’s SVM-based feature
selection method in many simulations, particularly in high-dimensional
small-sample-size scenarios. We first compare the capability of the SFM
and Weston’s method to identify the truly relevant features in a simple
scenario with linearly separable but slightly unbalanced classes. For this,
we use an experiment that is very similar to that described in Klement
and Martinetz (2011) but now includes unbalanced classes. We then show
how both methods perform if an increasing number of irrelevant features
is added to the data, which is probably the most challenging setting for any
feature selection method. Finally, we test the performance of the soft SFM
on nonseparable data.

3.1 Basic Experiment. For the basic experiment we generated artificial
data sets with class ratio 60% versus 40%. The first k dimensions xi, . . . , xk
were drawn as xi = N (μ · y, 1). The remaining features xk+1, . . . , xd were
noise drawn as xi = N (0, 1). The parameter μ determines the distance be-
tween the means of the two classes. We ensured that both classes were
linearly separable within the first k dimensions. This was achieved by re-
moving samples that did not fulfill yi

∑
j xi j > 0, that is, we assumed all

entries of the real weight vector in the first k dimensions to be one. Then
we resampled all invalid data points and repeated both steps until con-
vergence. (Note, however, that by chance, both classes might be separable
with even fewer than k features.) The number of dimensions was set to
d = 100. In the first experiment, we used a fixed sample size of n = 100 and
varied the number of relevant features from k = 1 to k = 20. In the second
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Figure 1: Feature selection performance of the SFM and Weston’s method as a
function of the number of truly relevant features and the number of data points.
Shown are the average number (1000 runs) of obtained features (top) and the
average percentage of correctly identified features (bottom) for the basic hard
SFM and Weston’s method after the first and after the final iteration. In the
left column, the number of data points is fixed (n = 100), while in the right
column, the intrinsic dimensionality is fixed (k = 5). The remaining parameters
are equal in both settings (d = 100, μ = 0.3) (Klement & Martinetz, 2011, slightly
modified).

experiment, we set the number of relevant features to k = 5 and varied the
sample size from n = 10 to n = 1000.

Figure 1 shows the average results for 1000 runs with Weston’s method
and a hard SFM. The SFM returned both a smaller total number of features
and a higher percentage of correctly identified features for almost all scenar-
ios. In scenarios with very low intrinsic dimensionality—for k = 1, . . . , 4—
the SFM identified all relevant features correctly (see Figure 1, bottom left).
In scenarios with k = 5, the SFM identified all relevant features correctly
in every run if the number of data points exceeded 200. Weston’s method
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failed to converge to the correct number of features even if the number
of data points was further increased (to 1000), the percentage of correctly
identified features stayed clearly below 80% (see Figure 1, bottom right).
Thus, the SFM converged to the correct set of features, while the SVM-based
approach got stuck in a local minimum even for large data sets.

Also note that in contrast to Weston’s method, the SFM was close to the
final solution in the first iteration.

3.2 Experiment with Increasing Dimensionality. For many biologi-
cal applications, a feature selection method should not only be able to
deal with high-dimensional data sets but should also scale well; adding
irrelevant features should not significantly degrade the performance. To
assess how the performance of the hard SFM and Weston’s method de-
grades when irrelevant features are added to the data, we used an artificial
dataset that has been used in a variety of publications but was originally
proposed by Weston et al. (2003). The data set contains two equally sized
classes where the first six dimensions are informative but redundant and
the remaining dimensions contain gaussian noise. With probability 0.7, the
first three features are drawn as xi = yN (i, 1), and the second three fea-
tures are drawn as xi = N (0, 1). With probability 0.3, the setting is inverted:
the first three features are drawn as xi = N (0, 1) and the second three as
xi = yN (i − 3, 1). The remaining k∗ features are drawn as xi = N (0, 20) with
k∗ = 10, 102, 103, 104. Additionally, we ensured the training set to be linearly
separable within the six informative dimensions. We sampled n training
points (n = 20, 50, 100, 200, 500) and 5000 test data points. Note that this
setting is slightly different from the one we originally evaluated in Klement
and Martinetz (2010a). Here, the largest number of irrelevant features is
10,000 (instead of 4096), we use a more convient spacing for k∗, and, to
obtain results with higher confidence, the results are averaged across 1000
(instead of 100) runs).

Table 1 compares the capability of both feature selection methods to iden-
tify relevant features. Compared to Weston’s approach, the SFM returns a
smaller number of features and more likely the truly relevant features. Even
in very high-dimensional small-sample-size scenarios, the SFM can iden-
tify the relevant dimensions very effectively: as the number of data points
increases, the number of features found to be relevant increases but does
not exceed 6—the number of truly relevant features. The percentage of cor-
rectly identified features decreases when the number of noise dimensions
increases. However, only in extremely high-dimensional small-sample-size
scenarios does the percentage of correctly identified features drop below
90%.

The sampling scheme causes the number of correctly identified features
not to converge to 100% for large n. Due to the experimental design, some
features provide better separability than others. Then, by chance, one of the
irrelevant features may be favored by the SFM (and also Weston’s method)
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Table 1: Impact of an Exponentially Increasing Number of Irrelevant Features
on Feature Selection Performance, with Six Features Being Relevant.

n k∗ = 10 k∗ = 100 k∗ = 1000 k∗ = 10,000

SFM, number of obtained features
20 2.0 (±0.6) 2.0 (±0.6) 2.0 (±0.6) 1.9 (±0.6)
50 2.3 (±0.6) 2.4 (±0.6) 2.4 (±0.6) 2.5 (±0.7)

100 2.7 (±0.7) 2.6 (±0.6) 2.6 (±0.7) 2.6 (±0.7)
200 3.1 (±0.7) 3.2 (±0.8) 3.2 (±0.8) 3.1 (±0.7)
500 4.1 (±0.8) 4.2 (±0.8) 4.2 (±0.8) 4.2 (±0.8)

Weston, number of obtained features
20 2.6 (±0.8) 2.8 (±0.9) 3.0 (±1.1) 3.2 (±1.1)
50 3.2 (±1.0) 3.4 (±1.1) 3.3 (±1.1) 3.4 (±1.1)

100 3.8 (±1.1) 4.0 (±1.2) 4.0 (±1.2) 3.9 (±1.2)
200 4.6 (±1.2) 4.9 (±1.4) 4.9 (±1.4) 4.8 (±1.2)
500 5.9 (±1.3) 6.2 (±1.5) 6.4 (±1.5) 6.2 (±1.4)

SFM, percentage of correctly identified features
20 98.5% (±8.0%) 88.9% (±20.2%) 66.5% (±29.1%) 46.9% (±32.9%)
50 99.6% (±3.5%) 98.8% (±6.5%) 96.7% (±10.9%) 85.9% (±22.4%)

100 99.7% (±3.1%) 99.1% (±5.3%) 97.3% (±8.8%) 96.9% (±9.4%)
200 99.4% (±3.9%) 98.5% (±6.0%) 96.6% (±8.9%) 95.1% (±11.0%)
500 98.8% (±5.0%) 96.4% (±8.7%) 94.3% (±10.8%) 92.2% (±11.7%)

Weston, percentage of correctly identified features
20 94.8% (±12.8%) 81.2% (±23.7%) 58.0% (±29.6%) 32.5% (±26.1%)
50 94.0% (±12.1%) 87.6% (±16.0%) 85.0% (±18.0%) 79.7% (±20.3%)

100 93.1% (±12.0%) 87.0% (±16.0%) 83.4% (±17.5%) 83.1% (±17.1%)
200 89.0% (±13.6%) 82.9% (±15.9%) 80.3% (±16.0%) 80.6% (±16.0%)
500 82.2% (±12.9%) 76.2% (±14.5%) 73.5% (±14.7%) 74.1% (±14.6%)

Note: Shown are the average (over 1000 runs) number of features found to be relevant
(±std).

instead of the weakest relevant feature. This effect gets amplified for large
sample sizes as the solution space becomes smaller and smaller.

3.3 Experiment with Nonseparable Classes. Finally, we constructed
an artificial problem where the two classes are not linearly separable. The
probabilities of the classes y = 1 and y = −1 were equal in both the training
and the test sets. The first k dimensions x1, . . . , xk were drawn normally dis-
tributed as xi = N (μ · y, 1). The remaining features xk+1, . . . , xd were noise
drawn as xi = N (0, 1). The parameter μ was used to adjust the distance
between the class centers. Both the training and the test sets were sampled
according to the above procedure, each containing n data points. The soft-
ness parameter C was varied in 100 steps logarithmically spaced between
0.01 and 100. This basic setting is the same as in Klement and Martinetz
(2010a). Here, we extend this basic setting to examine the soft SFM in
four different scenarios with variable numbers of relevant and irrelevant
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Figure 2: Behavior of the soft SFM for linearly nonseparable classes. Shown
are four scenarios and the resulting number of obtained features (solid line, left
axis), percentage of correctly identified features (dashed, right axis), training
error (dash-dotted, right axis), and test error (dotted, right axis) averaged over
100 runs.

features. In the first scenario, the data contain a high percentage of relevant
features. In the second scenario, we reduced the number of relevant features
and increased the number of irrelevant features. Finally, in the third and
fourth scenarios, we further increased the number of irrelevant features and
reduced the number of data points.

Figure 2 shows the averaged results of 100 runs. In all four scenarios,
increasing softness—allowing more training errors—results in a smaller
number of obtained features. This is in line with the theoretical considera-
tion that the soft SFM directly trades off the number of obtained features and
the training error and that a very soft SFM will return a single feature. As the
number of obtained features decreases, the percentage of correctly identified
features increases. However, this does not necessarily result in increased
prediction performance. In the second scenario, the test error reaches a
minimum just after the point where the percentage of correctly identi-
fied features sharply increases. In the first and third scenarios, however,
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the test error increases with increasing softness, and in the fourth scenario,
the test error remains almost constant throughout all softness values. Below,
we discuss the four data scenarios in detail.

3.3.1 Many Relevant Features, Few Irrelevant Features, Large Sample Size. In
this case the data contain a large percentage of relevant features and the
number of data points exceeds the number of dimensions (see Figure 2, top
left). Note, however, that features might be correlated and not all features
might actually be required to separate the classes. The SFM identified al-
most no irrelevant feature as being relevant, independent of the softness.
However, only a small fraction of the truly relevant features was identi-
fied (at most 7 out of 20). The test error increased slightly with increasing
softness.

3.3.2 Few Relevant Features, Many Irrelevant Features, Large Sample Size. In
this scenario, the data contain few relevant and many irrelevant features, but
the number of data points still exceeds the number of dimensions (see Figure
2, top right). Increasing the softness resulted in a smaller set of obtained
features, while the percentage of correctly identified features increased.
For the parameters chosen here, the optimal test error (in this case 27.6%) is
achieved for medium softness (C = 0.34), approximately at that point where
almost all truly relevant features and almost no irrelevant features were
obtained. In particular, 5.42 features were obtained, of which 86.7% were
correctly identified features on average. Thus, in such scenarios, optimizing
for the test error is a valid approach to identify the true set of relevant
features.

3.3.3 Few Relevant Features, Many Irrelevant Features, Small Sample Size.
The third and fourth scenarios both represent high-dimensional small-
sample-size data with few relevant and many irrelevant features (see
Figure 2, bottom). Note that this is very challenging because the infor-
mation content is very small. As before, increasing softness resulted in a
smaller number of obtained features while the percentage of correctly iden-
tified features increased. In the third scenario (see Figure 2, bottom left),
we chose a larger class distance than in the previous scenarios (μ was in-
creased from 0.30 to 0.65). The test error increased slightly with increasing
softness but stayed well below chance. In the fourth scenario, we used the
same class distance as in the first two scenarios. Although the percentage
of correctly identified features still increased with increasing softness, the
test error remained almost constant and never fell well below chance (see
Figure 2, bottom right). Thus, in this scenario, the class overlap seems to be
too large to obtain meaningful results.

Some authors have recommended using a soft- rather than a hard-margin
SVM even if the training data are linearly separable to improve the predic-
tion accuracy (see, Hastie, Rosset, Tibshirani, & Zhu, 2004). The third and
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fourth scenarios are both scenarios with n 	 d. In these scenarios, the soft-
ness had little impact on the test error but largely influenced the number of
obtained features.

In sum, applying a soft SFM to the four exemplary data sets shows
that the soft SFM performs well on data sets with nonseparable classes
even in scenarios with few relevant and many irrelevant features, as long
the class overlap is not too large relative to the number of data points. In
high-dimensional small-sample-size scenarios with few relevant features
and strongly overlapping classes, the performance of the SFM drops to
chance, possibly because the information content is no longer sufficient to
allow valid feature selection. However, we expect that in such scenarios,
performance of any feature selection method will be severely hampered.

4 Application to Neuroimaging Data

So far, we have demonstrated that the SFM identifies truly relevant features
in artificial data sets very effectively, particularly if the data contain few
relevant and many irrelevant dimensions. In this section, we illustrate how
the SFM might be used to identify not only the most informative features
but also the total number of informative features in biological data sets. For
this purpose, we chose an fMRI (functional magnetic resonance imaging)
data set.

In fMRI, researchers are almost always faced with high-dimensional
small-sample-size scenarios (≈100,000 dimensions versus ≈100 samples).
To reduce the feature space, feature selection and classification are often
performed either independently (e.g., principal component analysis; Carl-
son, Schrater, & He, 2003; Strother et al., 2002) or recursively (e.g., recursive
feature elimination, Martino et al., 2008), but there are also approaches
that, like the SFM, combine feature selection and classification within a sin-
gle framework (e.g., Elastic Net, Carroll, Cecchi, Rish, Garg, & Rao, 2009;
sparse penalized discriminant analysis (SPDA), Grosenick, Greer, & Knut-
son, 2008; and sparse logistic regression, Yamashita, Sato, Yoshioka, Tong,
& Kamitani, 2008; Ryali, Supekar, Abrams, & Menon, 2010). In addition to
representing extreme high-dimensional small-sample-size scenarios, fMRI
data—like many high-dimensional real-world data sets—often contain sev-
eral informative feature subsets that all permit linear separation (i.e., the
data are highly redundant). In such scenarios, one might not only be inter-
ested in finding the most informative features, but also in identifying all
informative features (Rasmussen, Hansen, Madsen, Churchill, & Strother,
2012). In this case, repetitive feature selection (RFS) might provide an es-
timate of the total number of informative features even if the number of
features that carry information alone or in combination with others cannot
be determined exactly (the sample size is usually too small to capture all
sources of variance and to accurately describe the decision border).
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As noted in section 1, the accuracy of this estimate will depend strongly
on the selectivity of the applied feature selection method. If irrelevant (un-
informative) features are falsely identified as being relevant, then the pro-
portion of relevant features in the data set is overestimated. In contrast,
the estimate does not strongly rely on the sensitivity of the feature selec-
tion; even if only one (truly relevant) feature is returned in each repeti-
tion, the proportion of informative voxels will still be estimated correctly.
Since the SFM is very restrictive in the way it selects relevant features
and returns a high percentage of truly relevant features (see section 3 and
appendix A), the estimate of informative features obtained with a repetitive
SFM (rSFM) likely represents an unbiased estimate of the true number of
informative features. This makes the SFM a potentially powerful tool to
identify not only the most informative features but also the total number of
informative features in biological data sets.

4.1 FMRI Data Set. FMRI data acquired from 12 healthy female partic-
ipants (mean age 21.6 years, range 19–26 years) on a 3 Tesla scanner (Philips
Medical Systems) were used for analysis. Functional imaging was divided
into 4 runs per subject; during each run 67 functional whole-brain images
were acquired (T∗

2 weighted echoplanar images, 42 horizontal interleaved
slices, tilt angle −30o, 3 mm slice thickness, in plane resolution 3 × 3 mm2,
FOV 240 × 240 mm2, TE 35 ms, TR 3000 ms). Participants were shown short
text messages (either happy or sad) through fMRI-compatible video goggles
and asked to decide whether they wanted to press a button in their left or
right hand immediately whenever a text message appeared on the screen,
but to hold their decision in mind and to execute their decision only when
a go signal (two arrow heads, one pointing to the left and one pointing to
the right) appeared on the screen. Participants were instructed to respond
as quickly as possible when the go signal appeared by pressing the selected
button with their left or right thumb, respectively. During each run, 12 trials
(mean duration 5 scans) were presented in pseudo-randomized order, using
the following timing parameters: stimulus presentation time, 1000 ms; de-
lay, 2000 or 3500 ms; go signal, 300 ms; inter trial interval, 8700 to 13,200 ms
(steps of 1500 ms). The study was approved by the Ethics Committee of the
University of Lübeck.

Image preprocessing and BOLD (blood oxygen level dependent) ac-
tivity estimation were conducted with SPM5 (Wellcome Department of
Imaging Neuroscience, London, UK), and results were visualized with
the BrainNet Viewer (National Key Laboratory of Cognitive Neuro-
science and Learning, Beijing Normal University, China) and MRicron
(www.mccauslandcenter.sc.edu/mricro/mricron/). Preprocessing inclu-
ded removal of the first two functional scans of each run, slice acqui-
sition time correction, concurrent spatial realignment and correction of
image distortions, normalization into standard MNI (Montreal Neurolog-
ical Institute) space, and spatial smoothing with an 8 ms gaussian kernel.
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Individual activity maps for left-hand and right-hand button presses were
estimated for each participant and run using a standard GLM procedure.
This procedure returned eight activation maps for each participant (four
for left-hand button presses and four for right-hand button presses). Thus,
the overall data set, in the following referred to as the button press data
set consisted of 48 maps (12 participants × 4 runs) per class, each of which
contained 50,989 in-brain voxels identified with the brain mask published
by Tzourio-Mazoyer et al. (2002).

4.2 Mass Univariate Analysis. The traditional approach to identify
voxels in fMRI data that show different levels of activity during two condi-
tions (i.e., that are discriminative) are voxel-wise univariate analyses. Here,
we used such a mass univariate approach as baseline measure against
which the performance of the rSFM was compared. For this, univariate
activation maps of each participant were averaged for each class and fed
into a group-level voxel-wise paired t-test. The overlap between voxels
with high absolute t-values and voxels identified as being relevant with
the rSFM was assessed at different thresholds. Thresholds were defined in
terms of the fraction of above-threshold voxels (i.e., percentage of voxels)
rather than in terms of probability of error to keep the number of above-
threshold voxels constant across the univariate and rSFM-based approach.
Six thresholds were used: 1%, 2.5%, 5%, 20%, 34%, and 50%. The second
threshold (2.5%) corresponded to a (uncorrected) voxel-wise probability
of error of p = 0.001, which is a commonly used (although debated; see
Nichols, 2012) threshold in voxel-wise analysis of fMRI data. Voxels that
were identified as discriminative at this threshold are listed in Table 2. The
second last threshold (34%) corresponded to the rSFM-based estimate of
the upper limit of informative voxels in the button press data set (see be-
low). The other thresholds were chosen to cover a wide range of different
thresholds. Corresponding (uncorrected) voxel-wise probabilities of error
are given in Table 3 (column 4).

4.3 Support Vector Machine with Random Feature Selection. To ob-
tain a baseline estimate of the number of informative voxels in the button
press data set, we trained a hard-margin SVM on randomly chosen
d-dimensional feature subsets (d = 1, 2, 4, . . . , 32,768) in a leave-one-
participant-out cross-validation scheme with 44 samples in each class (11
participants × 4 runs). This procedure was repeated 1000 times for each
subset size. The test error was below chance for the large majority of rep-
etitions even if only a single dimension was selected at random, and close
to zero if more than 1000 features were included, indicating that a large
fraction of voxels carried relevant information (see Figure 3).

4.4 Repetitive Feature Selection (RFS) with the SFM. The basic idea
of SFM-based RFS is to train an SFM on the complete data set, remove all
features from the data set that are found to be relevant by the SFM, retrain on



The Support Feature Machine 1565

Table 2: Discriminative Voxels as Identified by Voxel-Wise t-Statistics.

Significant Voxels

Anatomical Region Name Left Right

Postcentral gyrus 25.0% (319) 16.0% (204)
Precentral gyrus 7.4% (94) 7.5% (96)
Cerebellum VI 4.1% (52) 6.1% (78)
Inferior parietal lobe 5.3% (67) 1.3% (16)
Cerebellum IV/V 2.5% (32) 3.1% (39)
Putamen 1.5% (19) 0.0% (0)
Supplementary motor area 1.3% (17) 0.0% (0)
Superior parietal lobe 1.3% (16) 1.3% (16)
Pallidum 1.0% (13) 0.0% (0)
Supramarginal gyrus 0.9% (11) 0.4% (5)
Unassigned 9.0% (115)
Other regions (<1%) 5.1% (65)

Notes: Shown are the 2.5% most significant voxels (uncorrected voxel-wise p ≤ 0.001).
Anatomical regions were identified by an automatic labeling procedure (Tzourio-Mazoyer
et al., 2002; Schmahmann et al., 1998). Only regions that contain at least 1% of all significant
voxels across hemispheres are listed. Numbers in brackets are numbers of discriminative
voxels in each region. The majority of discriminative voxels form large clusters in each
hemisphere, including part of the precentral and postcentral gyri (motor and somatosen-
sory cortex) and part of the cerebellum, respectively.

the reduced data set, discard the obtained relevant features, retrain again,
and so on, until the data set is no longer separable within the remaining
features (Klement & Martinetz, 2010a).

1 Initialize the set of active features F0 ← {1, . . . , d}
2 Set t ← 0
3 repeat
4 Train a support feature machine using the feature set Ft
5 if a solution was found then
6 Store the results, i.e., wt and bt
7 Store the set of relevant features, i.e., Rt = {i |wt,i �= 0}
8 Update the set of active features, i.e., Ft+1 = Ft \ Rt
9 Reduce all feature vectors to Ft+1

10 Set t ← t + 1
11 end
12 until until the data set is no longer separable within the remaining features

If the SFM correctly identifies the smallest informative feature subset in
each run, the size of the returned feature subsets will monotonously in-
crease as more and more features are discarded. However, in practice, this
might not always be the case because the optimization might terminate
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Table 3: Observed and Expected Overlap Between Voxels Identified as Being
Relevant by the rSFM and Voxels Identified as Being Discriminative by Uni-
variate t-Statistics.

Percent Voxels Identified Voxel-Wise
as Relevant/Discriminative Percent Overlap Percent Overlap Probability of Error
(threshold) (observed) (expected) (univariate analysis)

1% 53% 1% 0.0001
2.5% 64.3% 2.5% 0.001
5% 61.6% 5% 0.006
20% 67.7% 20% 0.093
34% 72.7% 34% 0.23
50% 77.6% 50% 0.41

Notes: The overlap expected by chance (third column) for two subsets covering the same
percentage q is q2 with respect to the whole set and q with respect to one subset. Thus,
percentages in the first and third columns are the same. Additionally, the fourth column
shows the voxel-wise p-value of the least discriminative among all relevant voxels at this
threshold.

Figure 3: Support vector machine with random feature selection. The box plot
visualizes the distribution of the leave-one-participant-out cross-validation er-
ror (median, lower, and upper quartile, outliers).

in a local optimum due to the data set configuration or because of nu-
merical issues of the technical implementation of the SFM. To correct for
such inaccuracies, we sorted the obtained feature subsets according to their
size, starting with the smallest feature subset. This way, we obtained a se-
quence of monotonously increasing feature subsets that, according to our
definition, represents a sequence of feature subsets that are less and less
informative.
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To assess both the information content of each feature subset and the
information content in the remaining features in each repetition, we used a
leave-one-participant-out cross-validation scheme similar to that described
above. In each repetition, information content was accessed as the test error
of the SFM and the test error of a soft SVM, respectively. The soft SVM was
trained on all features that remained in the data set after all features that
had been identified as being relevant by the SFM had been removed. The
optimal softness of the SVM (C ∈ {10−8, 10−7, . . . , 107, 108}) for each cross-
validation was estimated by a nested cross-validation scheme in which the
SVM was trained on 10 × 4 = 40 samples in each class and tested on the
11th subject. Once the optimal softness parameter was determined, the SVM
was retrained on all 11 subjects and tested on the 12th subject. This way,
a function representing the test error of an optimized soft SVM over runs
was derived for each of the 12 participants.

Note that this method requires training 188 SVMs for a single SFM (11
participants × 17 softness values + the final run). To keep the run time in a
reasonable range, the SVM was trained and tested only on every 10th SFM
repetition.

Training and testing the repetitive SFM on the complete data set in a
leave-one-participant-out scheme required 31,647 training runs (i.e., for
each of the 12 cross-validations approximately 2500 repetitions before all
voxels were discarded) and took 83 hours on an Intel Core 2 Quad 2.4GHz
machine with 4GB RAM (using the Mosek optimization toolbox for solving
the SFM). Training and testing SVMs on the remaining features for every
10th SFM repetition took another 27 hours.

Because we used a leave-one-participant-out scheme for cross-
validation, the feature set size and error functions obtained during each
validation did not have the same length (i.e., the number of repetitions un-
til all features are consumed differed across validation runs). Thus, these
functions needed to be resampled before averaging. We chose a resampling
procedure in which feature subsets were first sorted according to their
size, and each x ∈ 1, . . . , d was then assigned the performance value of the
last run in which fewer than x features were removed. These piece-wise
constant curves were then averaged across all leave-one-participant-out
cross-validations.

The smallest feature subset obtained by the rSFM contained 2.4 voxels
on average. The largest feature subset contained an average of 77.7 voxels,
which is below the upper bound (i.e., number of data points, n = 88 sam-
ples, minus 1—VC-dimension of a linear classifier: see Figure 4a). Critically,
the comparison of voxels obtained by the rSFM and voxels identified as be-
ing discriminative by univariate t-statistics revealed a large overlap across
different thresholds that was by far larger than the overlap expected by
chance (Table 3 and Figure 5). Furthermore, this overlap was largest for fea-
ture sets removed early in the repetitive feature selection scheme (i.e., small
feature subsets) and decreased continuously toward the end of the RFS (see
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(d) Test error (SVM on remaining features)

Figure 4: Analysis of the fMRI data set with the rSFM and an optimized soft
SVM trained on the remaining features. Shown are the (a) average number
of relevant features (b), the average overlap between the features identified
with the rSFM, and those that were found to be discriminative with voxel-wise
t-statistics (top 2.5% of all features, p ≤ 0.001 as well as top 5%, 20% and 34%) (c),
the average leave-one-participant-out cross validation error of the SFM, and (d)
the average leave-one-participant-out cross-validation error of an SVM trained
on the remaining features for every 10th SFM repetition. To approximate the
number of features (voxels) that carry information, a sigmoid function was fitted
to the test error function of the SVM (dashed). The straight line (dash-dotted)
through the inflexion point of the sigmoid crosses chance level at 34% (black
dot).

Figure 4b). This indicates that the SFM very quickly consumes significant
features before other features are included.

Having shown that the rSFM indeed identifies discriminative voxels as
being informative, we continued to pursue our last question: whether the
rSFM can be used to estimate the number of relevant voxels within a data
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Figure 5: Overlap between relevant voxels (identified by the rSFM) and discrim-
inative voxels (identified with voxel-wise t-statistics). Voxels (features) found
to be relevant by the rSFM (2.5% most relevant voxels in at least half of all
participants in the top rows/ 34% most relevant voxels in at least half of all
participants in the bottom rows) are red. Voxels identified as being discrimi-
native by voxel-wise t-statistics (most significant 2.5%/34% of all voxels, the
former corresponding to an uncorrected voxel-wise p = 0.001) are green. Over-
lapping regions are yellow. Voxels are projected onto horizontal slices of a stan-
dard anatomical template (MNI space, most ventral slice z = −25, most dorsal
slice z = 65, spacing 10 mm). Discriminative voxels are mainly located in the
precentral/postcentral gyrus (motor and somatosensory cortex) and, at the
more lenient threshold, in the SMA (supplementary motor area), with a high
degree of overlap between the two methods.

set. The test error of both the rSFM and the SVM converged to chance level
as more and more features were discarded, indicating that the remaining
voxels carry less and less information (see Figures 4c and 4d). However,
due to large repetition-to-repetition fluctuations, it is difficult to estimate
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(a) 1% most relevant voxels (b) 2.5% (c) 5%

(d) 20% (e) 34% (f) 50%

Figure 6: Location of voxels identified as relevant by the rSFM. Numbers in-
dicate percentage of voxels. Color intensity indicates depth below surface and
consistency across participants: bright red regions are close to the surface and
were consistently identified across participants.

the exact point where the test error is no longer below chance, that is, the
point where all informative voxels are discarded and the remaining voxels
do no longer carry information. We pursued this estimation by fitting a
sigmoid function,

f (x) = α0 + α1

1 + e
− x−α2

α3

,

to the test error curve of the SVM (see Figure 4d). The coefficients α0 to α3
were estimated using least-squares approximation. The point of intersec-
tion with chance level of a straight line through the inflexion point (with
the same slope as the sigmoid at that point) was used as an estimate of the
upper limit of informative voxels in the data set. In the button press data set,
this point was reached at approximately 34% discarded voxels. Although
we do not know the true number of informative voxels in the button-press
data set, visual inspection of the distribution of the identified voxels pro-
vides some preliminary evidence for the validity of this estimate. Figure 6
shows the distribution of discarded voxels over repetitions. The second-
last plot marks the point where all (even weakly) informative voxels are
identified according to the point-of-intersection criterion (34%). As can be
seen, these voxels were mainly located in two dense clusters in the motor
and somatosensory cortex of both hemispheres, where button-press-related
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activity would be expected. Consistent with our assumption that pushing
the rSFM beyond this limit would return uninformative voxels, voxels in
the next plot (50%) are more or less scattered across the whole brain.

Taken together, the results indicate that the SFM identifies informative
features effectively even if the data set contains several informative feature
subsets that all permit linear separation (such as the fMRI data set used
here). Furthermore, the SFM seems to be a promising tool to estimate the
total number of informative voxels (or, more generally, features) in highly
redundant high-dimensional small-sample-size data sets. Further experi-
ments and validations in different directions will be a next step.

5 Summary and Conclusion

The goal of this letter was threefold. First, we reformulated the concept of
the SFM to make it applicable to a wide range of different scenarios. We then
showed that the SFM allows identifying relevant features very effectively
and, in many cases, more accurately than SVM-based feature selection,
particularly in high-dimensional small-sample-size scenarios. Finally, we
applied a repetitive version of the SFM to an fMRI data set to illustrate how
the SFM can be used to identify not only the most informative features of a
data set but also to estimate the total number of informative features in this
data set.

In appendix A we derive a condition that is necessary for both the SFM
and Weston’s approach to converge to the zero-norm minimizing solution.
With this condition, we provide additional plausibility considerations as
to why the SFM finds the least number of features with higher probability
than Weston’s approach.

In sum, we think we have shown that the SFM is both an effective and, as
shown in appendix B, efficient method for feature selection that will open
new avenues for data analysis in many functional biological applications,
including the rapidly growing field of information-based neuroimaging.
Open issues for further research include possible extensions of the SFM to
nonlinear classification problems and multiple classes, as well as a more
comprehensive comparison with existing approaches in neuroimaging ap-
plications.

Finally, we note that we see the SFM as a method that might be used
in different ways for repetitive feature selection. For example, if one is not
primarily interested in identifying the total number of informative features
but to find those features that permit most accurate classification, a slightly
different rSFM might be useful: as before, the SFM will be trained on the
complete data set in the first repetition, but this time an SVM will be trained
on all features found to be relevant. In the next repetition, features found
to be relevant will be added to the feature set only if the classification of
the SVM trained on all relevant features improves relative to the previous
repetition. This heuristic aims at finding the smallest subset of features that
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contains all information, which is recommended for optimizing classifica-
tion performance. However, the evaluation of this (and other) approaches
requires comprehensive analysis and experiments, which are beyond the
scope of this letter. They will be the focus of future studies.

Appendix: Mathematical Considerations and Implementation

We provide some mathematical considerations that give hints of the supe-
riority of the SFM for feature selection compared to SVM-based methods
such as the one proposed by Weston et al. (2003). Further, we provide tech-
nical details on how to transform the SFM into a standard linear program
to be solved with conventional optimization packages.

A.1 Mathematical Considerations. The SFM enforces linear separation
with an additional constraint on the mean decision value to avoid the trivial
solution w = 0. However, it is not obvious why this method should be better
suited to identify the minimum number of relevant features than, say, the
closely related method by Weston et al. (2003). Both methods converge to
a local minimum of the target problem, equation 2.2. On artificial and real-
world data sets, we observe the SFM to identify relevant features more
effectively than other SVM-based feature selection methods.

As we have seen in our simulations, in contrast to the approach of Weston
et al., the SFM finds the relevant features basically with the first step. We-
ston’s approach can hardly catch up with the following iterations. It seems
that the first step is important and decides whether we will converge to a
good minimum. The first step is equivalent to minimizing the one-norm in-
stead of the zero-norm. In the following, we derive necessary conditions for
finding a zero-norm solution by minimizing the one-norm (see also Klement
& Martinetz, 2011)—for both the SFM and the related SVM-based method
by Weston et al. Based on this condition, we explain why the SFM approach
finds a zero-norm minimizing solution more frequently by comparing their
behavior in a simple illustrative scenario.

First, we introduce some simplifications and notations to improve the
readability of the admittedly complex plausibility considerations. In the
following, we assume the data set D to be balanced and linearly separable
without bias,

∃ w ∈ R
d with yix

T
i w ≥ 0 ∀ i and w �= 0 ,

where the normal vector w ∈ R
d describes the separating hyperplane except

for a constant factor. For abbreviation, we define zi = yixi, Z = (z1, . . . , zn),
and z̄ = 1

n

∑n
i=1 zi = 1

2 ( 1
n+

∑
i∈I+ xi − 1

n−
∑

i∈I− xi) = 1
2 (μ+ − μ−). Using this
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notation, Weston et al. aim to

minimize ||w||0 subject to ZTw ≥ 1 , (A.1)

while in the SFM setting, we aim to

minimize ||w||0 subject to ZTw ≥ 0 and z̄Tw = 1
2

. (A.2)

Both, equations A.1 and A.2, solve 2.2, but which setting does it more
effectively in the first iteration when we replace the zero-norm by the one-
norm,

minimize ||w||1 subject to ZTw ≥ 1 , (A.3)

or, in the case of the SFM,

minimize ||w||1 subject to ZTw ≥ 0 and z̄Tw = 1
2

. (A.4)

First, we focus on equation A.1. When do we find a solution to this
equation A.1 by solving equation A.3? We denote the solution space of
equation A.1 by � and define the following two weight vectors:

w0 = arg min
w∈�

||w||1 subject to ZTw ≥ 1, (A.5)

w1 = arg min
w∈Rd

||w||1 subject to ZTw ≥ 1. (A.6)

||w0||0 = k, that is, at least k features are necessary to separate the input data.
In the following, we assume w0 and w1 to be unique. This is only a minor

restriction, as nonuniqueness will occur only in degenerate cases. Since Z
is drawn from a probability distribution, the probability of these cases is
of measure zero. The probabilistic nature of the input data also ensures
that all quadratic submatrices of Z have full rank. Among all solutions of
equation A.1, w0 is the solution with the lowest one-norm. Note that if
w1 is in �, then w1 = w0. Since in practice, equation A.1 cannot be solved
directly, � is in general unknown, as is w0. However, both are well defined.
In contrast, w1 is the solution on the entire R

d and can efficiently be found
by linear programming. If w0 = w1 for a specific data set, then the optimal
feature set can be obtained by optimizing for the one-norm. Without loss of
generality, for the following considerations, we assume:

1. All entries of the weight vector are positive: w0,i ≥ 0. Otherwise, we
invert the corresponding input dimension.
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2. The training data are ordered such that the design matrix Z = (Ẑ Ž)

with ẐTw0 = 1 and ŽTw0 > 1. So only the first columns of Z corre-
spond to active constraints; the constraints are fulfilled with equality.
Let k∗ be the number of active constraints.

3. The dimensions ofD are sorted such that exactly the first k dimensions
of w0 are nonzero:

w0,i

⎧⎨
⎩

> 0 i = 1, . . . , k

= 0 otherwise
such that w0 =

(
ŵ0
0

)
.

In total the design matrix Z is organized as

Z =
⎛
⎝ Ẑ1

Ẑ2

Ž

⎞
⎠ with Ẑ1 ∈ R

k×k∗
, Ẑ2 ∈ R

d−k×k∗
, Ž ∈ R

d×n−k∗
,

where the dimensions n and d are known in advance. The following lemma
holds for the relation between k and k∗:

Lemma 1. If w0 contains k nonzero entries, exactly k equations in ZTw0 ≥ 1 are
active: k = k∗.

Proof. In linear programming theory, a basic feasible solution is defined to
be a solution located in one of the corners of the solution space defined by
the constraints. The fundamental theorem of linear programming (found
in many textbooks on linear programming, e.g., in Dantzig & Thapa, 2003;
Vanderbei, 2008) states that if an optimal solution exists, then a basic optimal
solution also exists. In other words, optimal solutions are located in the
corners of the solution space, which is exploited by the simplex method for
solving linear programming problems.

As stated before, equation A.1 may have multiple solutions. Each solu-
tion may involve a different set of features. Let �i be the linear subspace
spanned by the k features of a particular solution to equation A.1. Then
� ⊂ ⋃

i �i, and

w0 = arg min
w∈�

||w||1 subject to ZTw ≥ 1

= arg min
w∈⋃

i �i

||w||1 subject to ZTw ≥ 1

is valid. Thus, w0 can be obtained by a sequence of linear programs. All
of them are feasible and nondegenerate. Therefore, an optimal solution
exists, and it is a basic optimal solution of a linear program. The weight
vector w contains k nonzero entries, so ẐTw0 = ẐT

1 ŵ0 = 1, that is, the initial
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d-dimensional problem is equivalent to a k-dimensional one. In a basic
solution, k constraints are active and, hence, k∗ = k follows.

We proceed with the main theorem, which provides a necessary condi-
tion for finding w0 with a linear program (i.e., by solving equation A.6).

Theorem 1. For w1 = w0, it is necessary that
∥∥Ẑ2ẐT

1

(
Ẑ1ẐT

1

)−1
1
∥∥

∞ < 1.

Proof. If w0 = w1, for each infinitesimal disparity vector � with ẐT(w0 +
�) = 1 and ŽT(w0 + �) > 1, we have

||w0 +�||1 > ||w0||1

⇔
d∑

i=1

|w0,i + 	i| >

d∑
i=1

|w0,i| =
d∑

i=1

w0,i

⇔
k∑

i=1

|w0,i + 	i| +
d∑

i=k+1

| w0,i︸︷︷︸
=0

+	i| >

k∑
i=1

w0,i

⇔
k∑

i=1

w0,i + 	i +
d∑

i=k+1

|	i| >

k∑
i=1

w0,i

⇔
k∑

i=1

	i +
d∑

i=k+1

|	i| > 0 . (A.7)

Next, we make use of the particular structure of the matrix Ẑ and split the
disparity vector into an upper and a lower part: �T = (

�T
1 �T

2

)
with �1 ∈

R
k,�2 ∈ R

d−k. A closed formulation for �1 is derived by rearrangement and
using ẐT� = 0:

ẐT� = ẐT
1 �1 + ẐT

2 �2 = 0

⇔ ẐT
1 �1 = −ẐT

2 �2

⇔ Ẑ1ẐT
1 �1 = −Ẑ1ẐT

2 �2

⇔ �1 = −(
Ẑ1ẐT

1

)−1
Ẑ1ẐT

2 �2

⇒ 1T�1 = − 1T(
Ẑ1ẐT

1

)−1
Ẑ1ẐT

2︸ ︷︷ ︸
:=αT

�2 (A.8)
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Finally, equation A.7 can be expressed using α and �2:

k∑
i=1

	i +
d∑

i=k+1

|	i| = −αT�2 + ||�2||1 =
d∑

i=k+1

−αi−k	i + |	i| > 0.

(A.9)

Equation A.9 has to hold for any infinitesimal �2, which is the case if and
only if |αi−k| < 1 holds for all k + 1 ≤ i ≤ d, that is, if and only if

||α||∞ = ∥∥Ẑ2ẐT
1

(
Ẑ1ẐT

1

)−1
1
∥∥

∞ < 1. (A.10)

(�2 = 0 is excluded according to equation A.8 since then � = 0.)

So far, all considerations apply for equation A.1. However, with the
following minor changes, a similar condition can be derived for the SFM
problem, equation A.2:

1. The design matrix Z is extended by an additional column, thevector z̄.
2. The weight vectors w0 and w1 are defined analogously:

w0 = arg min
w∈�

||w||1 subject to
(
z1, . . . , zn

)T
w ≥ 0 and z̄Tw = 1

2
,

w1 = arg min
w∈Rd

||w||1 subject to
(
z1, . . . , zn

)T
w ≥ 0 and z̄Tw = 1

2
.

3. If w0 contains k nonzero entries, exactly k constraints are active. The
last of these constraints is the equality constraint z̄Tw = 1/2.

4. The design matrix Z and the weight vector w0 are ordered in the
same way as before: the first k entries of w0 are nonzero, and the first
k columns of Z correspond to active constraints. The kth column is z̄.

Theorem 1 and its proof now apply exactly in the same way to the SFM.
Both approaches are very closely connected; however, they are not iden-

tical. The slight difference leads to a significantly lower number of features,
as we have seen in the experiments. Due to the complexity of both ap-
proaches, it is not possible to give a rigorous mathematical proof for the
superior performance of the SFM, equation A.2, compared to Weston’s ap-
proach, equation A.1. However, within a simplified scenario and with ap-
proximate arguments, we can use the result of theorem 1 to make superior
performance plausible.



The Support Feature Machine 1577

We consider the simplest scenario analog to our preliminary experiments
in section 3.1. Assume the elements of each vector zi to be drawn from a
normal distribution N (μ, σ 2) with the expected value:

μ =
{

c i = 1, . . . , k

0 otherwise

Thus, only the first k features are relevant; all others are irrelevant. For
Weston’s approach, equation A.1, we have ẐT

1 ŵ0 = 1 and obtain

Ẑ1ẐT
1 ŵ0 = Ẑ11 ≈ k · c · 1 ⇔ ŵ0 ≈ k · c · (

Ẑ1ẐT
1

)−1
1

such that

||α||∞ = ∥∥Ẑ2ẐT
1

(
Ẑ1ẐT

1

)−1
1
∥∥

∞ ≈
∥∥∥∥ Ẑ2ẐT

1 ŵ0

k · c

∥∥∥∥
∞

=
∥∥∥∥ Ẑ21

k · c

∥∥∥∥
∞

=
∥∥∥∥εk

c

∥∥∥∥
∞

.

The entries of the vector εk are distributed as N (0, σ 2

k ). In contrast, for the
SFM, equation A.2, where the last column of Ẑ is the mean of all zi, we have
ẐT

1 ŵ0 = 1
2 (

0
1 ) and obtain

Ẑ1ẐT
1 ŵ0 = Ẑ1

1
2

(
0
1

)
≈ c

2
· 1 ⇔ ŵ0 ≈ c

2
· (

Ẑ1ẐT
1

)−1
1

and

||α||∞ ≈
∥∥∥∥ Ẑ2ẐT

1 ŵ0

c/2

∥∥∥∥
∞

=
∥∥∥∥ Ẑ2

c

(
0
1

)∥∥∥∥
∞

=
∥∥∥∥εn

c

∥∥∥∥
∞

.

Here, the entries of εn are distributed as N (0, σ 2

n ). Obviously, for k 	 n,
the probability that all elements of α stay below 1 and, hence, that the
condition in theorem 1 is fulfilled, is much larger for the SFM. As expected,
the larger c is, the easier it is for both approaches to be successful. Note
that we assumed that the elements of Ẑ1 and Ẑ2 are independent stochastic
variables. Of course, since Ẑ1 and Ẑ2 are selected by the respective algorithm
according to certain criteria, this is not really the case.

To summarize, the above considerations are not a proof for a superior
performance of the SFM on every data set; however, it provides some insight
into why we observe it to identify relevant features more effectively.

A.2 Implementation. Next, we show how the mathematical for-
mulations are transformed to be solved by conventional optimization
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frameworks. Given a particular optimization problem, it is in general im-
possible to say beforehand which of the numerous commercially or freely
available solvers will perform best. Therefore, we chose four major opti-
mization packages and performed an empirical analysis of their perfor-
mance in solving the SFM. Of course, this list is only a small excerpt of the
confusingly vast world of linear programming toolboxes; however, they
cover the main concepts and algorithms, including the simplex algorithm,
interior-point methods, presolvers, and others.

First, the SFM needs to be transformed into the standard linear program:

minimize fTx

subject to Ax ≤ b

Aeqx = beq

l ≤ x ≤ u .

We derive two alternative formulations that differ in size and sparsity of the
constraint matrices. Depending on the problem size—the dimension and
the sample size—either of the alternatives may be better suited. The iterative
SFM algorithm is require to solve the nonlinear optimization problem:

minimize |w|1
subject to yi

(
wTxi + b

) ≥ 0 for all i

wT
(
μ+ − μ−) = 1.

(A.11)

For linearization, each entry of the weight vector is split into a positive
and a negative component where only one may be active: wi = w+

i − w−
i

with w+
i , w−

i ≥ 0 and w+
i · w−

i = 0. As either w+
i or w−

i or both are 0, |wi| =
w+

i + w−
i holds. Thus, equation A.11 is transformed into a linear program,

where we seek to

minimize
d∑

i=1

w+
i + w−

i

subject to yi

⎛
⎝ d∑

j=1

(
w+

j − w−
j

)
xi j + b

⎞
⎠ ≥ 0 for all i

d∑
j=1

(
w+

j − w−
j

)(
μ+

j − μ−
j

) = 1

w+
i , w−

i ≥ 0 for all i.

(A.12)
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Note that the constraint w+
i · w−

i = 0 is not required. Assume the opti-
mal solution is found and both variables take positive values. Then one
could reduce each of them by min(w+

i , w−
i ) without affecting wi; the overall

weight vector stays the same. However, the objective function is reduced by
2 · min(w+

i , w−
i ), which is a contradiction to the initial assumption of w+

i
and w−

i being optimal. The input matrices and vectors for equation A.12
take the following values:

f = (
1T 1T 0

)T ∈ R
2d+1 (objective function)

x = (
w+T w−T b

)
(target variable)

A =

⎛
⎜⎜⎜⎝

−y1xT
1 y1xT

1 −y1

...
...

...

−ynxT
n ynxT

n −yn

⎞
⎟⎟⎟⎠ ∈ R

n×2d+1 (inequality constraint)

b= 0 ∈ R
n

Aeq = (
μ+ − μ− μ− − μ+ 0

) ∈ R
1×2d+1 (equality constraint)

beq = 1

l = (
0T 0T −∞ )

(lower bounds of the variables)

u = (∞ · · · ∞ ∞ · · · ∞ ∞ )
(upper bounds of the variables)

Here, two conflicting variable naming schemes are mixed to avoid uncom-
mon notations. So, x, the variable to be optimized, should not be confused
with the input data points x1, . . . , xn, and the bias b is to be distinguished
from the equality constraint vector b. We use ∞ and −∞ to indicate that the
variables have no upper or lower bound, respectively. The above formula-
tion is memory inefficient, as it requires the inequality constraint matrix to
be stored twice: once with a positive and once with a negative sign. The sec-
ond minor issue is related to the number of nonzero entries in the constraint
matrices. In general, linear programming solvers are most efficient on sparse
matrices, and problem formulations should minimize redundancy. In our
case, we should seek an alternative formulation involving the training data
only once. The key idea is the substitution si = w+

i + w−
i . Thus, we get

w+
i = si − w−

i ⇒ wi = w+
i − w−

i = si − 2w−
i ⇒ 1

2

(
si − wi

) = w−
i ≥ 0

and, vice versa,

w−
i = si − w+

i ⇒ wi = w+
i − w−

i = 2w+
i − si ⇒ 1

2

(
si + wi

) = w+
i ≥ 0.
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The transformed optimization problem,

minimize
d∑

i=1

si

subject to yi

(
wTxi + b

) ≥ 0 for all i

wT
(
μ+ − μ−) = 1

si + wi ≥ 0 for all i

si − wi ≥ 0 for all i,

has the same optimum but is memory efficient and much sparser. The input
matrices and vectors now take the following values:

f = (
0T 1T 0

)T ∈ R
2d+1 (objective function)

x = (
wT sT b

)
(target variable)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−y1xT
1 0T −y1

...
...

...

−ynxT
n 0T −yn

Id −Id 0

−Id −Id 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(n+2d)×(2d+1) (inequality constraint)

b= 0 ∈ R
n

Aeq = (
μ+ − μ− 0T 0

) ∈ R
1×2d+1 (equality constraint)

beq = 1

l = (−∞ · · · − ∞ 0T −∞ )
(lower bounds of the variables)

u = (−∞ · · · ∞ ∞ · · · ∞ ∞)
(upper bounds of the variables)

In the first approach, the constraint matrix A has n(2d + 1) nonzero en-
tries, while in the reformulated version, n(d + 1) + 4d entries are nonzero.
Thus, for n > 4, the reformulated version has fewer entries. However, the
complexity of linear programming solvers due to numerous processing
steps—presolving, scaling, solving—makes an a priori run-time prediction
impossible. So other less obvious aspects than the number of nonzero en-
tries might get important in practice and require an empirical run-time
evaluation.
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The soft SFM approach, equation 2.9, is reformulated in the same way.
In the initial problem,

minimize ‖w‖1 + C‖ξ‖1

subject to yi

(
wTxi + b

) ≥ −ξi

wT
(
μ+ − μ−) = ±1

ξi ≥ 0 .

the substitution wi = w+
i − w−

i with w+
i , w−

i ≥ 0 leads to

minimize
d∑

i=1

w+
i + w−

i + C
n∑

i=1

ξi

subject to yi

⎛
⎝ d∑

j=1

(
w+

j − w−
j

)
xi j + b

⎞
⎠ ≥ −ξi

d∑
j=1

(
w+

j − w−
j

)(
μ+

j − μ−
j

) = ±1

w+
i , w−

i , ξi ≥ 0 for all i.

Again, the size and the structure of the inequality constraint matrix A are
the crucial factors:

A =

⎛
⎜⎜⎜⎝

−y1xT
1 y1xT

1 −y1

...
... −In

...

−ynxT
n ynxT

n −yn

⎞
⎟⎟⎟⎠ ∈ R

n×2d+n+1. (A.13)

Here, n(2d + 2) entries are nonzero, and as in the hard-margin case, the
input data need to be stored twice. This is again avoided by substituting
si = w+

i + w−
i to get the linear program:

minimize
d∑

i=1

si + C
n∑

i=1

ξi

subject to yi

(
wTxi + b

) ≥ −ξi

wT
(
μ+ − μ−) = ±1

si + wi ≥ 0

si − wi ≥ 0

ξi ≥ 0 for all i.
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Now the inequality constraint matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−y1xT
1 −y1

... 0n,d −In

...

−ynxT
n −yn

−Id −Id 0d,n 0

Id −Id 0d,n 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(n+2d)×(2d+n+1) (A.14)

with 4d + dn + 2n nonzero entries.
Technical issues. As with many other machine learning algorithms, nor-

malization is an essential preprocessing step for any of the proposed SFM
variants. For all experiments, we normalized the training data sets to zero
mean and unit variance and finally scaled all vectors to have a mean norm
of one. This last step is sometimes beneficial in high-dimensional scenarios
to keep the outcome of scalar products in a reasonable range. The test sets
were normalized according to the factors obtained from the corresponding
training sets.

For hard SFMs, either no solution exists or a solution where all data
points are correctly classified. Since the optimizer uses numerical approxi-
mation methods with certain accuracy thresholds, some constraints may be
marginally violated. Thus, some data points may be located on the wrong
side of the hyperplane, but very close to it, producing a nonzero training
error even in the hard case.

To avoid numerical issues, numbers that differed by no more than a
specific implementation-dependent number—the machine epsilon—were
considered to be equal.
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