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LindEvol: Artificial Models for Natural

Plant Evolution

Jan T. Kim

LindEvol is a family of computer simulation programs modelling the evolution of plants. Several mechanisms that
shape plant evolution are integrated in LindEvol models. LindEvol models have been used to investigate evolution of
structured taxonomic diversity. The concept of linking mutation rate modification to an energy cost was used as a
starting point for developing a method for avoiding premature convergence in evolutionary algorithms. Finally, LindEvol
has been used for a comparative analysis and characterization of methods for measuring biodiversity.

1 Introduction

Artificial Life has been defined as “a field of study devoted to un-
derstanding life by attempting to abstract the fundamental dy-
namical principles underlying biological phenomena, and recre-
ating these dynamics in other physical media — such as com-
puters — making them accessible to new kinds of experimental
manipulation and testing.” [Langton et al., 1992, preface]. One
of these fundamental processes is evolution, which is a major fo-
cus of Artificial Life research. Morphogenesis is another central
dynamical process which is linked to evolution by genetics, as
the developmental process emerges through the biological inter-
pretation of genetic information. At the molecular level, this in-
terpretation is mediated by transcription factors. These are pro-
teins that specifically bind to sequence motifs that are usually
located in the upstream part of genes. By binding to these mo-
tifs, transcription factors activate or repress the transcription of
their target genes. Transcription factors are themselves encoded
by genes, and thus they form regulatory networks which con-
stitute core systems for the biological interpretation of genetic
information [Meyerowitz, 1994, Theilen and Saedler, 1995].
The LindEvol modelling system was developed to rep-
resent the evolution of plant morphogenesis processes. The
name ‘LindEvol” is derived from ‘“Lindenmayer systems”
[Prusinkiewicz and Lindenmayer, 1990] and “evolution”.

2 Description of LindEvol

2.1 Modelling of plant phenotypes

Plants in LindEvol grow in a spatially extended environment
which is modelled by a two-dimensional, orthogonal lattice. Ver-
tically, the lattice has borders, called ceiling and floor. Horizon-
tally, the lattice is circular. Plants are modelled as collections of
contiguous cells. All plants of a population grow on the same
lattice.

Energy enters the system as light units called photons. Pho-
tons are introduced into the lattice at the top row. From its
introduction site, a photon travels vertically downward. If it en-
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Figure 1: The scheme for indexing the local neighbourhood of
a cell and the application of this scheme for mapping a local
plant structure in a nine cell neighbourhood to a byte value.
Boxes indicate cells belonging to one plant. Bits corresponding
to sites occupied by cells of the plant are set to 1, all others are
set to 0.
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Figure 2: Computation of a sixteen bit cell state. Bits of the
internal state are labelled i, the energy bit is labelled e, neigh-
bourhood state bits are labelled n and the bits of the resulting
cell state are labelled s. V denotes the or operator.

counters a cell, it is absorbed with a probability of 50%. Cells
have a binary energy state, they are either energyless or energy-
rich, an energyless cell that absorbs a photon becomes energy-
rich.

Each plant cell has a state which consists of eight or six-
teen bits. The neighbourhood state of a cell is defined by the
pattern of cells that are located within the cell’s nine-cell neigh-
bourhood and that belong to the same plant. Fig. 1 shows the
mapping of cell patterns to a byte value which is used to specify
the neighbourhood state of a cell. In LindEvol-GA (see section
2.3.2), the cell state is eight bits wide and defined to be the



neighbourhood state.

In LindEvol-P (see section 2.3.2), the cell state is sixteen
bits wide, and it is determined by the internal state consisting
of sixteen bits (see section 2.2.1), the neighbourhood state and
the energy state, as depicted in Fig. 2.

Time proceeds in discrete steps. A basic time step, called a
day, consists of the simulation of light by running one photon
through each column of lattice sites, followed by the simulation
of plant growth. The genetic control of the growth process is
described in the following subsection.

2.2 Modelling of plant genomes and develop-
ment

2.2.1 Cell actions

Plant development takes place by actions performed by plant

cells. The actions are:

e divide n: A new cell is produced at the position n with
respect to the acting cell. n denotes a neighbouring site of
the mother cell according to the indexing scheme shown in
Fig. 1.

e flyingseed, localseed: A new plant is generated on the
lattice floor, either at a randomly chosen unoccupied site
(flyingseed), or as closely as possible to the x-coordinate
of the acting cell (1ocalseed).

e mut-, mut+: Each plant has a mutation modification expo-
nent, denoted by p (see section 2.2.6). These actions decre-
ment and increment p.

e statebit n: The n-th bit in the cell’s internal state is set to
1 in the subsequent time step.

All actions except statebit consume energy. Actions are
encoded by action codes, which are six- or eightbit integer num-
bers. Action codes are extracted from genomes by genome inter-
preters (see below) and mapped to actions using a fixed lookup
table.

2.2.2 Genome decoding basics

Genomes are modelled by strings of bytes which are processed
by a system called genome interpreter (see sections 2.2.3 and
2.2.4). The genome interpreter determines substrings of the
genome that constitute a gene. Each gene is decoded into one
rule. A rule maps a set of cell states, specified by a state mask,
to an action. A state mask is a bit mask consisting of the sym-
bols 0, 1 and *, where the asterisk denotes “don’t care’. Rules
are written in the form:

cell state mask -> action

In a given cell, all rules in which the state mask matches
the cell state are activated, but only the first energy consuming
action actually has a phenotypic effect, since performing such
an action invariably renders the cell energyless. The genes that
encode rules which are activated during the life of a plant are
collectively referred to as the developmental program of that
plant.
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Figure 3: An example genome and its decoding by the block
oriented genome interpreter. Hexadecimal values are prefixed
with §.

2.2.3 Block oriented genome interpreter

For the block oriented genome interpreter, a gene consists of a
block of two bytes length. At each even-numbered position in
the genome (byte indexing starts with 0), a gene begins. The
first byte determines the lefthand part of the rule encoded by
the genome, it specifies exactly one cell state. The second byte
specifies the eightbit action code for the righthand part of the
rule. Fig. 3 illustrates how block oriented genome interpretation
works.

2.2.4 Promoter oriented genome interpreter

The promoter oriented genome interpreter has been designed
to capture the label-based structure of molecular genes which
makes them largely independent of their positions and thus ro-
bust to frameshift effects [Ray, 1992]. The promoter oriented
genome interpreter (see Fig. 4) distinguishes three types of bytes
values. Bytes in which the most significant bit (bit number 7) is
set are interpreted as promoters, bytes in which bit number 6 is
set are interpreted as terminators, and bytes in which neither bit
is set are considered to be operators. A gene is a sequence be-
ginning with a promoter, followed by zero or more operators and
ending with a terminator. Sequences starting with a promoter
and ending with another promoter or the end of the genome are
called incomplete genes.

For translating a gene into a rule, the six least significant
bits are extracted from the terminator and interpreted as a sixbit
action code determining the righthand part of the rule. Incom-
plete genes do not specify any action. Such genes do not have
any effect on the development of the phenotype.

Each operator specifies one bit in the cell state mask (i.e.
the lefthand part of the rule). The four least significant bits
determine which bit is to be specified. Bit number 5 gives the
value (0 or 1) of the bit in the state mask. If there are several
operators for the same state bit, the last one takes precedence
over all others. Positions in the cell state mask for which no
value is specified by an operator become wildcards.

2.2.5 \Visualization of regulatory networks

Activation of genes can result in cell divisions. In this case, the
newly produced cell alters the local structure of its neighbouring
cells, and the neighbouring cells form the structure surrounding
the new cell. Because the daughter cell is placed within the
neighbourhood of the mother cell, it is possible to determine the
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Figure 4: Decoding of a gene by the promoter oriented genome
interpreter. The promoter is labelled P, operators are labelled O
and the terminator is labelled T. For clarity, only the least four
significant bits of the state mask are shown (all twelve others
are *).

local structure surrounding the mother cell after division, and
since the local structures of mother and daughter cell overlap,
it is possible to partially determine the daughter cell’s local
environment (see [Kim, 1996b] details). The local structures of
the cells involved determine which genes are activated in the
next time step. Thus, by analyzing the local structures before
and after division, it is, to a limited extent, possible to conclude
which genes will be activated by the activity of a gene. These
activation relations can be visualized, as shown in Fig. 5.

2.2.6 Mutation

Mutations are modelled as random modifications of a genome.

For LindEvol models, four different types of mutations are used:

e Point mutation. There are two types of point mutation. In a
bytewise point mutation, a random value is written into the
affected position in the genome. Bytewise point mutation is
used in conjunction with block oriented genome interpreta-
tion. A bitwise point mutation is defined as the inversion of
one randomly chosen bit in the affected byte; this is used
with promoter oriented genome interpretation.

o Insertion. A block of random bytes is inserted. In models
with block oriented genome interpretation, blocks of two
bytes are inserted to avoid frameshifts. With the promoter
oriented gene interpreter, which is much more robust to such
frameshift effects, single bytes are inserted.

e Deletion. As with insertions, blocks of two bytes are deleted in
models using block oriented genome interpretations, whereas
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10: 10000001 -> divide 3
13: 00000001 -> divide 7
18: 00000000 -> divide 7

Figure 5: A plant and its developmental program listing (i.e. a
listing of the rules encoded by the genome, showing only the
genes which actually were activated during the growth process)
and its graphical representation.

single bytes are deleted in models using promoter oriented
genome interpretation.

e Gene duplication. This type of mutation is only defined for
models using promoter oriented genome interpretation. In a
gene duplication, a copy of a stretch of the genome is ap-
pended to the genome. The copied stretch always starts with
a promoter. The final byte which is copied is the next termina-
tor, the next promoter, or the end of the genome, whichever
is encountered first. This operation results in appending a
copy of a gene or of an incomplete gene to the genome.

The control parameters for mutation are the global muta-
tion rates for replacement, insertion, deletion and duplication,
denoted by M,, M;, My and M4, respectively, and the mu-
tation modification factor q. These are global parameters that
remain constant during a simulation run, their allowed ranges
are given by 0 < M,, M;,Mq, Mg, < 1 and ¢ > 1. The
effective mutation rates, denoted by m,, m;, mq and mgyp,

determine the probability for a given mutation type to affect a

byte in one mutation process. These are calculated according

to the scheme

m=M-q" (1)

where u denotes the mutation modification exponent which can
be incremented and decremented by energy consuming cell ac-
tions as described in section 2.2.1.

2.3 LindEvol models of evolution
2.3.1 LindEvol-GA

LindEvol-GA was designed to model the evolution of annual
plants, i.e. plants which go through their entire life cycle within
one vegetation period. A genetic algorithm [Goldberg, 1989] is
used to model the process of evolution, according to a concept
introduced in [Wilson, 1989]. Genomes are translated using the
block oriented genome interpreter. Internal cell states are not
used.

At the start of a simulation run, an initial population consist-
ing of 50 randomly generated genomes that are 20 genes long
is constructed. Fitness values for the genomes are computed by
simulating a vegetation period. Initially, all plants consist of one
single, energyless cell, called the germ cell. Germ cells are placed
equidistantly on the floor of the lattice world, which is 150 sites
wide and has a height of 30 sites. After 30 days, the number of
energy-rich cells is determined for each plant and assigned as a
fitness value to the corresponding plant.

After the computation of fitness values based on the sim-
ulation of a vegetation period, the population is subjected to
selection and mutation. Selection is performed by replacing the
genomes with the lowest fitness values with copies of genomes
from the surviving part of the population. The proportion of
genomes that are replaced in the selection step is determined
by the selection rate s, which is a global control parameter.
After selection, all genomes in the population are subjected to
mutation as described in section 2.2.6, completing the compu-
tation of the population of the subsequent generation.



2.3.2 LindEvol-P

In LindEvol-P, promoter oriented genome interpretation and in-
ternal cell states are used. In contrast to LindEvol-GA, time
steps are not grouped to vegetation periods.

Reproduction takes place by seed production instead of be-
ing done by an external schedule. Plant death is modelled prob-
abilistically on the basis of properties of the plant, i.e. with-
out any global ranking. The probability of a plant to die in a
time step depends on its total number of cells n, its number of
energy-rich cells ne, and its leanover term L. The leanover term
reflects the deviation of the plant’s shape from being balanced
around the germ cell, its values range from 0 (indicating perfect
balance) to 1 (indicating strongest leanover).

The death probability of a plant per time step is calculated
based on the global control parameters d, d,,, d. and d;, which
stay constant in a simulation run:

Pi=d-n% - (n,+1)% +d;-L

In addition to this probabilistic death, plants may also die
as a result from being attacked. An attack is the attempt of a
plant to produce a cell on a position that is already occupied.
In this case, the plant to which the already existing cell belongs
dies with the probability
1
Prin = —
Tie
where n. denotes the number of energy rich cells in the
plant that is being attacked.

3 Selected LindEvol results
3.1

The mutation rates and the selection rate in LindEvol-GA
limit the length of developmental programs that can evolve.
According to a formal analysis of this error threshold effect
[Kim, 1996b, Kim, 1996a], the maximal length of developmen-
tal programs can be estimated from the selection rate and the
replacement mutation rate by

A log(1 — s)
e 9log(1 — M,)

Mutation rate adaptation in LindEvol-GA

(2)

in the case that M; = M; = 0. Developmental programs with
a length greater than r,,,, are not evolutionarily stable, since
irrespective of their fitness, the fraction of their offspring which
inherits the developmental program undamaged by mutation is
so small that the developmental program in question are in-
evitably diluted out of the population.

According to equation 2, Tyee &~ 1.7 for s = 0.5 and
M, = 0.18. This means that even basic developmental pro-
grams cannot evolve with such a high mutation rate. However,
this limitation of developmental complexity can be overcome as
the mutation modification factor is set to 2.0 in the run shown
in Fig. 6.

In this run, a marked evolutionary step is observed around
generation 1150. Before this step, average developmental pro-
gram length is below 2, and plants growing vertical or diagonal
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Figure 6: LindEvol-GA run with selection rate s = 0.5, mutation
rates M, = 0.18, M; = My = 0, mutation modification factor
mf = 2.

shoots only appear sporadically. After the step, active lowering
of effecitve mutation rates evolves as indicated by a drop in
average mutation exponent values. At the same time, average
developmental program length rises well above the threshold
of 1.7, and more complex phenotypes appear. While fitness in-
creases too, it remains comparatively low because plants use
energy for performing mut- actions.

3.2 LindEvol-P

LindEvol-P is much more complex than LindEvol-GA, and less
accessible to formal analysis — e.g. as generations overlap and
are variable in length, the error threshold analysis which has
been carried out for LindEvol-GA cannot be applied to LindEvol-
P. However, LindEvol-P provides opportunities for re-examining
phenomena observed in LindEvol-GA in a more realistic simu-
lation system.

Fig. 7 provides an impression of the variability of phenotypes
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Figure 7: Lattice world pictures from a LindEvol-P run.

which can evolve in LindEvol-P simulations. Initially, the floor
of the lattice world becomes covered with a unicellular plants.
After 1000 time steps, the first vertically growing plants appear.
The varying height of these plants reflects the different ages.
Around time step 10000, a great phenotypic diversity of tree-like
plants evolves within less than 300 time steps. While the plant
shapes are quite different, the underlying genomes are very sim-
ilar; most of them differ by one mutation in a gene which plays
a key role during development (for details, see [Kim, 1996b]).
Thus, the various phenotypes seen in Figures 7b-c are homeotic
mutants of a common genetic theme [Meyerowitz, 1994].

Possibly due to their enormous phenotypic variability, the
tree like plants are outcompeted by aggressive plants which ex-
tend only on the floor (not shown). Only after another 15000
time steps, a new type of plant emerges which grows diagonally
and compensates the resulting imbalance by lateral extensions
in the opposite direction (Fig. 7d). This plant type proves to
be stable against aggressive plants on the floor, and continues
to dominate for at least several ten thousand time steps. The
improved robustness of these diagonal plants is partly due to
their better efficiency in light absorption; a phenomenon also
seen in LindEvol-GA.

4 LindEvol experiments

4.1 Evolution of complexity on different levels

of biological organization

In LindEvol models, some key levels at which biological com-
plexity and diversity is observed are represented. Complexity at
the phenotypic level can be visually assessed by inspecting the
growth processes and of plant communities. Energy usage or fit-
ness levels can be used to quantitatively score the performance
of the phenotypes. The length of developmental programs indi-
cates the number of different cell types.

The emergence of complexity by evolution is only possible if
there is an appropriate balance between variation (giving rise to
new genetic configurations and thus to novel phenotypes) and
selection (which purges variants of genetic information which
give rise to phenotypes that fail to interpret, and interact with,

their environment in a biologically meaningful way). The emer-
gence of complexity on a level of biological organization is often
correlated to complexity on other levels, and in some cases, plau-
sible reasons for such correlations can be given. For example,
the generation of more complex morphological structures may
require more elaborate, and hence more complex, developmental
processes.

In LindEvol-GA, mutation and selection are externally deter-
mined by control parameters (mutation rate and selection rate).
As various levels of biological organization are represented by
LindEvol, this system provides a basis for investigating the emer-
gence of complexity on various levels and correlations between
these phenomena by performing series of LindEvol-GA runs with
varying settings of the selection rate and the mutation rates.

Comparing the phenotypes at generation 1000 and at gener-
ation 4000 shown in Fig. 6 demonstrates that without mutation
rate adaptation, much less complex phenotypes evolve with a
high global mutation rate. This is also indicated by the fitness
value data and for developmental program length. Thus, the
correlation between phenotypic and developmental complexity
outlined above is captured by LindEvol-GA.

At the genetic level, the sequences from the entire popula-
tion were subjected to a distance distribution complexity (DDC)
analysis [Kim, 1996a, Kim, 1996b]. DDC is defined as the Shan-
non entropy of the relative abundances of distance values. This
complexity measure was devised to characterize second order
complexity, i.e. complexity which arises “at the edge of chaos”
[Langton, 1992] by distinguishing populations with a rich taxo-
nomic structure from unstructeredly randomized populations as
well as from populations with a shallow taxonomy, e.g. due to
convergence at a single fitness optimum. Fig. 6 shows that DDC
increases as effective mutation rates are lowered and more com-
plex phenotypes appear, indicating that there is indeed a posi-
tive correlation between the complexity characterized by DDC
on the genetic level and complexity evolving at the develop-
mental and at the phenotypic level. A systematic analysis re-
vealed that high DDC values are strongly correlated to develop-
mental program length and to high fitness values. Furthermore,
the runs in which these elevated levels in complexity indicators
were observed were shown to be located near an edge of chaos,
which is formally defined by an error threshold analysis, accord-
ing to their settings of the mutation rate and the selection rate
[Kim, 1996a].

4.2 Evolutionary optimization by energy de-
pendent mutation rate adaptation

Adapting mutation rates are useful for optimization by evolu-
tionary algorithms [Rechenberg, 1994, Back, 1992]. However,
mutation rates should be prevented from converging towards
arbitrarily low values, as this may result in premature conver-
gence of the evolutionary process.

In LindEvol-GA, mutation rate adaptation evolves only if
this confers a substantial evolutionary advantage (see section
3.1), if mutation does not limit complexity, no adaptation of
mutation rates is seen. This observation led to the development
of a generalized scheme for implementing fitness dependent mu-
tation rate adaptation which can be applied in a large class of
evolutionary algorithms [Kim, 1998].
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Figure 8: Optimal (i.e. minimal) fitness values after 1000 gen-
erations as a function of the penalty setting. Both axes have a
logarithmic scale.

The key idea is to add a mutation modification penalty, de-
noted by p, to the control parameters of an evolutionary algo-
rithm. Then, for an individual 4, changing u; by one unit results
in reducing its fitness value by p. Individual mutation rates are
calculated as in equation 1.

This concept has been integrated into a basic evolution
strategy [Rechenberg, 1994] in order to explore the effects of
fitness dependent mutation rate on the performance of an
evolutionary algorithm. Genomes are represented by vectors
with real-valued components, and standard test functions (see
[Salomon, 1996]) were used as fitness functions. Fig. 8 shows
the results for two of these test functions, the sphere function
f(Z) = ||#|| and Salomon’s function f(Z) = — cos(2n||Z||) +
0.1-]|Z|| + 1.

For both functions, intermediate settings of the penalty pa-
rameter p yield best optimization results. Remarkably, this even
holds true for the sphere function, which has no local optima.
For multimodal functions like Salomon’s function, the ideal set-
ting of p is strongly shifted towards higher values, as too low
penalties result in premature convergence with these functions.
In the case of the sphere function, low penalty settings result
in an uncounterbalanced slowdown of minimization speed, with
nonzero settings of p, the slowdown is delayed and thus, opti-
mization is able to proceed further towards the global optimum
within 1000 generations.

4.3 Comparative analysis of various biodiver-
sity measures

The phenomenon of biodiversity has attracted a significant
amount interest during the 1990s [Ehrlich and Wilson, 1991].
Evolution is the key process that gives rise to biodiversity. There-
fore, as it became increasingly clear that simple species num-

bers do not adequately reflect biodiversity, several methods for
quantifying biodiversity based on genetic or phylogenetic in-
formation have been proposed [Crozier and Kusmierski, 1994,
Faith, 1992, Nee and May, 1997, Williams et al., 1991]. How-
ever, a general definition of biodiversity does not yet exist, and
the concepts and measures that have been developed in the
recent years are difficult to compare and lead to contradictory
results in some instances.

While biodiversity is generated by evolution, evolution does
not necessarily lead to biodiversity, e.g. evolutionary algorithms
often are designed to converge at an optimum in the fitness
landscape, and convergence obviously implies decreasing diver-
sity. In contrast to this, in Artificial Life open-endedness is con-
sidered a crucial property of evolution which is closely related
to biodiversity [Bedau et al., 1998]. Thus, Artificial Life mod-
els are suitable systems for comparatively analyzing biodiversity
measures, and conversely, biodiversity analyses of Artificial Life
models may provide valuable information for developing them
further towards open-ended evolution.

It is usually assumed that biodiversity increases as more
complex life forms evolve. DDC exhibits this property (see Fig.
6 and section 4.1), suggesting that DDC may be suitable as a
biodiversity measure which reflects the close relation between
biodiversity, open-ended evolution, and complexity.

A comparative analysis of biodiversity measures, in-
cluding DDC, has been carried out based on LindEvol-
GA [Schwdbbermeyer and Kim, 1999]. Phylogenetic and ge-
netic data were extracted from runs and used to com-
pute time series of various biodiversity measures proposed
in [Nee and May, 1997, Williams et al., 1991]. Quite strikingly,
only measures which are computed from genetic data show any
response to evolutionary transitions. No measure except DDC
was found to increase as mutation rate adaptation sets in.

The lack of response to evolutionary events in phylogeny-
based biodiversity measures is related to the use of differ-
ent methods for obtaining phylogenies from LindEvol-GA and
from molecular data. The phylogenies from LindEvol-GA were
recorded independently of genetic information. In contrast to
this, molecular phylogenies are reconstructed on the basis of
genetic distances. Thus, phylogenetic and genetic information
from LindEvol-GA are fully separated, while this separation can-
not be achieved for molecular data. The finding that several
biodiversity measures fail to extract hints about changing bio-
diversity from pure phylogenetic information provides a strong
indication that phylogeny may not contain any significant in-
formation regarding biodiversity. Therefore, biodiversity should
be measured from genetic data directly, as subjecting these to
phylogeny reconstruction just obscures the biodiversity signal.

5 Summary and outlook

LindEvol combines various levels of biological organization into
one model. The levels of genetic information, development, eco-
logical interactions and evolution are represented, although each
representation is necessarily coarse and incomplete in many re-
spects. Nonetheless many fascinating processes can be observed
in LindEvol simulation runs, and as LindEvol is accessible to sys-
tematic, computer aided analysis, such observations could be



used as starting points for steps toward a better understanding

of complex biological phenomena:

e The observation of the emergence of structured taxonomic
diversity was used as a basis to develop and test distance
distribution complexity as a measure of complex diversity in
evolutionary systems.

e The coupling of mutation rate adaptation to an energy cost
in LindEvol models revealed that the link between protection
from mutation to an energy expense in molecular nature may
be a key mechanism that keeps evolution open-ended. This
insight was transformed into an improvement of evolutionary
algorithms.

e Using LindEvol as a basis for comparing biodiversity mea-
sures revealed that phylogeny may be unsuitable as a basis
for assessing biodiversity, or that at least important aspects
of biodiversity are neglected by an exclusive focus on evolu-
tionary history.

Modelling regulatory networks is currently emerging as a
new research focus [Mendoza and Alvarez-Buylla, 1998]. Inte-
grating such models with the LindEvol concepts of genetic en-
coding and coevolution will certainly be useful for finding en-
codings of regulatory networks which are robust (in the sense
of the Tierra language [Ray, 1992]). LindEvol-P is provides a
promising basis for such studies.

Evolution and ecology are more and more recognized to
be intimately interwoven, e.g. it is recognized that the separa-
tion between ecological and evolutionary time scales is arbitrary
[Thompson, 1999]. Models combining these two key aspects of
biology will be helpful in developing an integrated understanding
of these two key levels. Again, LindEvol-P is a suitable basis for
this direction of research, studies for integrating the ecological
aspect of nutrient fluxes into LindEvol-P are already underway.

A well-known quote from Th. Dobzhansky says that “noth-
ing makes sense in biology except in the light of evolution”.
LindEvol has been suitable as a basis for improving our un-
derstanding of the sense which life makes by evolution, and
hopefully, it will continue to be a source of further insights in
the future.
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