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Abstract

Empirically, it has been observed in several cases that the information content of tran-
scription factor binding site sequences ( 465�798-:�79;�<97 ) approximately equals the information
content of binding site positions ( 4>=@? 7A8-:�79;�<CB ). A general framework for formal models of
transcription factors and binding sites is developed to address this issue. Measures for in-
formation content in transcription factor binding sites are revisited and theoretic analyses
are compared on this basis. These analyses do not lead to consistent results. A comparative
review reveals that these inconsistent approaches do not include a transcription factor state
space.

Therefore, a state space for mathematically representing transcription factors with re-
spect to their binding site recognition properties is introduced into the modelling frame-
work. Analysis of the resulting comprehensive model shows that the structure of genome
state space favours equality of 4>5�798 :D7A;D<A7 and 4E=@? 7A8-:�79;�<CB indeed, but the relation between
the two information quantities also depends on the structure of the transcription factor
state space. This might lead to significant deviations between 4F5�798 :�79;�<97 and 4E=@? 7A8-:�79;�<CB .
However, further investigation and biological arguments show that the effects of the struc-
ture of the transcription factor state space on the relation of 4G5�798-:�79;�<97 and 4E=H? 798-:�79;�<CB are
strongly limited for systems which are autonomous in the sense that all DNA binding pro-
teins operating on the genome are encoded in the genome itself. This provides a theoretical
explanation for the empirically observed equality.

1 Introduction

Biological systems store genetic information in DNA sequences, and transfer of this type of
biological information into electronic media is nowadays occurring at genomic scale. Having
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gained access to sequence information of several complete genomes, understanding the fun-
damental principles by which genetic information controls and organizes complex biological
processes now turns into a primary challenge for bioinformatics.

All these processes necessarily involve sequence specific contacts between DNA subse-
quences and molecules with a biological activity, and this function is performed by transcription
factors (Pabo & Sauer, 1992). Transcription factors and regulatory gene networks are known to
play key roles in fundamental biological processes, such as metabolic dynamics, development
and morphogenesis (Kappen & Ruddle, 1993; Shore & Sharrocks, 1995; Theißen & Saedler,
1995).

Consequently, transcription factors and their binding sites have received much scientific
interest during the last several years, as evidenced by the development of various specialized
databases (Wingender et al., 2001; Kolchanov et al., 2000) and tools for recognizing transcrip-
tion factor binding sites and other sequence motifs involved in sequence specific protein-DNA
interactions (Frech et al., 1997). However, a theoretical and principled basis for understanding
binding site sequences and their evolution has not yet been developed.

The analysis of binding sites developed by SCHNEIDER (Schneider et al., 1986; Schneider,
2000) is based on information theory, and thus it recommends itself as a point of departure for
building such a basis. In this article, we revisit and extend this theoretic approach by employ-
ing maximum entropy considerations. This principle has proven useful in other bioinformatic
contexts (Schmitt & Herzel, 1997).

SCHNEIDER et al. observed an approximate equality of the information content of binding
site sequences ( IGJ�K9L MDKANDOAK ) and the information content of binding site positions, calculated on
the basis of binding site frequency within the genome ( IQPHR�K9L-M�K9N�OCS ) (Schneider et al., 1986). Intu-
itively, this equality appears plausible: IQJ�KAL-M�K9N�O9K , the amount of information required to identify
one out of T�U/VXWZYA[\W�]_^�W sequences as a binding sequence, may be expected to equal the amount of
information necessary to address one site out of T`Uba c W�YA[\WZ]\^ed possible sites on the genome. How-
ever, this is just a vague plausibility argument, and counterexamples can easily be constructed.
With this contribution, we aim to extend the theoretical basis for studying transcription factors,
their binding sites, and their coevolution within the context of regulatory gene networks.

The centerpiece of our investigations is a comprehensive modelling framework which is ac-
cessible to formal analysis. A state space for the genome sequence and a state space for the
transcription factor are defined. The Cartesian product of these two state spaces yields the state
space of the entire system. We assume that, after coevolution, only those states will occur in
which the transcription factor binds to binding sites and does not bind to non-binding sites.
For mathematical analysis we consider an approximation in which we disregard the fact that
binding sites may overlap because they span several nucleotides. In computer simulations we
show that the mathematical description we obtain is in very good agreement with the original
model system allowing overlapping binding sequences. With the mathematical model it is then
possible to study systems of realistic sizes and to calculate their probability distribution over
the state space of the transcription factor-genome system. For realistic sizes of this system the
probability distribution of admissible states is strongly peaked. The peaks provide the states
which are almost certainly observed and have to be expected as the outcome of a coevolution
process. We then show that already for an unbiased (within the chosen coding scheme) a pri-
ori probability for the binding behaviour of the transcription factor the quantity I#J�K9L-M�K9N�O9K can
significantly deviate from IGP@R�K9L M�K9N�OCS . However, by using biological principles we can show that
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Symbol Meaningf
alphabet of letters occurring in the genomegihkj f j alphabet size, in this paper either 2 (

f hml$npo�q�r ) or 4 (
f hl�sto�uFo�vwo�xQr )y

Genome lengthz h f|{
set of all possible genome sequences} h�~��p��o����o�����o�� {E� an individual genome,

}�� z� h�~�����o�����o�����o�� {E� pattern of binding sites ( ����h q ) and non-sites ( ����h n �
along the genome� Number of binding sites on the genome�
Binding site length� h fw�
the set of all words of binding site length, i.e. the set of
words divided into binding words and non-binding words
by the transcription factor� hkj � j�h�g � the size of the set of all words of length

�
�|��~ } � h�~����_o���������o����o����e� �b� � � the word occurring at position � within a genome

}
, ��� ��

~C����oD����o����oD� {E� a sequence of words, ~9����oD���o�����oD� {E� � � {� h l$npo�q�r$¡ the set of all possible binding behaviours of transcription
factors operating on words of length

�
¢�h£~9¤�¥§¦�oD¤�¥�¨�o����oD¤�¥ª© � an individual transcription factor described by its binding

behaviour ¢ � �«
the number of words recognized by the transcription factor¢ � �

as binding words

Table 1: Symbols for use in equations.

these deviations can expected to be limited.

2 General Modelling Framework

The modelling concepts which are used throughout this paper are introduced in this section,
and the mathematical notation for these concepts is explained. A summary of these notational
symbols, along with brief explanations, is shown in Table 1.

2.1 Genome Model

Genomes are represented by vectors of letters (strings). Let
f

be an alphabet, i.e. a finite set of
symbols, and let g¬hj f j denote the size of the alphabet. We will either consider the case ofg®h°¯ (binary strings,

f h±l$npoq�r ) or g¬hk² (nucleotide sequences,
f h±l�sto�uFo�vwo�xQr ). Letz h f|{

denote the genome space, i.e. the set of all possible genomes of fixed length
y ��³

.
Genomes are denoted by

} h´~A�µ��o����o�����o�� {¶� o y �®³ o���� � f
. Obviously, the total number of

genomes of length
y

is j f�{ j�h·g { .
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2.2 Binding Site Model

Along the genome, there are binding sites at which binding of the transcription factor is bio-
logically required. The number of binding sites is denoted by ¸ . In our modelling approach,
we assume that at all other sites, which we call non-binding sites or non-sites, the transcription
factor must not bind.

With this approach, we imply that failure of the transcription factor to bind at a binding
site or binding occurring at a non-binding site uniformly result in an evolutionary disadvantage.
This obviously is a gross simplification which neglects all differences in biological effects of
mutations affecting the binding site or non-site status. In particular, this approach disregards the
fact that there is a substantial amount of genomic sequences in which such mutations are neutral
because these sequences are not accessible to transcription factors at all (e.g. heterochromatin)
or because binding or non-binding of the transcription factor at these sites does not make any
difference. It should be noted, however, that all these effects can conceptually be accounted
for by considering the genome sequences in our modelling framework to represent only the
"effective" part of the genome in which mutations which affect binding have, on average, a
substantial deleterious effect. Consequently, our genome length ¹ has to be interpreted as the
effective genome length.

A pattern of ¸ binding sites on a genome consisting of ¹ symbols total can be represented
by a bit string of length ¹ in which ¸ bits are set. Binding sites and non-sites induce a bit
pattern along the genome, which we refer to as the binding site pattern. Formally, we denote
such a binding site pattern by a binary vector º¼»¾½A¿�À�Á�¿�ÂÁÃ�ÃÃ�Á�¿�Ä¶Å�Á�¿�ÆÈÇÊÉ$ËpÁ�Ì�Í where ¿�ÆÎ»°Ì if
the Ï -th site is a binding site and ¿�ÆE»ÐË otherwise. Trivially, the number of different possible
binding site patterns with a given number of binding sites ¸ amounts to Ñ Ä Ò�Ó .

2.3 Transcription Factor Model

The transcription factor is conceptually modelled as a device for recognizing binding sites by
locally inspecting words (substrings) of length Ô along the genome. The set of words of lengthÔ is denoted by Õ . Its cardinality is Ö×»ÙØ Õ±Ø/»mÚbÛ . Out of these Ö words, the transcription
factor accepts Ü words as binding words. All other words are called non-binding words. We
assume that the transcription factor does not discriminate between different binding words, i.e.,
mutations that change one binding word into another one are neutral since they do not change
the binding site pattern, and, likewise, replacements of a non-binding word with another one is
a neutral mutation, too.

At this stage, the modelling concept is not yet sufficient to specify a state space for tran-
scription factors. Such a state space is introduced in Section 5.

2.4 Approximations

2.4.1 Number of Sites in a Genome

The precise number of sites of length Ô in a linear genome is ¹°Ý�Ô¬ÞßÌ , and it is even smaller
if the genome consists of linear segments (e.g. chomosomes). However, the relative difference
between ¹ and the exact number of sites is small if the segment lengths are large. Biological
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genome segments are sufficiently long to neglect "boundary effects" and to warrant approxi-
mating the number of sites with à , which we will do henceforth.

2.4.2 Genomes as Sequences of Independent Words

Within our modelling framework, it is convenient to think of a genome as a sequence of words.
We define á�â�ã�äÎåçæXè£ãAé�â\ê�é�âeë�ì�êííí�ê�é�âeë�îbïµì å as the word at site (position) ð of genome ä . The se-
quence of words ã9á�ì�ãAä§å�êDá�ñ�ã�äÎå�ê�ííí�ê á�òGã�äÎåDå provides a complete description of ä . We denote
words up to á�òQãAä§å following the approximation just introduced in Section 2.4.1.

Evidently, words beginning at consecutive positions on a genome are not independent as the
last óßôöõ letters of á�â�ã�äÎå are the first óßôöõ letters of á�âeë�ì�ã�äÎå . We will, however, neglect
this dependency in some of the following analyses, and consider sequences ãCá¬ì�êDá�ñêíí�í�êDá÷òEå
in which á�â is not related to á�âeë�ì through an underlying genome ä . Generally, substituting
genomes with sequences of independent words is a good approximation as long as ó¾ø à
because most words are independent in this case. A more specific justification based on an
enumeration study is presented later in this paper.

3 Aspects of Information in the Context of Transcription
Factor Binding Sites: ùûúDü�ý`þ�ü�ÿ���ü and ù���� ü�ý`þ�ü�ÿ����

Information can be measured in the context of sequence specific protein-DNA interaction in var-
ious respects which we briefly outline in this section. Details can be found in (Schneider et al.,
1986; Schneider, 2000; Stormo & Fields, 1998; Stormo, 1998). For principles of information
theory, see (Cover & Thomas, 1991).

The binding of a transcription factor to its binding sites can be viewed as a process in which� specific positions out of all à positions in the genome are identified as binding sites. In
this respect, observing a binding site in the genome is equivalent to receiving a message that
identifies one out of à
	 � positions (on the genomic average). The information content of such
a message can be quantified in bits by������������������ è ô������ ñ �à í (1)

This quantity can also be interpreted as the amount of bits required to send the address of a
binding site within à
	 � nucleotide positions across a communication channel (see (Schneider
et al., 1986)).

In another perspective, one may consider the binding behaviour of the transcription factor
to be known and ask how much information about the word at some position in the genome can
be gained by observing specific binding of the transcription factor at that position. If nothing
is known about the sequence before observing the binding process, all of the � possible words
could be present at that position. After observing binding, it is known that the word in question
must be one of the  binding words recognized by the transcription factor. The amount of
information gained through this observation can be calculated by�"!#���$��������� è&%(' ����)*��� ô+%
, �.-#�/� (2)
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(see (Schneider, 2000)), where 0
132�4�5*6�2 and 0(784�9#2�6 denote the entropy of the probability distribu-
tion to encounter a particular word : before and after the observation of binding, respectively.
If nothing is known about the sequence, the entropy is 0;132�4�5*6�2=<?>#@BABCEDF<HG;>#@BABCEI , since each
word is equiprobable. After observing binding, entropy is generically given by

0(784.9�2�6J<LKNMOQPSRUT O >�@�A C T O
where T O denotes the probability of encountering word : as a binding word. Biochemically,

T O can be linked to the energy gained upon binding of the transcription factor to : . If the nu-
cleotides in : contribute independently to the total binding energy, the probability distribution
over the symbols at a given position is independent of the symbols at other positions. As a con-
sequence, 0
784.9�2�6 can then be calculated by adding the entropies over the individual positions.
One obtains

V"W 2�X$Y�2�Z�[�2\<&G;>�@�A C I^] _M `badcQM e P�f T
e8g ` >�@BA C T

e8g `
(3)

where T
e8g `

denotes the probability of encountering base h at position i . Empirically, the prob-
ability T

e8g `
can be estimated by the frequency with which base h is observed at position i at a

binding site (Berg & von Hippel, 1987). As direct estimations of the T O are usually not possible
since not enough data is available, Equation (3) assuming independency in the word positions
is used in empirical studies.

In our model, however, we only distinguish between binding words and non-binding words,
and we assume that all binding words are equally suitable to recruit a transcription factor
molecule to a binding site. Hence, after observing binding, we know that one of the j bind-
ing words is present at the binding site. No information beyond this is gained. Without further
prior knowledge, one has to assume that each of the j binding words can be present at this
site with the same probability kml�j and obtains 0n784�9#2�6o<H>�@BA C j . Plugging this into Equation (2)
yields

V"W 2�X$Y�2�Z�[�2\<p>�@BA Crq DtsuKv>�@BA Cmq j�so<wK�>�@BA C jDHx (4)

This result corresponds to a maximum entropy assumption that it minimizes the information
gain (2) by maximizing the entropy 0n784.9�2�6 . The entropy of a state probability distribution in a
system state space is a measure for our uncertainty about the actual system state. In our case the
state of the "system" is given by the word : at the site of the genom we are looking at. Without
any prior knowledge, our uncertainty about which word is present at this site is maximum, i.e.,
one has to assume probabilities T O for each word to be present at this site which maximize
the entropy 0y<zK|{ OQP�R T O >�@�A C T O . In our case, without prior knowledge, this is the case
for T O < k}l�D , i.e. each word is equally probable to be present. After having gained the
information and only the information that the site is a binding site, we again have to maximize
our uncertainty, but now under the constraint that the word at the site is a binding word. This
means that for each non-binding word T O is equal to zero. The entropy as a measure for
uncertainty is now maximized by T O <~k}lBj for all binding words, i.e., all binding words are
equally probable. Certain prior knowledge about the given sequence structure, e.g., information
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about varying CG-content or CpG suppression, can be incorporated by allowing only word
probability distributions �J� for maximizing the entropy which comply with these constraints.
This would lead to deviations from a uniform probability distribution, as one would expect. For
an introduction to the maximum entropy principle as a means for deducing state probability
distributions which can be used for state estimations see (Jaynes, 1952).

4 Initial Approaches to �H���������S�����U� �&�����S�����������
In this section, we review and introduce some information theoretic and probabilistic treatments
of binding site recognition and evolution. This provides some background and motivation for
our comprehensive model which we present in Section 5.

4.1 Random Sequence / Maximum Entropy Model

A binding site is biologically defined as a position in a genome at which a word is found which
is recognized by the corresponding transcription factor. As an approach to deriving a relation
between �"�����$���/���/� and ����#���$��������� , one can assume � , the number of binding words recognized
by the transcription factor, to be given and set out to calculate � , the number of binding sites
among all � positions along the genome.

Generically, there is very little constraint on � given a fixed value of � . For all values of� , genomes with an abundance of binding sites covering the full range of ��� �¡� � can be
constructed. (Only in the biologically irrelevant extreme cases of �£¢H� and �£¢H¤ , it trivially
follows that �¥¢&� or �¥¢&� , respectively.)

Thus, additional assumptions must be made in order to arrive at more specific results for
the relation between �¦��������������� and ��������$���/����� . It is a standard approach to assume the abun-
dance of all words in the genome to be (approximately) equal, i.e., by making a maximum
entropy assumption about the word probability distribution. Without any prior knowledge, the
maximum entropy approach suggests equal word abundance. With prior knowledge about e.g.
non-uniform occurrence probabilites of bases in the sequence under inspection the maximum
entropy approach leads to deviations from equal word abundance. In the following, since we
are interested in the general principles of the different views, we always assume the case of no
special prior knowledge.

These assumptions lead to an average word abundance of �
§�¤ . Consequently, the expected
number of binding sites amounts to �¨¢H�ª©m�
§�¤ . By rearranging this equation, we obtain�� ¢ �¤ « �¬���#�/�����������¢��"�#���$���������S® (5)

It is important to emphasize that this treatment involves modelling the genome as a fully
random sequence. Of course, evolution of genomes may lead to non-random sequences in the
sense that a uniform abundance of each word on the genome can not be expected anymore. This
may lead to �°¯¢H�±©²�
§�¤ . For example, a transcription factor may accept only one binding word,
but evolution may nonetheless produce genomes with high binding site densities by producing
genomes in which the binding word is overrepresented.

It is important to notice that evolution of the transcription factor is neglected by this ap-
proach. It is assumed that evolution samples at random from the genome space as a state space
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(i.e. neutral evolution is assumed), while the transcription factor, which structures the genome
state space, is assumed to be constant. This is a substantial difference from biological evolution
in which transcription factors and genomes coevolve. This motivates us to introduce a more
comprehensive model in Section 5.

4.2 Robustness to Mutations

A point mutation which transforms an existing binding word into another binding word does
not create a new binding site on the genome. Thus, such a mutation does not change the pattern
of binding sites and non-sites on the genome, and, therefore, it can be expected to be neutral, at
least with respect to the pattern of binding sites of the particular transcription factor. Likewise,
a mutation converting a non-binding word into another one is neutral. On the other hand,
mutations transforming binding words into non-binding ones or vice versa result in changes of
the binding site pattern.

According to this consideration, and since we regard only the "effective" part of the genome
on which binding or non-binding of the transcription factor makes a difference for the organism
(see Section 2.2), robustness against changes of the binding site pattern, i.e. a low probability
for mutations which change a non-site into a binding site or vice versa, confers evolutionary
stablility. A low probability of change means a high probability for an offspring to inherit all
sites in their functional state. Thus, minimizing the probability of mutations which result in
alterations of the binding site pattern confers an evolutionary advantage and might be prefered.

Assuming that the ³ binding words are randomly drawn from the set of ´ words, we obtain

µ±¶�· ¸#¹8º¼»�½*»�¶�· ¸#¹¿¾ ÀÁ ´ÃÂ°³´µ±»�½*»�¶�· ¸#¹8ºÄ¶#· ¸�¹F¾ Á Â ÀÁ ³´HÅ
As sites and nonsites are mutually exclusive sets, the probabiblity of changing the binding site
pattern is the sum of these two probabilities:µ±ÆÈÇÊÉË»�Ì*¹Í¾ µ±¶�· ¸#¹ÎºÄ»�½*»�¶�· ¸#¹ÐÏÑµÒ»�½*»�¶#· ¸�¹Îº¼¶�· ¸#¹

¾ ÀÁ ´~Â°³´ Ï Á Â ÀÁ ³´¾ ÀÁ Ï Á ÂÔÓ ÀÁ ´ Õ ³ Å
In order to optimize evolutionary stability, ³ should adapt such that

µÖÆ�ÇÊÉË»�Ì*¹
is minimized.

µÒÆÈÇÊÉË»�Ì*¹
is a linear function of ³ which ascends monotonically in the biologically relevant case of ÀØ×Á
Ù Ó . It follows that for minimizing

µuÆ�ÇÊÉË»�Ì*¹
, the value of ³ should be minimal. This is achieved

by choosing ³ ¾~Ú
. Thus, as exemplified by this consideration, evolutionary forces may well

induce deviations from Û ¶�¹�Ü�Ý�¹�»�Æ�¹\¾ ÛÞ�ß ¹�Ü�Ý�¹�»�Æ�à .
It should be noted that in addition to ³ , there are many parameters and properties open to

adaptation in molecular evolution. In particular, a mutation of a single nucleotide position does
not transform a word into an entirely unrelated word. Rather, the original and the mutant word
have identical nucleotides at á°Â Ú

positions. Therefore, the risk of mutating a binding word
into a non-binding word or vice versa for a transcription factor recognizing ³ words can be
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substantially reduced by choosing the â words such that they are maximally sequence similar.
It is interesting to note that this optimization can be achieved by transcription factor binding
mechanisms in which each nucleotide in the binding site contributes to the binding energy
independently of the nucleotides at the other positions. Indeed, this independence is observed
experimentally (Stormo & Fields, 1998).

4.3 Computer Model

Recently, SCHNEIDER published a computer model simulating the evolution of information
in transcription factor binding sites (Schneider, 2000), demonstrating a process of coevolu-
tion of a transcription factor and its set of binding sites that converges to a state in whichãä�å�æ�ç�è�æ�é�ê�ëíìîã"ï#æ/ç�è�æ�é�ê�æ

. This model is interesting because it allows for evolutionary adaptation
of both the genome and the transcription factor. Nonetheless, the transcription factor model is
rather specific in some respects. Firstly, the transcription factor is directly encoded as a profile
matrix with a threshold value. However, not all binding behaviours which are formally possible
(see Section 5.1.1) can be represented by a combination of a matrix and a threshold. Thus, not
all possible binding behaviours can evolve in this model. Secondly, the particular encoding of
the threshold by a six-digit number from a base four number system results in very fast adap-
tive changes in the number â of binding words recognized by the factor. This means that in the
model, adaptation of

ã¦ï#æ/ç�è�æ�é�ê�æ
towards

ãä�å�æ�ç�è�æ�é�ê�ë
is much faster than adaptation of the sequences

in the binding sites. This specific design makes it difficult to use the computer model for arriv-
ing at general conclusions. This was a major motivation for developing the model presented in
the subsequent section.

5 A Comprehensive Mathematical Model

In this section, a model of a genome interacting with a transcription factor is described. As in
the computer model by SCHNEIDER, both the genome and the transcription factor are open to
evolutionary adaptation. However, the mathematical model we introduce is more generic and
accessible to analytic treatment.

5.1 Model Definition

Genome space and binding site patterns are modelled as described in Section 2. Now, we
formalize the transcription factor model to arrive at a state space comprising genomes as well
as transcription factors.

5.1.1 Transcription Factor state Space

The properties of a transcription factor with respect to binding site recognition are described by
simply listing all words which are recognized by the factor. Unconventional as it may initially
appear, this approach is the simplest representation which ensures that all possible binding
behaviours can be represented. Formally, we denote a transcription factor by a vector ðÃñò�óõôuö3÷$ó�ô±øõ÷úùúùúù�÷�óõô±ûQü3÷�ý
þ±ÿ�� ÷$ó�ô��Jÿ�����÷	��


, where
óõô�� ñ �

if the factor accepts
ýnþ

as a binding
word, and

ó�ô�� ñ � otherwise. The set of all possible transcription factors is denoted by � .
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This representation of the binding behaviour of the transcription factor is the most general
one and does not prefer any particular division of the word space into binding words and non-
binding words. It is the adequate representation in case no prior knowledge about the binding
behaviour is given. If we assume equal pobability for each state  (maximum entropy), the
situation of no prior knowledge about the binding behaviour is adequately captured.

Evidently, the number of vectors  amounts to ����������������������� . The value of  , the
number of different words recognized by the factor, can be computed by !�"�#� $�%�'&(��)*(+-,/. * (6)

where �%� $�#�0& denotes the 12& norm (also referred to as the Manhattan norm) of  . It is useful to
divide � into subsets according to  . We denote these subsets by�4365��879;:��<5 )*(+=, . * �> @?
and we note here that� �43A���CB@D  FEHG (7)

5.1.2 The Full State Space

The full state space which we now use as a basis for our analyses is the Cartesian product of the
genome space, as defined in Section 2.1, and the transcription factor spaceI 5��KJML��N�87PORQTS�TUV5�Q�:�J2SWX:Y�Z? G
5.2 Structuring the State Space According to [ and \
According to Equation (4), ]_^%`badcW`beWfb` is determined by  , and ]hg�i#`bajcW`beWflk is determined by m
according to Equation (1). By structuring

I
according to m and  we will be able to relate]h^#`RadcW`beWfb` and ]ng0i%`bajc�`Re�fbk via maximum likelihood considerations.

We start by observing that for a given tuple OoQpSWTU , the value of  is given by Equation (6).
The value of m can be calculated by

mq� r) sut & . *�v �xw9� G
Thus, unique values for both m and  can be assigned to all elements of

I
, and we can now

set out to determine the abundance of OoQpSWTU tuples with fixed m and  values. Formally, we
structure

I
into subsets of tuples which are labelled by the same m and  valuesI�y�z 365x�87POb{S|Q}UV5� recognizes  words and binds to m sites on Q~?

and require a method for calculating the cardinality of these subsets, denoted by� Obm�S� �U25��<� I�y�z 3A� G
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This quantity can be calculated by further dividing �}��� � into subsets of individual factors. For-
mally, let ����� � denote the subset of � in which � recognizes � sites. Since all �}��� � are mutually
exclusive,��� �������p����A�-�|��� ����� � �x� (8)

We have written a computer program for calculating
��� �}����� using this method. Unfortunately,

use of this program is limited to rather small systems ( ���>�P�|�M�����| ¡�¢�£� ), as the number of
states which need to be enumerated amounts to �4¤¦¥���§ (where the latter factor is most severe
as ¨C�>��© ). The quantity � �ª��� � � depends on the particular structure of � in a complex manner.
Due to this complexity, the program had to operate by exhaustive enumeration of � .

5.2.1 Independent Word Approximation for Large Systems

For deriving a method that enables investigation of larger systems, we approximate genomes by
sequences of independent words (see Section 2.4.2). Thus, we substitute � by �F«¬��¯®8¤�°�± .
The sets �T«��� � as well as ��«��� � and their cardinalities

� « � ������� are defined analogously to the
definitions above. But differently from �}��� � , the independence of words allows a combinatorial
construction of � «��� � which depends on � only while the particular structure of � does not matter.
All genomes comprised within �V«��� � are composed of � words drawn from the � binding words
accepted by � and  ³²�� words out of the ¨�²¦� non-binding words. There are´ ��� �6¬x�¯� � � ¨µ²¶��� ¤~· �
different choices of words to construct such a genome, and as each of these choices can be
assembled according to ¸ ¤ �º¹ different binding patterns (see Section 2.2), one obtains

� � «��� � � �¼»   �6½ ´ ��� �n�¡»   �_½ � � � ¨�²¦��� ¤p· � �
Now,

� « � ������� can be calculated analogously to Equation (8). As all values in the sum are
identical we obtain� « � �����4�~� � ±4� � »   �6½ � � � ¨�²M��� ¤p· � � (9)

and by plugging in Equation (7) we arrive at the closed form equation� « � �����4�~�¼» ¨ �n½ »   �$½ � � � ¨�²M��� ¤p· � � (10)

Values of ¾%¿£À � « � �}����� can be computed for systems of realistic sizes.
� « � ���|��� is not intended to

approximate
��� �}����� in terms of absolute values. Evidently, � �2« � � � ® � ¤�¥ � ± � �Á��©£¤¶¥ � ± ��Â� � � �"��¤¦¥ � ± � . Considering that Ã ��� � ��� �}�����h� � � � , and analogously, Ã ��� � � « � ���|���h� � ��« � ,it follows that
� « � �����4� Â ��� �}����� for biological plausible values of � . Nonetheless, we will

show that the positions of the maxima in
� « � ���|��� can be used to estimate the positions of the

maxima in
��� �}����� .
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6 Results and Discussion

The model defined in Section 5 enables us to assess the relation of Ä6Å%ÆbÇjÈ�ÆRÉ�ÊRÆ and ÄnË0Ì%ÆbÇjÈ�ÆRÉ�ÊbÍ in
a framework that is more general than those underlying the treatments reviewed in Section 4.
We address this issue by minimizing any prior assumptions and assuming, according to the
maximum entropy principle, that all individual ÎoÏpÐWÑ�Ò tuples occur equiprobably. We will show
that the maxima in Ó , or the maxima in Ó{Ô as an approximation, are extremely peaked and that
they indicate which value of Õ can be expected for a given value of Ö . This value is denoted byÕ�×ªØÚÙ .

The following treatment is similar to maximum entropy analysis of physical many parti-
cle systems where so-called macroscopic states are associated to subsets of microscopic states.
The microscopic states are assumed to be equally probable according to maximum entropy. The
likelihood to encounter the system in a certain macroscopic state is then given by the relative
number of microscopic states which realize this particular macroscopic state. It turns out that
for combinatorial reasons there is always a macroscopic state which is realized by an over-
whelmingly large number of microscopic states. Thus, the probability distribution in the space
of macroscopic system states is extremely peaked. The probability to find the system outside
of the maximum is practically zero. In the following treatment, we will subject the state space
defined in Section 5.1.2 to such a maximum entropy analysis with ÎbÑ{Ð|Ï}Ò as the microscopic andÎRÖ}Ð�Õ�Ò as the macroscopic states. With our approximation of independent words the genome can
be regarded as a so-called Potts spin system which is well-known from statistical physics (Wu,
1982). Each word corresponds to a Potts spin with ÛPÜ states, and the system consists of Ý such
spins. The number of "particles" Ý is not as large as in typical many particle systems in physics,
but large enough to provide extremely peaked probability distributions in the macroscopic state
space.

Strictly, maximum entropy analysis applies to systems in equilibrium when a uniform prob-
ability distribution in the microscopic state space has evolved. In evolution, equilibrium is
attained only in the case of neutral selection, infinite population size and infinite time. Clearly,
biological evolution deviates from these conditions. Nonetheless, neutral evolutionary models
provide the basis for important analysis methods. For example, most models underlying phy-
logeny reconstruction algorithms assume neutral evolution. In many respects, biological evo-
lution is known to exhibit relaxation towards maximum entropy when constraints are removed,
e.g., third codon positions and pseudogenes tend to become saturated with mutations. Based on
these considerations, maximum entropy analysis can only provide an approximate description
of the statistical properties of binding site sequences. Nonetheless, maximum entropy and max-
imum likelihood analysis can be a valuable tool for gaining insight into biological processes, as
the results we present in the following exemplify.

Our point of departure for our likelihood calculation are unbiased distributions, i.e., all
genome sequences (modelled by symbol vectors Ï ) and all transcription factors (modelled by
bit vectors Ñ ) occur equiprobably. Formally, Þ~ß¢à á9â@ã ä_ã and ÞæåÁà á9â@ã çqã is valid. As a
consequence all ÎoÏpÐWÑTÒ!èêé also have equal probabilities. From a biological perspective, the
assumption of a priori equiprobability of all Ï�è�ä is well justified by the structural correspon-
dence between symbol vectors and nucleotide sequences on DNA strands. The transcription
factor space, on the other hand, does not reflect biological or biochemical structures of tran-
scription factors. Therefore, there may be states in ç which are impossible to be implemented
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by actual transcription factor molecules. Such states should have probability zero, and, thus,
with todays knowledge (prior knowledge) one may rightfully demand that it should be possible
to consider the case of deviations from equiprobability in ë .

With ì being the Cartesian product í�îFë , the probability of a ïRðTñ�òTó tuple is generally given
by ôæõZöPôæ÷ . Thus, our likelihood considerations in the ïbø�ñ�ù4ó -space based on the probability
distribution in the ïoðpñWò�ó -space allows us to treat such deviations in both the genome and the
transcription factor space. For example, our approach could straightforwardly be adapted to
study effects of variations in GC content or specific CpG statistics. We will see in Section 6.4
that indeed strong deviations from equiprobability in ë can be expected.

6.1 Comparison of ú and úZû
The computer program described in Section 5.2 was applied to compare ü and üný . Fig. 1 shows
plots of ü and üVý (see Equations (8) and (10)) for þ/ÿ�� , � ÿ���� and �8ÿ�� . The order of
magnitude of �	��
�üVý is approximately three times the order of magnitude of �	��
pü , as expected
(see Section 5.2.1). Other than that, the surfaces have similar characteristics. In particular, the
maxima of ü2ý and ü for given values of ø are found at identical positions. Differences are only
observed at ø ÿ� (no binding site on genome) and ø�ÿ� (all sites on genome are binding
sites). Obviously, these extreme cases are biologically irrelevant.

As explained above, these maxima indicate the ù values expected for a given ø . It should
be noted that the distributions are shown in logarithmic scale. The maxima in ü and ü ý are
extremely peaked. These maxima become even more extreme for increasing system size.

The bottom part of Fig. 1 shows the coordinates of these maxima on the ïRø}ñ�ù�ó plane, along
with a graph of ù>ÿ�ø������ . This equation follows from Equation (5), and thus the graph
indicates where the maxima would be expected if ���	������������� was equal to ���! 	�����������#" . The actual
locations of the maxima clearly deviate from this expectation.

Two conclusions are drawn from these results: Firstly, we have confirmed that our approach
of using the positions of maxima in ü{ý to estimate the locations of maxima in ü works well
and can be employed for further analysis. Secondly, the ù values which are most probable to
be observed for given ø values are not those which would be expected if �$�%���&��������� was equal to�'�! 	�����������#" . There are significant deviations. This issue is the subject of the following analytic
approach.

6.2 An Analytic Approach

By treating ù in Equation (9) as a continuous variable, we can approach the determination of the
maximum in ü2ý for a fixed value of ø analytically by virtue of the fact that ( üFýRïbø�ñ�ù�ó&��(@ù�ÿ)�
at ù ÿ>ù�*,+.- . It is equivalent to analyze �%��
Tü{ý because this function increases strictly monoton-
ically with ü2ý and thus �%��
pü2ý and üVý have identical maxima. From Equation (9) we obtain�%��
pü ý ïRø}ñ�ù�ópÿ/�%��
�0�ë2130546�%��
 7 � ø�8 4¦ø��	��
�ù$4Kï9�;:�ø�ó2�%��
 ï<��:Mù�ó
and the partial derivative is('�	��
TüVýRïbø�ñ�ù�ó(@ù ÿ (��	��
$0 ë21=0(@ù 4 ø ù : �;:�ø�>:¦ù@? (11)
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Figure 1: Comparison of A%B�CED$F9GIHKJML and A%B�CEDON#F9GIHKJML for PRQTS , U>QTS�S and VWQYX . The word
set size amounts to Z[Q]\_^ . Top: plot of A	B�C2`9a�D$F�GIHbJ2L , middle: plot of A%B�C2`9acD N F9GdHbJML . Maxima
in J for fixed values of G are highlighted by filled diamonds. Except for scale, the surfaces
are very similar. Bottom left: positions of the maxima of D and DeN on the GIHKJ plane, right:f�g%h9i�j�h�k�l�h

and
f'm!n	h�i�j�h�k�l#o

values computed from the J and G values of the data points according
to Equations (4) and (1), respectively. Lines show where the data points would be expected in
the case of

f�g	h�i�j�h�k�l�h Q f'm!n	h�i�j�h�k�l#o (see also Equation 12).
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Figure 2: Plot of p	q�rEs@t#u9vdwbxMy{z p%q�r}|�~2�3|2��p	q�r}| ��t��� � | (asterisks), along with the individual
addends p%q�r}|�~2��|�z�p	q�r���� �3� (crosses) and p	q�r}| ��t��� � |�z�p	q�r�u���� � � x � u9���TxMy ��� � y (pluses), forv�zT� . as in Fig. 1, �[zT��� and ��z��_� . The maximum of p%q�rEs t u.��wKxMy is located between the
maxima of the individual addend functions.

Generally, this partial derivative is   at the maximum of s t , i.e. at x¡z¢x�£,¤.¥ . However, the term¦ p%q�r}|�~2�3|¨§ ¦ x is too generic to permit deriving an explicit expression for x=£,¤.¥ . However, further
analysis is possible by asking what

¦ p%q�r�|�~©�3|¨§ ¦ x would have to be if ª�«	¬�&®¯¬9°¯±9¬�z/ª'²!³	¬�&®¯¬9°¯±�´ was
true. From Equation (5), we know that in this case x can be calculated as a function of v byx �¶µ z·v¹¸ ��Yº (12)

Consequently,
¦ p	q�rEs t u�vIwbxMy&§ ¦ x�z   has to be valid at x�z x � . By substituting this into

Equation (11), we obtain¦ p	q�r�|�~���|¦ x »»»» �K¼M��½ z
�;�¾v�¿�Àv�¸_��§�� � vv¹¸Á��§�� z·  º

This analytic result shows that ª}«%¬9�®�¬�°�±�¬ and ª'²!³	¬�&®¯¬9°¯±�´ are equal if |�~2��| is a constant function inx or exhibits a maximum or a rather peculiar saddle point at x � . Equation (11) also reveals thatÂ ��� � has a maximum at x � . Thus, a tendendcy towards equality of ª}«	¬��®�¬�°�±�¬ and ª'²!³	¬�&®¯¬9°¯±�´ is
induced by

Â ��� � while non-uniform distributions of |�~©�3| result, with exceptions of special cases,
in displacements of ªÃ«%¬9�®�¬�°�±�¬ from ª'²!³	¬�&®¯¬9°¯±�´ .

In the light of this finding, the deviations from ª}«	¬��®�¬�°�±�¬¡z>ª'²!³	¬��®�¬�°�±#´ seen in Section 6.1
can be explained by the fact that |�~©�=|=z �Ä� �2� (Equation (7)) has its maximum at xÅzT��§�� . The
actual maxima seen in Fig. 1 are therefore displaced towards ��§�� . Figure 2 shows this effect
for the model genome analyzed in Fig. 1 in case vÆzY� . The peak in p	q�r �Ä� � � �{p%q�r Â ��� � appears
around x � z¢�@¸_�_�Ç§����}È�� ºÊÉ=Ë , but as |�~2�3| becomes maximal at xÌz·��§��$z·Í , xÇ£,¤.¥ is displaced
from x � towards Í .

As a summary of this formal analysis, we have seen that the combinatorial structure of
the genome space, reflected by

Â ��� � , induces a propensity towards equality of ª}«	¬��®�¬�°�±�¬ and
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Î'Ï!Ð	Ñ�Ò�Ó�Ñ�Ô�Õ#Ö
, however, this equality also depends on the structure of the transcription factor space.

Our approach to model the transcription factor space with × is too abstract in its generality to
reflect any details of the biological transcription factor space. Nonetheless, a uniform distri-
bution of Ø�×2Ù=Ø or a maximum at Ú�Û would be a remarkable property and ask for explanation.
For gaining further insight, we will now quantitatively analyze the relation of

Î$Ü	Ñ�Ò�Ó�Ñ�Ô�Õ�Ñ
andÎ'Ï!Ð	Ñ�Ò�Ó�Ñ�Ô�Õ#Ö

for systems with sizes in the biologically relevant range.

6.3 Results for systems of realistic size

Figure 3 shows results of analyses based on ÝeÞ for alphabet size ßáàãâ , i.e. for the biological
nucleotide alphabet, and binding word length äWàæå_ç , which is a reasonable biological ballpark
figure. Genome lengths range from èéà]å_çÇê to å_ç�ë , i.e. from the size of prokaryotic to smaller
eukaryotic genomes.

The top plots, in which è à>å_ç ê , are qualitatively similar to the results obtained by enu-
meration of ì for small systems (Fig. 1). The Ú=í,î.ï values are closer to ð�ñ�ò than expected forÎ�Ü%Ñ9Ò�Ó�Ñ�Ô�Õ�Ñ à Î'Ï!Ð	Ñ�Ò&Ó¯Ñ9Ô¯Õ�Ö . However, as genome length increases, this displacement effect becomes
less and less pronounced. Based on the observations described in Section 6.2, this can be ex-
plained by the relation of the terms in Equation (11): While ó�ô%õ�ö�Ø�×�Ù=Ø¨ñ�ó÷Ú does not depend onø and è , the term ø ñ�Úúù]û9è[ù øýü ñMû<ð�ùþÚ ü grows linearly with è if

Î�ÏÿÐ%Ñ�Ò&Ó�Ñ�Ô�Õ#Ö
is kept fixed

(i.e. if the ratio of ø ñ è is held constant). Hence, relative to ø ñ�ÚÌù/û9è¿ù ø ü ñMû9ð>ù6Ú ü the termóÃô%õ�ö}Ø�×2Ù3Ø¨ñ�ó÷Ú shrinks to zero with increasing è . As a result, the displacement of the maximum
in ô	õ�öEÝ Þ induced by adding ô%õ�ö}Ø�×MÙ3Ø decreases with è .

Interestingly, while the plots of ÚÇí,î.ï show almost no deviation from ÚÇÛ for è � å ç�� , the
plots of

Î�Ü	Ñ�Ò�Ó�Ñ�Ô�Õ�Ñ
as a function of

Î�Ï!Ð	Ñ�Ò&Ó¯Ñ9Ô¯Õ�Ö
reveal a ceiling at

ÎÃÜ	Ñ�Ò�Ó�Ñ�Ô�Õ�Ñ à ò�ç . This effect
is not explained by an influence of Ø�×©Ù3Ø on the location of the maximum of Ý Þ . Rather, this
phenomenon is solely due to the fact that Ú is integer valued and cannot fall below 1 for ø�� ç
because the transcription factor has to recognize at least one binding word in order be capable to
induce any binding pattern on the genome other than the empty one. Thus,

Î�Ü%Ñ�Ò&Ó�Ñ�Ô�Õ�Ñ
is strictly

limited by ù�ô	õ�ö���û�åÁñ�ð ü à�ò�ç . This might become a problem for complex living systems with
large genomes. It seems plausible to think that multiprotein systems appeared in evolution
because they allow an effective increase in ä , and hence in ð . The well known fact that these
systems are particularly complex in eukaryotes is well in line with this assumption.

The main finding from this analysis is that the deviation between
Î�Ü	Ñ�Ò&Ó¯Ñ9Ô¯Õ9Ñ

and
Î'Ï!Ð	Ñ�Ò&Ó¯Ñ9Ô¯Õ�Ö

is
determined by the relation between ó�ô	õ�ö	�ÃÛ�
 Ù�ñ�ó÷Ú and ó�ô%õ�ö�Ø�×2Ù=Ø¨ñ�ó÷Ú . Therefore, we perform a
quantitative estimation of this relation as the final part of this investigation.

6.4 The Cardinality of Transcription Factor Space in Biological Systems

The modelling framework introduced in this article employs � as a model of genome space
and × as a model of transcription factor space. Symbol strings ���� structurally correspond
to DNA strands. Thus, � is a biologically adequate model, in both the qualitative and the
quantitative respect. However, × is too generic to reflect specific quantitative properties of
transcription factor space. Therefore, additional biological principles have to be considered in
order to derive further quantitative estimations.
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Figure 3: Plots of ������� vs. � (left column) and ������� �"!#� $#%'& vs. ��(�� �)!*�+$*%+� (right column). Parameter
settings are ,.-�/ and 01-3254 , the value of 6 is 274�8 (top row), 274�9 (second row), 274�: (third row)
and 254�; (bottom row). The straight line in each plot indicates values for �<(�� �"!#� $#% �	-=�>����� �)!*�+$*% & .
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Following the approach used for the genome model, it is an obvious idea to represent tran-
scription factors by their amino acid sequences. However, this would require a method for
deducing the binding behaviour of a transcription factor from its amino acid sequence. Mod-
elling this in a biochemically adequate way would demand computations of three-dimensional
protein structures from amino acid sequences as well as computational predictions of protein-
DNA interactions. Evidently, this demand cannot be fulfilled and, consequently, structurally
adequate models of transcription factor space are not available.

However, while the complexities of structural biology preclude a quantitatively adequate
model, the biological fact that transcription factors reside within the space of amino acid se-
quences is useful to derive a quantitative estimation for the upper bound of this displace-
ment. Let ? denote the set of amino acid sequences, and ?A@ denote the set of transcription
factor proteins accepting B words as binding words. Transcription factors are globular pro-
teins that consist of a few hundred amino acids. Typically, a domain of less than 100 amino
acid residues is sufficient for binding site recognition. Therefore, it is reasonable to estimateC ? C�DFE�GIH+JKJLDNM7GIH+OKJ

.
In Section 6.3 (Fig. 3), however, we analyzed systems with P Q R H+J Q M7G R�SUT�V�W andCYXZC Q E H+J\[^]K_^`\a DbM7G O*H+_KaK_KO

. Thus,
C XcC

overestimates the biological transcription factor space
cardinality by many orders of magnitude. From this perspective it becomes clear that the set
of binding behaviours that can actually be implemented by sequence specific DNA binding
proteins is bound to be much smaller than

X
, the set of all distinguishable binding behaviours.

In Section 6.2 we have seen that displacements of d<egf+h"i#f j#k f from d>lnmgf+h"i#f j#k'o can be attributed
to the distribution

C X @ C
. Despite the impossibility to quantitatively specify

C X @ C
, it can be stated

that the amount by which dpegf h)i#f j#k f is displaced is determined by the variance of
C X @ C

in relation
to the variance to qsr�t @ at B�r . Considering that the cardinalities

C XcC
and

C ? C
also provide upper

limits for the variances in
CYX @ C

and
C ?p@ C

, respectively, it is reasonable to expect the true displace-
ment to be smaller than it is depicted in Fig. 3. From the view developed in Section 6.2, it may
even be that the variance in

C ?<@ C
is so small in relation to the variance in qpr�t @ that assumingC ?p@ C

to be constant becomes a reasonable approximation. Thus, the approximate equality of
d�egf+h"i#f j#k f and d>l�m�f h"i#f j#k'o in biological systems can be explained to result from the limited size of
the transcription factor state space.

Having linked this equality to the quantity
C ? C

invites the question whether limitations of
the size of transcription factor space can be derived from biological principles, or whether this
size is due to some evolutionary contingency. From structural biology, it may be that the size of
globular proteins is limited to something less than 1000 amino acid residues. This observation
implies that

C ? C
is limited by constraints deriving from protein biochemistry. Furthermore, even

if much larger globular proteins were possible, it would be very hard to conceive of ways how
domains which are remote from the binding center should effect the factor’s recognition capa-
bilities. From this perspective, it appears that the physical size of the device for storing genetic
information (i.e. DNA), relative to the size of the components of the machinery interpreting
genetic information (i.e. transcription factors etc.), imposes a limit on

C ? C
.

The strongest limitation of
C ? C

in relation to
CYusC

comes from the principle of genetic au-
tonomy. Genetically autonomous systems are viable without any external genetic information.
Thus, genetically autonomous systems must encode their gene expression machinery, including
all transcription factors, within their genome. The average cardinality of the coding space of a
single gene is limited by vxwzyK{ , where | denotes the number of genes. Since transcription fac-
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tors are encoded by single genes, }Y~�}I���x�z�K� is valid and consequently, �g���<}�~�}����g���s}Y�s}I�=�����
holds. As a minimum of around 1000 genes is generally considered necessary for an au-
tonomous living system, �����p}�~�}��������p}Y�s}����7����� is a biologically plausible relation. The ap-
proximate equality of �s��� �"�#� �#� � and �>�� �� �"�#� �#�'¡ can therefore be characterized as a bioinformatic
property which invariantly applies to any genetically autonomous system even if the chemistry
or the information storage and interpretation devices underlying biological systems were fun-
damentally different from those known today.

7 Conclusion

In this contribution, we have proposed a model for genetic systems that consist of a genome
and a transcription factor (which, in fact, can more broadly be construed as any factor capa-
ble of sequence specific DNA binding). Within the framework of this model, we determined
which ����� �)�*�+�*�+� value is most abundantly represented within a set of states with a fixed value of
�>�� �� �"�#� �#�'¡ . According to the maximum entropy principle, this defines the relation of �¢��� �"�#� �#� �
and �>�� �� �"�#� �#�'¡ .

Even initial studies showed that scenarios in which �<��� �"�#� �#� � is considerably different from
�>�� �� �"�#� �#�'¡ do exist. If existing, this deviation is particularly prominent for small abundances
of binding sites on the genome, i.e. for the biologically relevant range of larger �<�n g� �)�#� �#�'¡ val-
ues. Thus, an equality of �s��� �"�#� �#� �p£¤�>�� �� �"�#� �#�'¡ cannot be deduced from information theoretic
principles alone.

Further analysis revealed a link between deviations from this equality and the distribution of¥
, the numbers of words recognized as binding words, within the space of transcription factors.

A strong variance among the }Y¦¨§x} values may lead to a correspondingly strong deviation of
���g�+�"�#� �#� � from �>�� �� �)�*�+�*� ¡ .

While the distribution of } ¦¨§�} cannot be calculated in detail, an upper limit of its magnitude
derives from the biological principle that the genome has to encode all components of a living
system, including all transcription factors, in a genetically autonomous system. Therefore, the
size of the transcription factor space, and also the variance of the distribution of

¥
values within

this space, are limited to be small in relation to the size of the genome space. This constraint,
which applies independently of the physical and chemical constitution of a living sytem, is the
key principle which confines deviations from �p��� �"�#� �#� �	£=�>�� �� �"�#� �#�'¡ to a very small range.

From this perspective, �s�g� �)�#� �#� �L£F�>�n g� �)�#� �#�'¡ is not an information theoretic, but a bioinfor-
matic principle which is valid for all biological systems that are autonomous in the sense that
they encode their gene regulatory logic within their own genomes. As a test of this hypothe-
sis, it would be interesting to determine �p�g�+�"�#� �#� � and �>�� �� �"�#� �#�'¡ values for systems which are
not genetically autonomous, such as viruses (which depend on the transcription machinery of
the host) or plastids and mitochondria (which import a substantial part of their transcription
machinery components from the nucleus).
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