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1 Introduction

Networks of genes which encode transcription factors (regulatory networks) play a central role
in the realization of phenotypic traits based on genetic information. Sequence-specific recogni-
tion of DNA subsequences by proteins is a key mechanism in constituting regulatory networks.
Understanding the information theoretic principles underlying the evolution of transcription
factors and their binding sites is therefore a major challenge in bioinformatics [1]. Advances in
this field are expected to provide a basis for improving algorithmic binding site identification
and promoter analysis [2], and for deciphering regulatory codes.

Previous studies [3] have suggested that the information content deduced from binding site
sequence sets (Rsequence) approximately equals the information content deduced from relative
binding site abundance (Rfrequency). Here, we investigate the relation between these two infor-
mation quantities using a maximum entropy approach.

2 Outline of the Model

We formally model genomes of length N by vectors of words ~w = (w1, w2, . . . , wN)
where wi ∈ {A, C, G, T}l. Transcription factors are represented by binary vectors ~τ =
(τw1

, τw2
, . . . , τwK

), τwi
∈ {0, 1}, where K = 4l is the number of possible words and τwj

= 1
if the factor binds to wj and τwj

= 0 otherwise. The number of binding sites in the genome is
denoted by n and the number of words recognized by the transcription factor is denoted by k.

Within this modelling framework, Rsequence and Rfrequency are given by the equations

Rfrequency = − log
n

N
, Rsequence = − log

k

K
. (1)

Thus, if Rsequence = Rfrequency we expect

k =
Kn

N
. (2)



From a probabilistic point of view, the expectation to find Rsequence ≈ Rfrequency is to be under-
stood to mean that (~τ , ~w) tuples in which k ≈ Kn/N are the most common type for a given
value of n. We therefore derived a formula for calculating Ω′(n, k), the number of (~τ , ~w) tuples
composed of a transcription factor ~τ binding to k different words and recognizing n sites on ~w:

Ω′(n, k) =

(
K

k

)

︸ ︷︷ ︸

(a)

·

(
N

n

)

︸ ︷︷ ︸

(b)

· kn(K − k)N−n

︸ ︷︷ ︸

(c)

As a motivation of this formula, note that

• term (a) calculates the number of factors binding to k words

• term (b) calculates the number of binding site / non-site patterns with n binding sites

• term (c) calculates the number of word sequences realizing a particular binding pattern
with n binding sites given particular factor binding to k words.

A more detailed derivation and discussion of this equation will appear in a forthcoming paper.

3 Results

Fig. 1 shows results of an analysis based on Ω′ for genome length N = 106 and binding site
word length l = 10 (hence, K = 65536). The surface plot in Fig. 1 may appear quite even-
levelled, but one should notice the logarithmic scale: The Ω′ values span four million decimal
orders of magnitude. Thus, the probability for observing k values other than the one maximizing
Ω′ for a given n practically vanishes. For each value of n, the maximal Ω′ value is highlighted
by a diamond.

The bottom left plot displays the coordinates of these maxima on the n, k plane, showing a
clear and significant deviation from the line expected if Rsequence = Rfrequency (equation 2).

The bottom right plot in Fig. 1 reveals the discrepancies between Rsequence and Rfrequency

directly. Here, the n values shown in the middle plot were translated into Rfrequency values and
the corresponding k values that maximize Ω′ were translated into Rsequence values according to
eq. 1. The deviation from Rsequence = Rfrequency is particularly prominent in the range of larger
Rfrequency values. This finding is especially interesting, as binding site frequencies are usually
in the order of magnitude of 10−3 or below, so cases of Rfrequency ≥ 8 are biologically most
relevant.

In summary, for genome and binding site sizes in the order of magnitude encountered in
prokaryotic systems, our model predicts substantial deviations from Rsequence = Rfrequency.

4 Discussion

Our results calls for explanations in two respects. In a theoretical respect, the question arises
why previous analyses implied that Rsequence ≈ Rfrequency was to be expected. Differently from
previous models, our model explicitly comprises the space of protein binding behaviours within
the state space. The deviations from Rfrequency = Rsequence which we have observed with our
model are to be ascribed to evolutionary effects originating from the protein side. More detailed
analyses of these effects are currently underway.
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Figure 1: Top: plot of log10(Ω
′) for a = 4, N = 106 and l = 10, bottom left: coordinates of maximal Ω′ val-

ues for each n value (diamonds) and graph of k = Kn

N
(line), bottom right: plot of the (Rfrequency, Rsequence)

values calculated from the coordinates plotted above according to equation 1 (asterisks) and graph of
Rsequence = Rfrequency (line).

In an empirical respect, our findings call for revisiting the cases in which Rsequence ≈
Rfrequency was observed, paying particular attention to deviations from equality and possible
regularities detectable therein. Such analyses may provide information about the biological
structure of the influence which DNA binding proteins have on the information content of their
binding sites.

In a longer perspective, we expect this direction of research to lead to a deepened under-
standing of the evolutionary biological forces shaping protein-DNA interactions, which in turn
may serve as a basis for developing tools with improved performance for the detection of bio-
logically significant binding sites and for the analysis and characterization of regulatory mech-
anisms and networks.

References

[1] Gary D. Stormo and Dana S. Fields. Specificity, free energy and information content in
protein-DNA-interactions. TIBS, 23:109–113, 1998.

[2] Kornelie Frech, Kerstin Quandt, and Thomas Werner. Software for the analysis of DNA
sequence elements of transcription. CABIOS, 13:89–97, 1997.

[3] Thomas D. Schneider. Evolution of biological information. Nucleic Acids Research,
28:2794–2799, 2000.


