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c The random forest algorithm has been used to predict extracellular matrix proteins.
c We could extract the best features using mRMR feature selection.
c We have identified novel extracellular matrix proteins in the human proteome.
c The results are compared with previous work, and our algorithm is more advanced.
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a b s t r a c t

The extracellular matrix (ECM) is a major component of tissues of multicellular organisms. It consists of

secreted macromolecules, mainly polysaccharides and glycoproteins. Malfunctions of ECM proteins

lead to severe disorders such as marfan syndrome, osteogenesis imperfecta, numerous chondrodys-

plasias, and skin diseases. In this work, we report a random forest approach, EcmPred, for the prediction

of ECM proteins from protein sequences. EcmPred was trained on a dataset containing 300 ECM and

300 non-ECM and tested on a dataset containing 145 ECM and 4187 non-ECM proteins. EcmPred

achieved 83% accuracy on the training and 77% on the test dataset. EcmPred predicted 15 out of 20

experimentally verified ECM proteins. By scanning the entire human proteome, we predicted novel

ECM proteins validated with gene ontology and InterPro. The dataset and standalone version of the

EcmPred software is available at http://www.inb.uni-luebeck.de/tools-demos/Extracellular_matrix_

proteins/EcmPred.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The tissues of multicellular organisms are formed by cells and
a network of macromolecules secreted by them, which is called
extracellular matrix (ECM) (Lewin et al., 2007). It consists of glyco-
saminoglycans, proteoglycans, fibrous proteins like collagenes, adhe-
sive glycoproteins, enzymes involved in formation and remodeling of
the ECM, like metalloproteases, and other factors (Lewin et al., 2007).
In the tissues the ECM integrates the cells and provides structural
support. In addition, it also influences the fate of cells during

differentiation, morphogenesis, aging or pathogenesis (Schwartz
et al., 1995; Burridge and Chrzanowska-Wodnicka, 1996; Wary
et al., 1996). The ECM can coordinate cell functions by transducing
signals across the plasma membrane. This can be achieved either
directly by ECM molecules or indirectly by signal molecules, like
growth factors, cytokines, chemokines, and hormones, which are
sequestered in local depots within the ECM (Kim et al., 2011; Nelson
and Bissell, 2006). At first glance, the extracellular matrix seems to be
a static structure with a slow turnover. However, it turned out that
the ECM can easily adapt to changing conditions by a dynamic
remodeling of its compounds (Green and Lund, 2005).

Malfunctions of ECM proteins lead to severe disorders that
are linked to the structural functions of ECM molecules, such as
the marfan syndrome, osteogenesis imperfecta, numerous chon-
drodysplasias, and skin diseases (Green and Lund, 2005; Aszodi,
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2006; Bateman et al., 2009; Bruckner-Tuderman and Bruckner,
1998). Moreover, tumor growth, metastasis, inflammation, and
other disorders can occur as a consequence of ECM malfunctions
(Nelson and Bissell, 2006; Campbell et al., 2010; Sorokin, 2010).
Thus, extracellular matrix proteins promise great possibilities as
therapeutic targets or diagnostic markers (Grønborg et al., 2006).

Due to advances in sequencing technologies, tremendous
amounts of DNA and protein sequences have accumulated in
databases. Most of these sequences have unknown functions. It is
very important to extract relevant biological information from
sequences for functional annotation. Since the function of a
protein is closely associated with its subcellular localization, the
ability to predict the protein’s subcellular localization will be
useful in the characterization of the expressed sequences of
unknown functions (Horton et al., 2007; Chou and Shen, 2010a).

Various machine learning methods are available for predicting
protein subcellular localizations (Chou and Shen, 2010b; Shen
and Chou, 2009; Chou and Shen, 2007a; Chou and Shen, 2007b;
Chou et al., 2011). Protein subcellular localization prediction for
eukaryotes (Chou and Shen, 2007b; Chou et al., 2011), humans
(Chou and Shen, 2006a; Chou et al., 2012), plants (Chou and Shen,
2006b; Wu et al., 2011), viruses (Chou and Shen, 2006c; Xiao
et al., 2011), gram negative bacteria (Chou and Shen, 2006d) and
gram positive bacteria (Wu et al., 2012) have also been carried
out. Several methods have been proposed for the identification of
secretory proteins that follow the classical secretory pathway
(Bendtsen et al., 2004) and non-classical secretory pathway
(Kandaswamy et al., 2010). Even though there are various tools
available for predicting subcellular localizations and protein
secretion, there is no method with sufficient accuracy to predict
ECM proteins among the secreted protein groups.

Recently, an in-silico model (ECMPP) has been developed to
predict ECM proteins (Jung et al., 2010). It uses the Support Vector
Machine (SVM) and Random Forest (RF) to distinguish ECM
proteins based on 13 distinctive features. However, the perfor-
mance of this method mainly depends on the position specific
scoring matrix (PSSM) profile, which needs sufficiently many
sequence homologs to derive a sequence alignment. In this work,
we present a random forest method, EcmPred, to identify extra-
cellular matrix (ECM) proteins from sequence derived properties
such as frequency of amino acid/amino acid groups and physico-
chemical properties. EcmPred achieves 83% and 77% accuracy on
training and test data, respectively.

2. Materials and methods

2.1. Data set

We performed an extensive database and literature curation to
collect sequences pertaining to extracellular matrix proteins. The
dataset containing 17233 Metazoan secreted protein sequences
was obtained from Swiss-Prot release 67 (Boeckmann et al.,
2003). Out of these 17233 sequences, 1103 sequences are extra-
cellular matrix proteins (positive dataset), and the remaining
16130 proteins are secreted proteins without extracellular matrix
annotation (negative dataset). The positive and negative datasets
were made completely non-redundant by allowing a sequence
identity between any two proteins of not more than 70% (Li et al.,
2001). Finally, the training dataset consisted of 445 extracellular
proteins that form the positive dataset and 4187 non-ECM
proteins that form the negative dataset.

2.1.1. Training set

300 ECM proteins were randomly selected from the 445 ECM
proteins for the positive training dataset. Similarly, 300 non-ECM

proteins were randomly taken from the 4187 non-ECM proteins
for the negative training dataset.

2.1.2. Test set

The remaining 145 ECM proteins served as positive dataset for
testing. The remaining 3887 non-ECM proteins (after excluding
300 non-ECM proteins for training) were used as a negative
dataset for testing.

2.1.3. Human proteome screening

A human proteome database containing 86845 protein
sequences was downloaded from the IPI database release 3.66
(http://www.ebi.ac.uk/IPI/) (Kersey et al., 2004). Transmembrane
proteins were removed using TMHMM (Krogh et al., 2001).
Finally, we obtained 65508 protein sequences for the computa-
tional screening and identification of novel ECM proteins.

2.2. Features

Amino acid composition is one of the most basic character-
istics of the proteome and is extensively used in sequence based
prediction studies (Horton et al., 2007). Instead of using the
conventional 20-D amino acid composition, another new concept
called ‘‘pseudo amino acid composition’’ has been reported in
order to include the sequence-order information which leads to a
higher success rate in sequence based prediction studies (Chou,
2001; Chou, 2005; Shen and Chou, 2006; Chou and Cai, 2005).
PseAAC, a server based on the concept of pseudo amino acid
composition, provides a flexible way to generate various kinds of
pseudo amino acid compositions for a given protein sequence
(Chou, 2001; Chou, 2005). The general form of PseAAC for a
protein P can be expressed as (see Eq.(6) of Chou (2011)).

P¼ ½c1 c2 c3. . .cu. . .cO�
T ð1Þ

The subscript omega (O) is 68 and cu (u¼1, 2,., 68) is corre-
sponding to each of the 68 sequence derived features (Table 1).

It has been reported that signal peptides play a vital role in
protein secretion (Walter et al., 1984). Generally, signal peptides
occur within the first 30 residues from N-terminal. In order to use
signal peptide information, each sequence is split into two
segments. For a sequence with L residues length, the first 30
residues from the N terminal (residues 1–30) form segment 1 and
the remaining residues (residues 31–L) form segment 2.

Frequency of 10 functional groups: We categorized 20 amino
acids into 10 functional groups based on the presence of side
chain chemical groups such as phenyl (F/W/Y), carboxyl (D/E),
imidazole (H), primary amine (K), guanidino (R), thiol (C), sulfur
(M), amido (Q/N), hydroxyl (S/T), and non-polar (A/G/I/L/V/P)
(Kandaswamy et al., 2010). The frequencies of these 10 functional
groups were calculated for segment 1 and 2.

Table 1
List of 68 features.

Name of the feature Number of

features

Frequency of 10 functional groups in segment 1

(first 30 residues from N-terminal)

10

Frequency of 24 physicochemical properties in segment 1

(first 30 residues from N-terminal)

24

Frequency of 10 functional groups in segment 2 10

Frequency of 24 physicochemical properties in

segment 2

24

Total 68
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Physicochemical properties: We took 24 physicochemical
properties from the UMBC AAIndex database (Kawashima
et al., 2008). These physicochemical properties include mole-
cular weight, hydrophobicity, hydrophilicity, refractivity,
average accessible surface area, flexibility, melting point, side
chain volume, side chain hydrophobicity, normalized fre-
quency of beta-sheet and alpha helix, refractivity, membrane
buriability, retention coefficient, steric hindrance, optical
activity, polarity, heat capacity, and isoelectric point. For each
sequence, 24 physicochemical property values were calculated
by taking the sum of each physicochemical property value
over all residues of the sequence and divide it by the length of
the sequence.

2.3. Classification protocol

Random forests (RF) (Breiman, 2001) have been used for a
large number of classification as well as regression tasks
(Kandaswamy et al., 2010; Kumar et al., 2009; Dudoit et al.,
2002; Lee et al., 2005; Jia and Hu, 2011; Kandaswamy et al.,
2011; Lin et al., 2011; Pugalenthi et al., 2012; Qiu and Wang,
2011; Shameer et al., 2011). A typical random forest consists of
a set of binary decision trees (Ho et al., 1994). Random forests
generate multiple decision trees for a given training set and
use a weighted average of the trees for the final decision
(Breiman, 2001).

Random forest is a very popular ensemble method that is
robust to noise, robust against overfitting, fast, and offers
possibilities for an explanation and visualization of its out-
puts. Random forest ‘‘grows’’ and combines a large number of
classification trees (Ho et al., 1994; Ho, 1998; Ho, 2002).
Two random elements serve to obtain a random forest, bag-
ging and random split selection. Bagging is done here by
sampling multiple times with replacement from the original
training data set. Thus in the resulting samples, a certain
event may appear several times, and other events not at all
(Breiman, 2001).

Random forests are trained in a supervised way. Training
involves a tree construction as well as assigning to each leaf
node the information about the training samples reaching this
leaf node, e.g. the class distribution in the case of classification
tasks. At runtime, a test sample is passed down all the trees of
the forest, and the output is computed by averaging the
distributions recorded at the reached leaf nodes. The RF algo-
rithm was implemented with the random forest R package
(Liaw and Wiener, 2002).

2.4. Maximum Relevance Minimum Redundancy (mRMR)

Feature selection is important in many pattern recognition
problems for excluding irrelevant and redundant features.
It allows to reduce system complexity and processing time
and often improves the recognition accuracy. The minimal-
redundancy-maximal-relevance (mRMR) algorithm is a sequen-
tial forward selection algorithm and was first developed by Peng
et al. (2005) to analyze the importance of different features.
mRMR uses mutual information to select M features that best
fulfill the minimal redundancy and maximal relevance criterion.
A detailed description of the mRMR method can be found in Peng
et al. (2005).

The relevance and redundancy are both measured by the
mutual information (MI) defined as

I x,yð Þ ¼

Z Z
p x,yð Þlog

p x,yð Þ

pðxÞpðyÞ
dxdy ð2Þ

x and y are two random variables. p(x,y) is their joint probability
density, and p(x) and p(y) are their marginal probability densities,
respectively.

Let F represent the whole feature set, while Fs denotes the
already-selected feature set which contains m features, and Ft

denotes the yet-to-be-screened feature set which contains n

features. Relevance D of the feature f in Ft with the target c can
be calculated by

D¼ I f ,cð Þ ð3Þ

The redundancy R of the feature f in Ft with all the features in
Fs can be calculated by

R¼
1

m

X
~f A Fs

I f , ~f
� �

ð4Þ

To obtain the feature Ft with maximum relevance and mini-
mum redundancy, Eqs. (3) and (4) are combined with the mRMR
function

max
f AFt

I f ,cð Þ�
1

m

X
~f A Fs

I f , ~f
� �� �

ð5Þ

For a feature set with M features, the feature evaluation will
continue M rounds. After these evaluations, we will get a feature
set s by the mRMR method

s¼ ff 1,f 2,f 3. . .,f h,. . .f Mg ð6Þ

The feature index h indicates the importance of the respective
feature. Better features will be extracted earlier with a smaller
index h.

2.5. Evaluation parameter

The performance of various models developed in this study was
computed by using threshold-dependent as well as threshold-
independent parameters. As threshold-dependent parameters,
we used sensitivity, specificity, overall accuracy, and Matthew’s
correlation coefficient (MCC). These measurements are expressed in
terms of true positive (TP), false negative (FN), true negative (TN),
and false positive (FP).

2.5.1. Sensitivity

Percentage of correctly predicted ECM proteins within the
positive classifications:

Sensitivity¼
TP

TPþFN
ð7Þ

2.5.2. Specificity

Percentage of correctly predicted non-ECM proteins within the
negative classifications:

Specificity¼
TN

TNþFP
ð8Þ

2.5.3. Accuracy

Percentage of correctly predicted ECM and non-ECM proteins:

Accuracy¼
TPþTNð Þ

TPþFPþTNþFNð Þ
ð9Þ

2.5.4. Matthews’s Correlation Coefficient (MCC)

It is the statistical parameter to assess the quality of prediction
and to take care of the unbalancing in data. Matthew’s correlation
coefficient ranges from –1rMCCr1. A value of MCC¼1 indi-
cates the best possible prediction while MCC¼�1 indicates the
worst possible prediction (or anti-correlation). Finally, MCC¼0

K.K. Kandaswamy et al. / Journal of Theoretical Biology 317 (2013) 377–383 379
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would be expected for a random prediction scheme.

MCC ¼
TP � TN�FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFNð Þ TPþFPð Þ TNþFPð Þ TNþFNð Þ
p ð10Þ

2.5.5. Area under the Curve (AUC)

Most of the above measures have the common drawback that
their value depends on the selected threshold. The so-called
Receiver Operating Curve (ROC) provides a threshold independent
measure. The ROC is a plot between sensitivity (TP/TPþFN) and
specificity (FP/FPþTN).

3. Results and discussion

3.1. Classification by EcmPred

In statistical prediction, the following three cross-validation
methods are often used to examine a predictor for its effective-
ness in practical applications: independent dataset test, subsam-
pling (or K-fold crossover) test, and jackknife test (Chou, 2011).
However, of the three test methods, the jackknife test is deemed
the least arbitrary that can always yield a unique result for a given
benchmark dataset as demonstrated by Eqs. 28–32 of Chou
(2011). Therefore, the jackknife test has been increasingly used
and widely recognized by investigators to examine the accuracy
of various predictors (Hayat and Khan, 2012; Hayat and Khan,
2011; Harihar and Selvaraj, 2011; Nanni et al., 2012; Esmaeili
et al., 2010; Georgiou et al., 2009; Mohabatkar, 2010). However,
to reduce the computational time, we adopted the independent
test dataset cross-validation in this study, as it is done by many
investigators with the SVM as the prediction engine.

We trained our random forest model on the training dataset
containing 300 ECM proteins and 300 non-ECM proteins. Our
model achieved 82% training accuracy using all the features (68
features). To identify the most prominent features, we carried out
feature selection with mRMR. We selected six different feature
subsets by decreasing the number of features, and the perfor-
mance of each feature subset was evaluated. Using 40 features,
we obtained 83% training accuracy, which is comparable to the
accuracy obtained using 68 features. A similar performance was
observed using 10, 20, 30, 50 and 60 features.

In order to examine the performance of the newly developed
model, we tested our training model on a test dataset containing
145 ECM proteins and 3887 non-ECM proteins. As shown in
Table 2, we obtained 75% accuracy using all the features with a
sensitivity of 63%, a specificity of 76%, and a MCC of 0.1702. Using
40 features, our model obtained 77% accuracy with 65% sensitiv-
ity, 77% specificity, and a MCC of 0.1906. The performance values
were shown for single runs. This result suggests that our feature
reduction approach selected useful features by eliminating corre-
lated and noisy features. The list of 40 features is available at
http://www.inb.uni-luebeck.de/tools-demos/Extracellular_ma
trix_proteins/EcmPred.

We also investigated the influence of the feature reduction by
plotting Receiver Operating Characteristic (ROC) curves (Fig. 1)
derived from the sensitivity (true positive rate) and specificity
(false positive rate) values for the classifiers using all the features
and the top 40 features, respectively. The area under curve for all
features was 0.76 and for the top 40 features was 0.79,
respectively.

3.2. Prediction result for known ECM proteins

We collected 20 experimentally verified extracellular matrix
proteins from human. Criteria for selection were clear experimental
evidence within the literature for the given sequence entry. We
tested the efficiency of EcmPred and ECMPP (Jung et al., 2010) using
these 20 proteins (Table 3). As shown in Table 3, EcmPred (top 40
features) correctly predicts 15 proteins as extracellular matrix
proteins, whereas ECMPP predicts only 6 proteins.

3.3. Screening for ECM in human proteome

To identify novel candidates in the human proteome as
extracellular matrix proteins, we scanned the human proteome
using SPRED (prediction of secretory proteins) (Kandaswamy
et al., 2010) and EcmPred (Fig. 2). With SPRED, we classified
these 65,508 protein sequences into 44,611 non-secreted proteins
and 20,897 proteins located outside of the nucleo-cytoplasm. We
predicted extracellular matrix proteins (6450) using EcmPred,
leaving 14,447 proteins which do not belong to the class of
extracellular matrix proteins. Subsequently, we removed putative
proteins, isoform sequences, hypothetical proteins, fragmented
proteins and false positives. The remaining 2201 protein

Table 2
Performance of Random Forest using different feature subsets. Value inside the square brackets shows standard

error of the mean from multiple runs.

Feature subset Sensitivity (%) Specificity (%) MCC Test accuracy (%) Training accuracy (%)

10 51 [0.62] 75 [0.31] 0.1123 [0.002] 74 [0.33] 73 [0.67]

20 48 [0.57] 77 [0.38] 0.1171 [0.004] 76 [0.30] 80 [0.60]

30 53 [0.51] 78 [0.30] 0.1378 [0.004] 77 [0.35] 81 [0.63]

40 65 [0.54] 77 [0.34] 0.1906 [0.003] 77 [0.31] 83 [0.62]
50 57 [0.51] 77 [0.33] 0.1493 [0.004] 76 [0.33] 82 [0.66]

60 60 [0.52] 77 [0.33] 0.1661 [0.003] 76 [0.32] 83 [0.62]

All features 63 [0.55] 76 [0.34] 0.1702 [0.003] 75 [0.33] 82 [0.64]

Fig. 1. ROC plot for Random Forest with all and the top 40 features.
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sequences were classified as extracellular matrix proteins. We
investigated the top listed putative ECM proteins using InterPro
(Hunter et al., 2009) and Gene ontology (GO) (Gene Ontology
Consortium, 2010). Interpro annotation shows Collagen type XXI
Alpha 1 and Adamts-like protein 2 as putative extracellular
matrix proteins. Collagen, type V, alpha 1, Interphotoreceptor
matrix proteoglycan 1, Protein Wnt, Galectin-1, and Galectin-7
were annotated with the Gene Ontology term ‘‘extracellular
matrix.’’ Thus, as could be expected by the composition of our
training set we identified both, proteins forming the ECM network
and more mobile proteins interacting transiently with the net-
work. The complete list of predicted ECM proteins is provided at

http://www.inb.uni-luebeck.de/tools-demos/Extracellular_ma
trix_proteins/EcmPred.

3.4. Comparison of EcmPred with other machine learning methods

The proposed EcmPred method was compared with several
state-of-the-art classifiers such as J4.8, Support Vector Machine
(SVM), Bayesnet, Logistic Regression, Decision Table, Multi-Layer-
Perceptron and Adaboost (Bishop, 1995; Vapnik, 1998; Kohavi,
1995; Quinlan, 1993; Sumner et al., 2005). The data mining
software WEKA is used to evaluate the performance of each
classifier (Frank et al., 2004). The results based on 40 features
are shown in Table 4. All models were tested on the test dataset
containing 145 positive and 3887 negative sequences. The pre-
diction accuracy of Random Forest is about 22% and 12% higher
than Decision Table and Logistic Regression classifiers, respec-
tively. The Specificity of the SVM is about 9% less than Random
Forest. Although the performance of EcmPred and Bayesnet is
comparable, the sensitivity is 8% less than with our model.

4. Conclusion

The extracellular matrix is the non-cellular component present
within all tissues and organs. It provides physical scaffolding for
the cellular constituents and initiates critical biochemical and
biomechanical signals required for tissue morphogenesis, differ-
entiation, and homeostasis. The extracellular matrix proteins

Table 3
Prediction result for 20 experimentally verified extracellular matrix proteins using

EcmPred and ECMPP. ‘‘þ ’’ represents proteins correctly predicted as extracellular

matrix proteins and ‘‘� ’’ represents proteins not predicted as extracellular matrix

proteins.

SwissProt
ID

Protein annotation ECMPRED ECMPP

Q9BY76 Angiopoietin-related protein þ –

P07355 Annexin A2 þ –

Q9BXN1 Asporin þ þ

P01137 Transforming growth factor beta-1 – –

Q8N6G6 ADAMTS-like protein 1 þ –

P27797 Calreticulin þ –

Q76M96 Coiled-coil domain-containing protein þ þ

Q07654 Trefoil factor 3 – þ

O75339 Cartilage intermediate layer protein 1 þ -

Q15063 Periostin – –

O43405 Cochlin þ –

Q96P44 Collagen alpha-1(XXI) chain þ þ

P01009 Alpha-1-antitrypsin – –

Q14118 Dystroglycan þ –

Q12805 EGF-containing fibulin-like extracellular

matrix protein 1

þ –

Q75N90 Fibrillin-3 þ þ

P09382 Galectin-1 þ þ

Q8N2S1 Latent-transforming growth factor beta-

binding protein 4

þ –

P27487 Dipeptidyl peptidase 4 – –

P08253 72 kDa type IV collagenase þ –

Predict transmembrane proteins 

SPRED prediction

EcmPred prediction      

Human proteome 
(86845 proteins) 

Non transmembrane proteins 
(65508 proteins) 

Transmembrane proteins 
(21337 proteins) 

Secretory proteins 
(20897 proteins) 

Non-secretory proteins 
(44611 proteins) 

Non-ECM proteins 
(14447 proteins) 

ECM proteins 
(2201 proteins) 

Protein fragments, 
Hypothetical proteins, 
Isoform sequences, 
False positives

Fig. 2. Screening for ECM proteins in the human proteome.

Table 4
Comparison of EcmPred with other machine learning methods.

Method Sensitivity (%) Specificity (%) MCC Test accuracy (%)

J4.8 57 66 0.0973 66

Bayesnet 57 76 0.1485 75

Adaboost 59 69 0.1107 59

Decision table 54 68 0.0893 55

Logistic 59 65 0.0971 65

SVM (polynomial) 56 68 0.1001 68

MLP 58 68 0.1039 59

EcmPred 65 77 0.1906 77
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promise great possibilities as therapeutic targets or diagnostic
markers. Identification of ECM proteins is an essential and also
difficult task. We implemented a Random Forest approach to
predict ECM proteins based on sequence derived properties. High
prediction accuracies on the training and test datasets show that
EcmPred is a potentially useful tool for the prediction of extra-
cellular matrix proteins from protein primary sequence. EcmPred
performed better than ECMPP on experimentally verified ECM
proteins. The identification of ECM proteins should be helpful for
the analysis of ECM-related functions and diseases. Although our
method performs better than the other methods, the prediction
accuracy still can be improved by incorporating structural
features.

Since user-friendly and publicly accessible web-servers repre-
sent the future direction for developing practically more useful
models, simulated methods, or predictors (Shen and Chou, 2009),
we shall make efforts in our future work to provide a web-server
for the method presented in this paper. The EcmPred program and
dataset is available at http://www.inb.uni-luebeck.de/tools-de
mos/Extracellular_matrix_proteins/EcmPred.

Acknowledgments

This work was supported by the Graduate School for Comput-
ing in Medicine and Life Sciences funded by Germany’s Excellence
Initiative [DFG GSC 235/1]. KKK acknowledges Dr. Bianca Haber-
mann, Max Planck Institute for Biology of Ageing, Germany for
her support.

Appendix A. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2012.10.015.

References

Aszodi, A., Legate, K.R., Nakchbandi, I., Fässler, R., 2006. What mouse mutants
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