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Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER
and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential informa-
tion required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1,
FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative path-
way. This is known as leaderless or non-classical secretion and works without a signal sequence. Most
computational methods for the identification of secretory proteins use the signal peptide as indicator
and are therefore not able to identify substrates of non-classical secretion. In this work, we report a ran-
dom forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-termi-
nal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training
was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear
proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear
proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does
not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted pro-
teins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified
non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein
sequences potentially undergoing non-classical secretion. The dataset and standalone version of the
SPRED software is available at http://www.inb.uni-luebeck.de/tools-demos/spred/spred.

� 2009 Elsevier Inc. All rights reserved.
Introduction

After protein synthesis in cytoplasm, newly made polypeptides
must be transported to their final destination in the cell. The pro-
cess of protein transport to a particular cellular location is known
as protein sorting [1–3]. Generally, eukaryotic protein secretion
occurs via the classical secretory pathway that traverses the endo-
plasmic reticulum (ER) and Golgi apparatus [4].

Secretory proteins are usually characterized by short N-termi-
nal signal peptides (14–60 amino acids) that have intrinsic signals
for their transport and localization in the cell [3,5]. Interestingly,
several proteins have been found to be exported directly from
the cytoplasm by molecular mechanisms that are independent
from a signal peptide or any specific motif known to act as an ex-
port signal. The secretion of these proteins is referred to as non-
classical or unconventional protein secretion [6–9]. Some of the
ll rights reserved.
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well studied non-classical secretory proteins are fibroblast growth
factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galec-
tins, thioredoxin, viral proteins and parasitic surface proteins
potentially involved in the regulation of host cell infection
[10–14]. Although the phenomenon of non-classical secretion in
eukaryotes was discovered more than a decade ago, the molecular
mechanisms are still unknown. However, it might be possible that
this group contains proteins that leave the cell by cell disruption
and not by a well defined pathway.

Several methods have been proposed for the identification of
secretory proteins that follow the classical secretory pathway
[15,16]. Most prediction methods require the presence of the cor-
rect N-terminal end of the preprotein for correct classification. As
large scale genome sequencing projects sometimes assign the 50-
end of genes incorrectly, many proteins are annotated without
the correct N-terminal end which may lead to an incorrect predic-
tion of subcellular localization [17]. Further, signal peptides are
completely absent in secretory proteins that follow non-classical
secretion pathways. Therefore, an automated approach is required
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to predict classical and non-classical secretory proteins, irrespec-
tive of the N-terminal signal peptides.

Recently, a webserver SecretomeP has been developed to predict
non-classically secreted proteins [18]. It is a neural network based
method that uses several features of a protein such as the number
of atoms, positively charged residues, propeptide cleavage sites,
protein sorting, low complexity regions, and transmembrane helices
as an input for a neural network. Despite considering a large number
of protein features, the method has achieved a sensitivity of only 40%
[18]. SRTPRED is another recently developed method which predicts
secretory proteins irrespectively of N-terminal signal peptides. It
achieves a sensitivity of 60.4% using hybrid modules [19]. In this
work, we report a random forest method, SPRED, to identify classical
and non-classical secretory proteins from protein sequence irre-
spectively of N-terminal signal peptides. We scanned the entire hu-
man proteome by SPRED and predicted 566 proteins to be secreted
by a non-classical secretory pathway.

Materials and methods

Datasets

Training and test dataset
A set of 9890 extracellular mammalian proteins (positive data-

set) were extracted from the Uniprot database based on subcellular
localization annotations in the comments block [20]. Partial se-
quences and sequences without an annotated signal peptide were
not included in the data set. Proteins with uncertain annotation la-
bels such as ‘‘probable”, ‘‘potential” and ‘‘by similarity” were re-
moved. 3131 extracellular proteins which are annotated with
experimental observations were selected from the 9890 proteins.
To make the dataset completely non-redundant, we applied the
CD-HIT software [21] to remove sequences with greater than 40%
sequence similarity to each other. Finally, 780 extracellular pro-
teins were retained for the positive dataset. Similarly, a set of neg-
ative examples was constructed by extracting 20,610 mammalian
proteins in Uniprot which are annotated as residing in the cyto-
plasm and/or nucleus. 3891 proteins with experimental support
were chosen from the 20,610 proteins after excluding membrane
proteins, proteins with uncertain labels, and partial sequences.
1980 sequences remained for the negative dataset after removing
redundant sequences which have >40% sequence similarity to each
other using CD-HIT [21]. Since non-classical secretory proteins lack
N-terminal signal peptides, the method should have the capability
to predict secretory proteins irrespective of N-terminal signal pep-
tides. To achieve this, we removed the signal peptides from the po-
sitive dataset. Finally, the training dataset consisted of 600
extracellular proteins that form the positive dataset and 600 cyto-
plasmic and/or nuclear proteins that form the negative dataset. The
test dataset consisted of the remaining 180 extracellular proteins
and 1380 cytoplasmic and/or nuclear proteins.

Human proteome screening
A human proteome database containing 86845 protein se-

quences was downloaded from the IPI database release 3.66
(http://www.ebi.ac.uk/IPI/) [22]. Transmembrane proteins were
removed using TMHMM [23]. Finally, we obtained 65508 protein
sequences for the computational screening and identification of
novel putative proteins undergoing either classical or non-classical
protein secretion.

Features

In this work, each sequence is encoded by 119 features (pro-
vided as a supplement to this paper). We categorized amino acids
into 10 functional groups based on the presence of side chain
chemical groups such as phenyl (F/W/Y), carboxyl (D/E), imidazole
(H), primary amine (K), guanidino (R), thiol (C), sulfur (M), amido
(Q/N), hydroxyl (S/T) and non-polar (A/G/I/L/V/P) [24]. Further,
we categorized 20 amino acids into three groups, namely hydro-
phobic (FIWLVMYCA), hydrophilic (RKNDEP) and neutral (THGSQ)
amino acid groups.

Frequency of groups
The frequency of the 10 functional groups (number of occur-

rences of functional group ‘‘X” divided by length of the protein)
and the frequencies of hydrophobic, hydrophilic, neutral, positively
charged, negatively charged, polar and non-polar amino acids were
computed for every sequence.

Frequency of tripeptides and short peptides
We utilized tripeptide information for the classification. Gener-

ally, 8000 tripeptides can be obtained from all possible combina-
tions of 20 amino acids. To reduce the feature dimension, we
derived 27 tripeptides from all possible combinations of the three
amino acid groups hydrophobic, hydrophilic and neutral. The fre-
quencies of these 27 tripeptides were calculated for every se-
quence. Additionally, we incorporated the frequencies of short
peptides (10 residue length, in this case) which are rich in hydro-
phobic, hydrophilic, neutral, polar or non-polar amino acids. For
example, a short peptide with more than five hydrophobic resi-
dues, we consider as a hydrophobic peptide. Similarly, we calcu-
lated hydrophilic, neutral, polar and non-polar short peptides. In
addition, we incorporated the frequencies of short peptides which
are rich in the 10 functional amino acid groups.

Secondary structure
Secondary structure information for every sequence was as-

signed using PSIPRED [25]. PSIPRED provides two options for sec-
ondary structure prediction. The first option uses homologous
sequence information and the second option predicts secondary
structure from the query sequence without using homologous se-
quence information. We employed the second option of the PSI-
PRED method for all sequences. The overall composition of helix
(H), beta sheet (E), coil (C) and the frequencies of 10 functional
groups, hydrophobic, hydrophilic and neutral amino acids at helix,
sheet, and coil regions were calculated.

Physicochemical properties
Physicochemical properties of amino acids have been success-

fully employed in many sequence based predictions [24,26,27].
Although there are dozens of physicochemical properties of amino
acid, we selected 31 physicochemical properties from the UMBC
AAIndex database [28]. For each sequence, a physicochemical
property value was calculated as the sum of those values of all ami-
no acids in the given sequence, divided by the number of amino
acids in the sequence. Table 1 lists number of feature indices for
each feature group.

Random forest classification

The random forest (RF) classification extends the concept of
decision trees and has been successfully employed in various bio-
logical problems [29–34]. We only give a brief description of the
random forest approach. The details can be found in [35–38]. Ran-
dom forest is a collection of decision trees, where each tree is
grown using a subset of the possible attributes in the input feature
vector. It has been shown that combining multiple decision trees
produced in randomly selected subspaces can improve the gener-
alization accuracy [35]. Random forest constructs an ensemble of
decision trees from randomly sampled subspaces of the input
space, and the final classification is obtained by combining the re-

http://www.ebi.ac.uk/IPI/


Table 1
List of 119 features.

Name of the feature Number of
features

Frequencies of 10 functional groups 10
Frequencies of hydrophobic, neutral,

hydrophilic, positive, negative, polar and
non-polar amino acids

7

Frequencies of secondary structurally elements
(Helix, Strand and Coil)

3

Frequencies of 10 functional groups at Helix,
Strand and Coil regions

30

Frequencies of hydrophobic, neutral,
hydrophilic, positive, negative, polar and
non-polar amino acids at Helix, Strand and
Coil regions

21

Frequencies of short peptides rich in 10
functional groups

10

Frequencies of short peptides rich in
hydrophobic, neutral, hydrophilic, positive,
negative, polar and non-polar amino acids

7

Physicochemical properties 31
Total 119

Table 3
Performance of SPRED on the test dataset (180 positive and 1380 negative sequences)
using different feature subsets.

Feature subset Sensitivity (%) Specificity (%) MCC (%) Accuracy (%)

10 79.44 80.51 0.4345 80.38
25 83.89 80.94 0.4691 81.28
50 88.33 81.38 0.5036 82.18
75 90.56 81.23 0.5163 82.31

100 89.44 81.16 0.5082 82.12
119 90.56 80.80 0.5109 81.92

MCC, Matthew’s correlation coefficient.
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sults from the trees via voting. The random subspace method is
used to avoid overfitting on the training set while preserving the
maximum accuracy when training a decision tree classifier [38].
RF performs cross-validation by using out-of-bag (OOB) samples.
In training, each tree is constructed using a different bootstrap
sample from the original data. Since bootstrapping is sampling
with replacement from the training data, some of the sequences
will be ‘left out’ of the sample, while others will be repeated in
the sample. The ‘left out’ sequences constitute the OOB sample.
On average, each tree is grown using about 1 � e�1 � 2/3 of the
training sequences, leaving e�1 � 1/3 as OOB. The RF algorithm
was implemented by using the random Forest R package [37].

Feature selection by information gain

To identify the important features that distinguish positive and
negative classes, we used the Information Gain algorithm with the
ranker method [39], the implementation of Weka 3.5 [40]. The
information gain for each feature was calculated and the features
were ranked according to this measure. Feature selection was per-
formed by five-fold cross-validation on the training dataset. Differ-
ent models were built using the 10, 25, 50, 75 and 100 best
features.

Prediction assessment

The prediction system is evaluated using accuracy, sensitivity,
specificity and Matthew’s correlation coefficient (MCC). These
measurements are expressed in terms of the fraction of true posi-
tives (TP), false negatives (FN), true negatives (TN), and false posi-
tives (FP). The measurements are defined as follows:
Table 2
Performance of SPRED on the training dataset (600 positive and 600 negative
sequences) using different feature subsets.

Feature subset Sensitivity (%) Specificity (%) MCC Accuracy (%)

10 82.50 85.83 0.6837 84.17
25 85.33 85.83 0.7117 85.58
50 85.67 86.17 0.7183 85.92
75 86.17 85.00 0.7117 85.58

100 86.00 84.17 0.7018 85.08
119 86.50 84.83 0.7134 85.67

MCC, Matthew’s correlation coefficient.
Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

ð1Þ

Specificity ¼ TN
TNþ FP

ð2Þ

Sensitivity ¼ TP
TPþ FN

ð3Þ

MCC ¼ TPTN� FPFN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTNþ FNÞðTPþ FNÞðTNþ FPÞðTPþ FPÞ

p ð4Þ

The Matthew’s correlation coefficient ranges from
�1 6MCC 6 1. A value of MCC = 1 indicates the best possible pre-
diction while MCC = �1 indicates the worst possible prediction (or
anti-correlation). Finally, MCC = 0 would be expected for a random
prediction scheme.

Results and discussion

Classification by SPRED

We trained our random forest model on the training dataset
containing 600 extracellular proteins secreted via classical and
non-classical pathways and 600 cytoplasmic and/or nuclear pro-
teins. As shown in Table 2, on the training data an overall predic-
tion accuracy of 85.67% with a sensitivity of 86.50% and a
specificity of 84.83% was obtained using all features. Then we se-
lected five feature subsets by decreasing the number of features.
The prediction rate is improved in each feature selection step.
The maximum accuracy of 85.92% with 85.67% sensitivity and
86.17% specificity was obtained using 50 features. This result sug-
Fig. 1. Receiver operating characteristic (ROC) curves. ROC curves were plotted
utilizing sensitivity and specificity values derived from the prediction results of
SPRED using the top 50 features and all features.



Table 4
Prediction result for 19 experimentally verified non-classical secretory proteins using
SPRED, SecretomeP and SRTPRED. ‘‘ + ” denotes proteins correctly predicted as non-
classical secretory proteins and ‘‘�” denotes proteins incorrectly predicted as non-
classicial secretory proteins.

SwissProt
ID

Protein annotation SPRED SecretomeP SRTPRED

P05230 Heparin-binding growth
factor 1

+ + +

P09038 Heparin-binding growth
factor 2

+ + +

P01584 Interleukin 1 beta + + +
P01583 Interleukin 1 alpha + + �
P17931 Galectin-3 + + �
P14174 Macrophage migration

inhibitory factor
+ + �

P26447 Protein S100-A4 + + �
P09211 Glutathione S-transferase P + + �
Q06830 Peroxiredoxin-1 + + �
Q14116 Interleukin 18 + + �
P27797 Calreticulin + � +
P62805 Histone H4 + � �
P29034 Protein S100-A2 + � �
P09382 Galectin-1 + � �
P10599 Thioredoxin + � �
P26441 Ciliary neurotrophic factor � + +
P19622 Homeobox protein

engrailed-2
� + �

Q16762 Thiosulfate sulfurtransferase � + �
P09429 High mobility group

protein B1
� � �
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gests that our feature reduction approach selected useful features
by eliminating uncorrelated and noisy features.

In order to examine the performance of the newly developed
model, we tested the trained model on a test dataset containing
180 extracellular proteins and 1380 cytoplasmic and/or nuclear
proteins. As shown in Table 3, using the top 50 features, we ob-
Human proteome 
(86845 proteins) 

Non transmembrane proteins 
(65508 proteins) 

Secretory proteins 
(20897 proteins) 

Secretory proteins with 
signal peptide (9542 proteins) 

Sec
signal 

Classical secretory proteins
(9542 proteins) 

Po
secretor

Predict transmembrane proteins 

SPRED prediction 

Signal peptide prediction using signalP 

Fig. 2. Screening for secretory pr
tained 82.18% accuracy with a sensitivity of 88.33% and a specific-
ity of 81.38%. We also plotted the sensitivity versus specificity
chart, i.e. the receiver operator curve (ROC). The area under curve
for all features was 0.89 and for the top 50 features was 0.91,
respectively (Fig. 1).

Prediction result for known non-classical secretory proteins

For predicting non-classical secretory proteins, we do the fol-
lowing steps. First, SPRED tells us, whether the protein is secretory
or non-secretory, and then we look whether the protein has a sig-
nal peptide or not. If not, we know that we have a non-classically
secreted protein. As a final test we use 19 human proteins that
are experimentally verified non-classical secretory proteins from
various sources. Criteria for selection were clear experimental evi-
dence within the literature for the given sequence entry. These, se-
creted but with no signals sequences are not found in any of the
above datasets on which SPRED was trained or tested. For compar-
ison, we applied SPRED, SecretomeP [17] and SRTPRED [18] to
these 19 proteins. SPRED correctly predicts 15 proteins as non-
classical secretory proteins whereas SecretomeP and SRTPRED pre-
dict 13 (with low score) and 5 proteins, respectively. The predic-
tion results are given in Table 4.

Screening for classical and non-classical secretory proteins in the
human proteome

To identify novel candidates in the human proteome for non-
classical secretory proteins, we scanned the human proteome
using SPRED (Fig. 2). With SPRED, we classified these 65508 pro-
tein sequences into 44611 non-secreted proteins and 20897 pro-
teins located outside of the nucleo-cytoplasm. We removed all
the classical secretory proteins (9542 protein sequences) using Sig-
nalP, leaving 11355 proteins which do not belong to the classical
Transmembrane proteins
(21337 proteins) 

Non-secretory proteins
(44611 proteins) 

retory proteins without 
peptide (11355 proteins) 

tential non-classical
y proteins (566 proteins) 

Mitochondrial proteins 
Peroxisomal proteins 

Protein fragments 
Hypothetical proteins 

False positives 

oteins in human proteome.



Table 5
Comparison of SPRED with other machine learning methods using the top 50 features.

Method Sensitivity (%) Specificity (%) MCC Accuracy (%)

Na Bayes 70.00 78.28 0.2639 77.79
IBK 57.50 82.34 0.2344 80.88
SVM(Linear) 82.78 82.90 0.4867 82.88
SVM(RBF kernel) 78.89 80.87 0.4351 80.64
SPRED 88.33 81.38 0.5036 82.18
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secretory pathway. Subsequently, we removed hypothetical pro-
teins, fragmented proteins, mitochondrial proteins, peroxisomal
proteins and false positive proteins. The remaining 566 protein se-
quences were finally classified as non-classical secretory proteins.
Our analysis shows that these 566 proteins include well studied
non-classical secretory proteins such as Galectin [8], Interleukin
1 alpha, Interleukin 1 beta [9], thioredoxin [41], S100-A [42], etc.
which leave intact cells by defined pathways. However, as the clas-
sification of proteins in the training dataset into the positive data-
set ‘‘extracellular proteins” is often based on the detection of these
proteins outside of cells without any knowledge about the export
pathway, these predicted proteins may also include proteins that
are released during cell disruption and are relatively stable in the
extracellular environment. The complete list of predicted non-clas-
sical secretory proteins is provided in the supplementary
materials.

Comparison of SPRED with other machine learning methods

The proposed SPRED method was compared with several state-
of-the-art classifiers such as the Naïve Bayes classifier [43], in-
stance learning based IBK algorithm [44] and the Support Vector
Machine (linear and RBF kernel) [45]. The optimal values of the
SVM parameters were obtained using a five-fold cross-validation
on the training dataset. We compared the performance of SPRED
with the other models using the same feature subsets that are
mentioned in Table 2. All models were tested on the test dataset
containing 180 positive and 1380 negative sequences. With the
top 50 features, SPRED and SVM (linear and RBF kernel) achieved
comparable accuracy and specificity, however, the sensitivity of
SPRED is still higher (Table 5).

Conclusion

Protein secretion is a universal process which occurs in all
organisms and has tremendous importance to biological research.
Identification of classical and non-classical proteins is an essential
and also difficult task.

We implemented a random forest approach to predict protein
secretion using sequence derived properties. The validation of
SPRED on a test dataset showed 82.18% accuracy with a sensitivity
of 88.33% and a specificity of 81.38%. SPRED performed better than
SecretomeP and SRTPRED. The next challenge will be to verify the
predicted non-classical proteins experimentally.
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