
Multi-layer Relation Networks for relational reasoning
Marius Jahrens

Institute for Neuro- and Bioinformatics
Lübeck, Germany

jahrens@inb.uni-luebeck.de

Thomas Martinetz
Institute for Neuro- and Bioinformatics

Lübeck, Germany
martinetz@inb.uni-luebeck.de

ABSTRACT
Relational Networks (RN) as introduced by Santoro et al. in 2017
have demonstrated strong relational reasoning capabilities with a
rather shallow architecture. Its single-layer design, however, only
considers pairs of information objects, making it unsuitable for
problems requiring reasoning across a higher number of facts. To
overcome this limitation, we propose a multi-layer relation network
architecture which enables successive refinements of relational
information through multiple layers. We show that the increased
depth allows for more complex relational reasoning by applying it
to the bAbI 20 QA dataset, solving all 20 tasks with joint training
and surpassing the state-of-the-art results.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
ACM Reference Format:
Marius Jahrens and Thomas Martinetz. 2019. Multi-layer Relation Networks
for relational reasoning. In 2nd International Conference on Applications
of Intelligent Systems (APPIS 2019), January 7–9, 2019, Las Palmas de Gran
Canaria, Spain. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3309772.3309782

1 INTRODUCTION
While Neural Networks have been very successful in classification
and regression, their ability to cope with relational tasks has re-
mained rather limited. In order to overcome this limitation, Neural
Networks need a way to perform reasoning on different aspects of
an input signal, so that more complex relations can be deducted
through logical chains.

Relation Networks (RNs) as introduced by Santoro et al. [8] were
a milestone in this direction. Their architecture is illustrated in
Figure 1. RNs expect object vectors as input from previous layers
or from samples, representing bits of information from the same
domain. These objects can be as different as outputs of recurrent
layers encoding the information content of sentences in natural
language processing or feature vectors representing abstract image
features in the output of stacked convolutional layers. The objects’
relations to one another with respect to an input question q is
evaluated by an evaluation module д for all combinatorial pairs
of objects. The objects are expected to contain all information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APPIS 2019, January 7–9, 2019, Las Palmas de Gran Canaria, Spain
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6085-2/19/01.
https://doi.org/10.1145/3309772.3309782

дθ

дθ

дθ

дθ

дθ

дθ

дθ

дθ

дθ

Σ output
fϕ

Figure 1: In the RN architecture pairs of objects (oi ,oj ) (in
red, green, blue) with input question q (yellow) are handled
independently by the relation evaluation function дθ . The
resulting vectors are summed up and the sumvector is trans-
formed by fϕ to form the final network output.

necessary to reason about their relation, most importantly also
including their relative or absolute spatial or, in case of sequences,
temporal position. The extracted relational information is then
combined by summing the output vectors of д, which keeps the
result invariant to the order of the objects and the order in which
the pairs are evaluated. Finally, the combined vector is fed to an
output function f , which leads to

RN (O,q) = fϕ

(∑
i, j

дθ (oi ,oj ,q)
)

(1)

as the final output of the RN. f and д are typically chosen as MLPs
with weights ϕ and θ , respectively. Since Relation Networks are
differentiable if the internal functions are modeled accordingly, e.g.
by using MLPs, the combination of object generating layers and
Relation Network components can be trained end-to-end, so that
suitable object representations can be learned inside the network.

A number of extensions of the original RN have been introduced.
In a recent paper by Palm et al. [6] the network has one recurrent
cell for each input object which is repeatedly fed its previous state,
its input object, as well as transformed previous outputs from the
other objects’ recurrent cells. It can be shown that their Recurrent
Relation Network is a special case of our approach, if our relation
evaluation functions are made to share weights across all layers.
However, doing so forces the inputs of each layer to reside in the
same domain, thereby limiting layers’ output representations to
have a similar level of abstraction as the inputs. In another ap-
proach to enhance Relation Networks, Moon et al. [5] proposed a
memory enhanced variation with an attention mechanism which,
while improving upon the RN results, doesn’t solve all bAbI tasks.
Other related architectures like RelNet by Bansal et al. [1] were

https://doi.org/10.1145/3309772.3309782
https://doi.org/10.1145/3309772.3309782
https://doi.org/10.1145/3309772.3309782


APPIS 2019, January 7–9, 2019, Las Palmas de Gran Canaria, Spain Marius Jahrens and Thomas Martinetz

benchmarked on each task separately, yet our approach achieves
similar or better results despite being trained on all tasks jointly.

We extend the RN simply by further layers, however, in a way
that it scales linearly to arbitrary numbers of such layers. We stack
these layers such that more complex relations can be infered, now
being able to solve tasks that proved to be difficult in the past
due to the number of related facts. The main advantage of our
approach over other attempts to enhance RNs is its simplicity and
its scalability, all while showing improved performance on the
benchmark dataset.

2 MULTI-LAYER RELATION NETWORKS
The single-layer architecture discussed above only allows the re-
lation evaluation function дθ to consider information from two
objects, making it unsuitable for problems requiring reasoning
across more than two facts. While expanding д to evaluate triplets
would be possible, the computational complexity would increase
from O (n2) to O (n3) with n being the number of objects. Hence,
simply scaling up the combinatorial layer is not feasable from a
performance point of view.

Instead we sum up all the relations which reason about an object
oi , so that we end up with one sum vector per object. We then
use these vectors as input objects for another single-layer Relation
Network, thus forming a double-layer RN in total. The architecture
of this Double-Layer Relation-Network (DLRN) is shown in Figure
2 and described by

DLRN (O,q) = fϕ

(∑
i,k

hψ

(∑
j
дθ (oi ,oj ,q),

∑
l

дθ (ok ,ol ,q),q
))
.

(2)
This way the relation evaluation function hψ reasons about

objects which already contain binary relational knowledge. The
construction process can be repeated for arbitrary layer stack counts
m, withm = 0 being equivalent to the single-layer RN. In a recursive
formulation we obtain

MLRN (O,q) = f
(∑
i,k

hm,i,k

)
(3)

hd,i,k = hd
*.
,

∑
j
hd−1,i, j ,

∑
l

hd−1,k,l ,q
+/
-

d = 1, . . . ,m (4)

h0,i,k = д(oi ,ok ,q). (5)
Note that the Multi-Layer Relation Network (MLRN) has a compu-
tational complexity of O (n2m), making it computationally suitable
for more complex reasoning tasks.

3 EXPERIMENTS
3.1 The bAbI dataset
Published by Weston et al. (2015) [9], the bAbI 20 QA tasks are a
dataset of algorithmically generated sentences and related questions
and answers formulated in natural language. Each task represents a
type of reasoning as denoted in Table 1. The dataset contains 1000
or 10000 training/validation samples per task and 100 or 1000 test
samples on the small and the large variant, respectively. For our
work and all comparisons, we used the 10k variant with joint train-
ing on all tasks and predefined separation into 9k training samples,

1k validation samples and 1k test samples. A task is considered to
be solved successfully if the test accuracy exceeds 95%.

Under the same conditions, Differentiable Neural Computers
(DNC) have managed to solve 18 of these 20 tasks [8], Sparse DNCs
19/20 [8], Relation Networks 18/20 [8], Recurrent RNs 19/20 [6],
Relation Memory Networks 19/20 [5] and Working Memory Net-
works 19/20 [7]. While Adaptive Memory Networks [4] reported
20/20 successful tasks, their experiment settings mention different
model training parameters for different types of tasks, hinting that
the training was probably not performed on all tasks jointly.

Examples of the most difficult tasks 2, 3, and 16, are given in the
Appendix in Table 2. Note that for task 16 about 6% of the samples
are not disambiguous as the context provides multiple possible
answers and the answer provided in the label is not always the one
with the most supporting facts.

3.2 Comparison of single- and double-layer RN
Since choosing layer count m=0 yields an architecture which is
equivalent to the original single-layer RN, we decided to reproduce
the original results first and use the determined hyperparameters
as a starting point for the multi-layer experiments.

As in the original RN paper we reduced or padded each sample’s
context to contain exactly 20 sentences. While this preprocessing
step might have an influence on the difficulty of the tasks since
fewer unimportant sentences in the context equate to less input
noise, preliminary tests of the MLRN indicated that this limitation
does not have a significant impact on the network’s performance.
To produce the input objects for the relation network, we use a
word embedding matrix and feed the embedded word vectors, for
each sentence separately, into an LSTM with peepholes [3]. The
final LSTM output is then concatenated with a position encod-
ing vector which is a one-hot vector, encoding the position of the
sentence inside the current sample’s context, with a randomized
padding length per sample to reduce overfitting (as proposed by
Adam Santoro, one of the authors of the original RN paper, in per-
sonal communication). The word embedding matrix and the LSTM
weights were learned together with the RN weights during the
end-to-end training.

We chose a word embedding dimension of 256, an LSTM cell with
32 units, a position encoding vector size of 40,
f = MLP (256, 512,dict_size ) with ReLU activations for the inner
layers and a final linear layer with softmax for the output. For the
relation evaluation function, we chose д = MLP (256, 256, 256, 256)
with ReLU activations, added L2 weight regularization terms with a
penalty of 2e-5 for the weights in f and g and used a cross-entropy
loss function. For the gradient descent we used the adam optimizer
with a fixed learning rate of 5e-5 and a batch size of 32. About 4
million training steps were necessary to finish the training, taking
about 4 days on a single GTX 1080 Ti.

For the double-layer case (m = 1), we used the same parameters
as before, except switching to a weight penalty factor of 1e-4 and
choosing h1 = MLP (256, 256, 256). The training took 6 million
steps, equating to about 8 days on a single GTX 1080 Ti.

For the sake of comparison tasks 2 and 3 are of most interest
because they represent the failure cases of the single-layer RNs.
Task 2 consists of questions with two supporting facts and task 3



Multi-layer Relation Networks for relational reasoning APPIS 2019, January 7–9, 2019, Las Palmas de Gran Canaria, Spain

дθ

дθ

дθ

дθ

дθ

дθ

дθ

дθ

дθ

Σ

Σ

Σ

hψ

hψ

hψ

hψ

hψ

hψ

hψ

hψ

hψ

Σ output
fϕ

Figure 2: Double-layer RN architecture: The output vectors of the relation evaluation function дθ are grouped and summed by
the first index i of its input pairs (oi ,oj ) (in red, green, blue) to form new object vectors (red/white, green/white, blue/white).
The new objects are used as inputs for a single-layer RN (right half) with relation evaluation function hψ .

Original RN results Layer countm = 0 Layer countm = 1
Task 1: Single Supporting Fact > 95 100 100
Task 2: Two Supporting Facts 91.9 81.3 99.8
Task 3: Three Supporting Facts 83.5 90.5 99.3
Task 4: Two Argument Relations > 95 100 100
Task 5: Three Argument Relations > 95 99.1 99.9
Task 6: Yes/No Questions > 95 100 100
Task 7: Counting > 95 100 100
Task 8: Lists/Sets > 95 100 100
Task 9: Simple Negation > 95 100 100
Task 10: Indefinite Knowledge > 95 99.4 100
Task 11: Basic Coreference > 95 99.1 100
Task 12: Conjunction > 95 100 100
Task 13: Compound Coreference > 95 100 100
Task 14: Time Reasoning > 95 99.9 100
Task 15: Basic Deduction > 95 100 100
Task 16: Basic Induction 97.9 97.0 97.4
Task 17: Positional Reasoning > 95 97.8 98.3
Task 18: Size Reasoning > 95 99.5 99.6
Task 19: Path Finding > 95 99.9 100
Task 20: Agent’s Motivations > 95 100 100
Tasks succeeded (> 95%) 18/20 18/20 20/20
Mean error unknown 1.825 0.285

Table 1: Task accuracies on the test set in % for a single-layer RN as reported by the original authors, a single-layer RN with
our generalized architecture (m = 0) and our double-layer RN (m = 1). Bold are the two tasks which significantly improved due
to higher order relations.

represents questions with three supporting facts. Note that while
our results for tasks 2 and 3 seem to be interchanged when com-
pared to the results from the original paper, no evidence for a fault
could be found. The results in Table 1 show that the increased
layer count does indeed allow the network to learn more complex
relations.

The MLRN not only learns more complex relations, but also
learns more quickly. In Figure 3 we show the learning curves on
the validation sets of Tasks 2 and 3 and of Tasks 16 and 19. As we
can see, for reaching the smaller error in Task 2 and 3 no more
training is necessary. The final error is reached very quickly. The
faster learning is even more evident in Task 19. The single- and
the double-layer RN both reach the same small error in this less
complex task, but the MLRN reaches it with almost an order of
magnitude less training steps. For Task 16 also our MLRN needs

many training steps for learning, even more than the single-layer
RN. Task 16 is the reason why the overall training on all tasks
takes about twice as much time as for the single-layer RN. Also the
single-layer RN has difficulties learning this task. We expect that
these difficulties are due to the ambiguity of the training data, as
shown in the Appendix. It is well known that the kind of symmetry
breaking, which has to take place in such cases, is usually very time
consuming.

4 CONCLUSION
We have proposed a generalization of the Relation Network which
can be scaled easily to multiple layers for higher task complexities.
We have shown that this Multi-Layer Relation Network is capable
of solving all of the bAbI QA tasks with joint training on all tasks,
making it to our knowledge the first model to achieve this, all



APPIS 2019, January 7–9, 2019, Las Palmas de Gran Canaria, Spain Marius Jahrens and Thomas Martinetz

0 2 4 6
·106

0.2

0.4

0.6

0.8

1

training step

ac
cu
ra
cy

Task 2

SLRN
DLRN

0 2 4 6
·106

0.2

0.4

0.6

0.8

1

training step

ac
cu
ra
cy

Task 3

SLRN
DLRN

0 2 4 6
·106

0.2

0.4

0.6

0.8

1

training step

ac
cu
ra
cy

Task 16

SLRN
DLRN

0 2 4 6
·106

0

0.5

1

training step

ac
cu
ra
cy

Task 19

SLRN
DLRN

Figure 3: Accuracy on the validation set for a single-layer RN and a double-layer RN periodically measured during training.

without resorting to using ensembles or taking the best of multiple
runs. Its total test error rate of 0.285% even matches the state-of-the-
art of models trained on each task separately [1]. In most cases the
MLRN also learns its tasks significantly faster than the single-layer
RN, despite more parameters to train. This is a hint that its structure
is better suited for these tasks.

When compared to other proposed Relation Network enhance-
ments, we attribute its advantage over Recurrent RNs [6] to the fact
that the shared weights in the recurrent architecture don’t allow
them to learn more complex relations in deeper layers because the
weight-sharing forces all the layer outputs to be in the same domain,
and therefore a similar level of abstraction, as the first layer’s input.

With its simple construction the MLRN is suitable for a large
variety of problems. In a next step we will evaluate our multi-layer
architecture on further relational reasoning tasks like the relation of
objects in images as in [8] or even challenges for abstract reasoning
inspired by human IQ tests as proposed by [2].

REFERENCES
[1] Trapit Bansal, Arvind Neelakantan, and Andrew McCallum. 2017. RelNet: End-to-

End Modeling of Entities & Relations. arXiv:1706.07179. arXiv:1706.07179
[2] David G.T. Barrett, Felix Hill, Adam Santoro, Ari S. Morcos, and Timothy Lilli-

crap. 2018. Measuring abstract reasoning in neural networks. arXiv:1807.04225.
arXiv:1807.04225

[3] Felix A. Gers and Juergen Schmidhuber. 2000. Recurrent nets that time and count.
In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the
New Millennium, Vol. 3. IEEE, 189–194 vol.3. https://doi.org/10.1109/ijcnn.2000.
861302

[4] Daniel Li and Asim Kadav. 2018. Adaptive Memory Networks. arXiv:1802.00510.
arXiv:1802.00510

[5] Jihyung Moon, Hyochang Yang, and Sungzoon Cho. 2018. Finding ReMO (Re-
lated Memory Object): A simple neural architecture for text based reasoning.
arXiv:1801.08459. arXiv:1801.08459

[6] Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. 2017. Recurrent Relational
Networks for complex relational reasoning. arXiv:1711.08028. arXiv:1711.08028

[7] Juan Pavez and Héctor Allende. 2018. Working Memory Networks: Augment-
ing Memory Networks with a Relational Reasoning Module. arXiv:1805.09354.
arXiv:1805.09354

[8] Adam Santoro, David Raposo, David G.T. Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter Battaglia, and Timothy Lillicrap. 2017. A simple neural network
module for relational reasoning. arXiv:1706.01427. arXiv:1706.01427

[9] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Mer-
riënboer, Armand Joulin, and Tomas Mikolov. 2015. Towards ai-complete question
answering: A set of prerequisite toy tasks. arXiv:1502.05698. arXiv:1502.05698

http://arxiv.org/abs/1706.07179
http://arxiv.org/abs/1807.04225
https://doi.org/10.1109/ijcnn.2000.861302
https://doi.org/10.1109/ijcnn.2000.861302
http://arxiv.org/abs/1802.00510
http://arxiv.org/abs/1801.08459
http://arxiv.org/abs/1711.08028
http://arxiv.org/abs/1805.09354
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1502.05698


Multi-layer Relation Networks for relational reasoning APPIS 2019, January 7–9, 2019, Las Palmas de Gran Canaria, Spain

A BABI EXAMPLES

Task 2

Context:
1. Mary got the milk there.
2. John moved to the bedroom.
3. Sandra went back to the kitchen.
4. Mary travelled to the hallway.

Question:
Where is the milk?

Answer:
hallway

Task 3

Context:
1. John moved to the bedroom.
2. John grabbed the apple there.
3. Sandra moved to the hallway.
4. John went to the office.
5. Sandra went back to the bedroom.
6. Sandra took the milk.
7. John journeyed to the bathroom.
8. John travelled to the office.
9. Sandra left the milk.
10. Mary went to the bedroom.
11. Mary moved to the office.
12. John travelled to the hallway.
13. Sandra moved to the garden.
14. Mary moved to the kitchen.
15. Daniel took the football.
16. Mary journeyed to the bedroom.
17. Mary grabbed the milk there.
18. Mary discarded the milk.
19. John went to the garden.
20. John discarded the apple there.

Question:
Where was the apple before the bathroom?

Answer:
office

Task 16 (ambiguous)

Context:
1. Greg is a frog.
2. Bernhard is a swan.
3. Julius is a frog.
4. Bernhard is white.
5. Julius is green.
6. Lily is a frog.
7. Brian is a frog.
8. Lily is gray.
9. Brian is gray.

Question:
What color is Greg?

Answer:
gray

Task 16 (disambiguous)

Context:
1. Lily is a swan.
2. Bernhard is a lion.
3. Greg is a swan.
4. Bernhard is white.
5. Brian is a lion.
6. Lily is gray.
7. Julius is a rhino.
8. Julius is gray.
9. Greg is gray.

Question:
What color is Brian?

Answer:
white

Table 2: Samples from the most difficult tasks 2, 3 and 16
(one sample with and one without ambiguity).


	Abstract
	1 Introduction
	2 Multi-Layer Relation Networks
	3 Experiments
	3.1 The bAbI dataset
	3.2 Comparison of single- and double-layer RN

	4 Conclusion
	References
	A bAbI examples

