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ABSTRACT

We present a new feature weighting method to improve k-Nearest-Neighbor (k-NN) classification. The
proposed method minimizes the largest distance between equally labeled data tuples, while retaining a
minimum distance between data tuples of different classes, with the goal to group equally labeled data
together. It can be implemented as a simple linear program, and in contrast to other feature weighting
methods, it does not depend on the initial scaling of the data dimensions. Two versions, a hard and a
soft one, are evaluated on real-world datasets from the UCI repository. In particular the soft version
compares very well with competing methods. Furthermore, an evaluation is done on challenging gene
expression data sets, where the method shows its ability to automatically reduce the dimensionality of
the data.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The k-Nearest-Neighbor (k-NN) algorithm is a popular non-
linear classifier (Cover and Hart, 1967). The main advantage
of this approach is, that it is simple and the results are easy to
interpret. A major disadvantage is, however, that the classifi-
cation results largely depend on the scaling of the input data
and the measured features. The scaling may be very arbitrary,
and the most commonly used distance measure, the Euclidean
distance, may not be a good choice. Therefore, to assure good
classification performance, we need to adjust the scaling and
distance measure to fit the data.

By scaling the features through appropriate weighting, the
classification performance can be improved significantly. This
applies not only to the k-NN but also to many other distance
based classifiers. The quality of the scaling can be measured
by the k-NN error rate. An optimal rescaling should minimize
the classification error E of the k-NN algorithm. The goal is to
find a weight vector ~w ∈ <D,wµ ≥ 0, µ = 1, ...,D that helps
the classifier to minimize E. This problem is referred to as the
feature weighting problem, which is similar to the problem of
relevance learning in the context of LVQ classifiers (Hammer
and Villmann, 2002). It is, however, not as closely tied to one
classifier as LVQ.
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For the Euclidean distance, the weighted distance between
two data points ~x, ~x′ ∈ <D is given by

d(~x, ~x′) = ||~x − ~x′||~w =

√√√ D∑
µ=1

wµ(xµ − x′µ)2, (1)

also called the weighted Euclidean distance. This distance mea-
sure takes the dimension relevance for classification into ac-
count. For irrelevant dimensions, the weights may become
zero. This leads to a dimensionality reduction of the data set,
which is desirable, because it increases the noise robustness and
the generalization performance.

Several methods are available for feature weighting. The
most simple approach is to rescale every dimension through
normalization of the data distribution variance along every di-
mension. However, this does not take class label information
into account. The Relief algorithm by Kira and Rendell (Kira
and Rendell, 1992) aims to account for this problem. It takes the
distance of every data point to its nearest neighbors of the same
and a different class. The ratio between these two distances
is optimized iteratively such that data from the same class are
grouped together. Simba (Gilad-Bachrach et al., 2004) extends
this concept. This is done by an iterative update of the near-
est neighbors based on the current weight vector for the dis-
tance measure. Originally, both methods were developed to se-
lect the most important dimensions for classification by learn-
ing a weight vector. Other methods for feature weighting are
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the I-Relief (Sun and Li, 2006) and the loss-margin based al-
gorithm (LMBA). The I-Relief is another extension of Relief
that uses the current weight vector when selecting the nearest
neighbors. LMBA is derived from the Large Margin Nearest
Neighbor Classification described in the next paragraph. For
every data point, a circular area is spanned by a k-neighborhood
of equally labeled data points. By adapting the weight vector,
LMBA tries to clear this area plus some margin from differently
labeled data.

Instead of the weighted Euclidean distance, one can also op-
timize the Mahalanobis distance

d(~x, ~x′) = ||~x − ~x′||W =
√

(~x − ~x′)T W(~x − ~x′) (2)

to improve the k-NN classification. Here, an entire positive
semidefinite matrix W is optimized. By doing so, we are solv-
ing a metric learning problem, by which features can be decor-
related as a major benefit over feature weighting. In case we
restrict W to a diagonal matrix, we again obtain the feature
weighting problem. Thus feature weighting is a subclass of
metric learning. Often, one wants to stick within this subclass.
This is to avoid a mixing of all dimensions, which keeps and
allows an interpretation of individual dimensions. Large Mar-
gin Nearest Neighbor classification (LMNN) (Weinberger et al.,
2006; Weinberger and Saul, 2009) is a well known metric learn-
ing method, which is closely linked to the concept of the k-NN
classifier. Like LMBA, LMNN tries to free an area spanned by
k equally labeled data points plus some margin from differently
labeled data points. However, instead of the weighting vector a
complete metric is adapted.

Learning a linear transformation of the data space and using
the Euclidean distance in the transformed space is equivalent to
using the Mahalanobis distance in the original space:

||~x − ~x′||W =
√

(~x − ~x′)T W(~x − ~x′) (3)

=
√

(~x − ~x′)T LT L(~x − ~x′) (4)

=
√

(L~x − L~x′)T (L~x − L~x′) = ||L~x − L~x′||2, (5)

with the transformation matrix L and a metric W = LT L. To re-
duce the dimensionality, Principal Component Analysis (PCA)
or Independent Component Analysis (ICA) (Comon, 1994) can
find such a linear transformation, independent of the labeling.
While PCA decorrelates the dimensions, ICA minimizes their
statistical dependence. However, since the transformations are
found without label information, the transformed space may not
be optimal for classification. This is addressed by Linear Dis-
criminant Analysis (LDA) (Fisher, 1936). It optimizes the ratio
between scatter of equally labeled data points (intraclass) and
differently labeled data points (interclass) in the transformed
space. In the original formulation it was limited to a two class
setting, but it has been extended to handle multiple classes
(Rao, 1948). These linear transformations share the mixing
of dimensions with the metric learning approaches, making it
harder to interpret the results in the transformed space.

It is important to note that often not only the weights are
updated, but also prototypes which are used to improve the per-
formance of k-NN on large datasets. For example, this can be
done by a fuzzy-artificial immune system (Şahan et al., 2007).

However, reduction of the training dataset is out of the scope of
this work.

Here, we focus on feature weighting, which allows a bet-
ter interpretation of the results, but without the decorrelation
ability. In the following, we give a detailed description of our
linear programming approach for feature weighting (Hocke and
Martinetz, 2013) and extend it by allowing soft constraints. Be-
sides evaluating the methods on UCI data, we also demonstrate
the dimension reduction capabilities on gene expression data in
Section 3.

2. Methods

2.1. Maximum Distance Minimization
A good weighting vector ~w minimizes the classification error

E of the k-NN algorithm. The idea of our approach is that the
k-NN classification performance should improve, if equally la-
beled data points are close together and differently labeled data
points are far apart. We want to achieve this by minimizing
the maximum distance between all pairs of data points of the
same class. To avoid the trivial solution ~w = ~0, a constraint
on the minimum distance for data points of different classes
is imposed. Due to these main ideas, which are illustrated in
Figure 1, we call our method Maximum Distance Minimiza-
tion (MDM). Note, it is possible to do the opposite and impose
a maximum intraclass distance while maximizing the minimum
interclass distance (Minimum Distance Maximization (MDM)).
Both approaches are mathematically equivalent.

Given data points ~xi ∈ <
D with class labels yi, i = 1, ...,N,

we formally solve the following constrained optimization prob-
lem:

||~xi − ~x j||
2
~w ≥ 1 ∀i, j : yi , y j (6)

||~xi − ~x j||
2
~w ≤ r ∀i, j : yi = y j (7)

min
~w

r wµ ≥ 0 ∀µ. (8)

The above problem can be formulated as a linear program

min
~v

~f T~v s.t. A~v ≤ ~b, ~v ≥ ~0 (9)

with ~v, ~f ∈ <D+1, b ∈ <N2
, and A ∈ <N2×D+1. The vector

~v = (~w, r) is optimized and with ~f = (~0, 1), only the r plays a
role for the minimization. The constraints are imposed by

AI(i, j) =


(
−(~xi − ~x j) ◦ (~xi − ~x j), 0

)
∀i, j : yi , y j(

(~xi − ~x j) ◦ (~xi − ~x j),−1
)
∀i, j : yi = y j

(10)

and

bI(i, j) =

−1 ∀i, j : yi , y j

0 ∀i, j : yi = y j
. (11)

Here we use I(i, j) = (i − 1)N + j to index the row of A and the
element of b. The Hadamard product A ◦ B = (ai j · bi j) is an
element wise multiplication.

In this formulation, the number of constraints grows quadrat-
ically with the number of data points. The dimension of the
vector ~v to be optimized is D + 1. Note, that the above con-
straints can always be fulfilled and, therefore, our optimization
problem is always solvable despite having hard constraints.
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(a) (b)

Fig. 1: Figure 1a shows two different settings. d1 denotes
the shortest interclass distance. This distance is fixed to one
by equation (6). The largest intraclass distance for class one
(crosses) is d2 and for class two (circles) d3. The larger distance
of the two (d2) determines r in equation (7) and is minimized.

2.2. Soft Maximum Distance Minimization
Maximum Distance Minimization as introduced above uses

hard constraints. This punishes only the most distant pairs and
may make MDM sensible to outliers and noisy data. The soft-
ness is achieved by introducing slack variables ξi for every data
point xi. A punishment for slack variables is added in the op-
timization criterion weighted by C. This soft approach allows
some intraclass distances to be larger than r and hence to reduce
the influence of outliers and noise. This is illustrated in Figure
2. The new optimization problem becomes

||~xi − ~x j||
2
~w ≥ 1 ∀i, j : yi , y j (12)

||~xi − ~x j||
2
~w ≤ r + ξi ∀i, j : yi = y j (13)

min
~w

r + C
∑

i

ξi wµ ≥ 0 ∀µ, ξi ≥ 0 ∀i. (14)

The linear program, introduced above, can easily be adopted to
the soft version. ~f is extended to ~f = (~0, 1, ~C) and ~v = (~w, r, ~ξ)
such that ~f ,~v ∈ <D+1+N . The rows of A are changed as follows:

AI(i, j) =


(
−(~xi − ~x j) ◦ (~xi − ~x j), 0, ~0

)
∀i, j : yi , y j(

(~xi − ~x j) ◦ (~xi − ~x j),−1, 0, (δI(i, j)n)N
n=1

)
∀i, j : yi = y j

,

(15)
with δ being the Kronecker delta. Drawbacks of this soft ver-
sion are that the dimension of the vector ~v now grows linearly
with the number of data points and MDM is not parameter free
anymore. C has to be chosen appropriately.

2.3. The main difference
Relief and LMNN use neighbors and neighborhoods for their

optimization. This is very intuitive if one wants to improve
on the k-NN classification performance, since k-NN also uses
neighbors. However, the neighbors have to be selected prior
to the optimization process and depend on the initial scaling of
the data. One obtains good solutions only if the initial scal-
ing defines neighborhoods which already correspond well to
the neighborhoods defined by the optimal scaling. An itera-
tive approach may be used to adopt the neighbors, as it is done
in case of Simba. This, however, has the disadvantage that the
optimization problem becomes non-convex and, therefore, may
lead to even worse results.

Fig. 2: Illustration of the softness effect. d1 is the largest inter-
class distance. There is no change in the influence of d1 com-
pared to standard MDM. However, there is a change for the
intraclass distances d2 to d4. In a hard setting r will equal d4
and, therefore, the outlier will have a major effect on the final
weight vector w. The smaller C, the more intraclass tuples are
allowed to have a distance larger than r. All these tuples will
influence w simultaneously and in that way lower the influence
of the outlier. Also the noise effect will be lower, if the final w
depends on several similar tuples like d2 and d3.

We here avoided this problem. Instead of performing a local
neighborhood dependent optimization, we opted for a global
optimization. Besides being independent of the initial scal-
ing, MDM allows us to formulate a very simple optimization
problem. This problem can be solved by linear programming
for which many fast solvers are available. An example is the
MOSEK-solver1, which we used in our experiments.

Our global approach takes only the most distant pairs of
equally labeled data points into account. This may not be ade-
quate for every distribution of data points. For some data sets,
it may be more beneficial to use local distances like Relief and
LMNN. We could also adopt MDM to use such local distances
between neighboring data points. This would simply require to
predefine which data tuples are neighbors and restrict the op-
timization problem to these tuples. But this would be at the
expense of being dependent on the initial scaling, since the pre-
definition of adjacent tuples depends on it. Interestingly, as we
will see in our experiments, in most cases the fully global ap-
proach is superior.

3. Experiments and Comparisons

To test MDM, we used datasets from the UCI repository
(Frank and Asuncion, 2010) and gene expression datasets avail-
able from the Broad Institute website2. Both are described in
Table 1.

We compared MDM with results obtained with the standard
Euclidean distance as well as obtained with the feature weight-
ing algorithms Relief and Simba3. As a reference and out of
competition we also show the results obtained with LMNN as a

1http://www.mosek.com/
2http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi (Full dataset

names: Breast-A, DLBCL-B, St. Jude Leukemia, Lung Cancer)
3We used a implementation by A. Navot and R. Gilad-Bachrach, which is

available at http://www.cs.huji.ac.il/labs/learning/code/feature selection.bak/
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Table 1: Description of the datasets. The top datasets are from
the UCI repository, and the bottom ones are gene expression
data.

Name Samples Dimensions Classes
Iris 150 4 3
Wine 178 13 3
Breast Cancer 683 10 2
Pima Diabetes 768 8 2
Parkinsons 195 22 2
Seeds 210 7 3
Breast Cancer 98 1213 3
DLBCL 180 661 3
Leukemia 248 985 6
Lung Cancer 197 1000 4

complete metric learning method. For the soft MDM, the soft-
ness parameter C was selected for each split of the data individ-
ually. From the set {2−x|x ∈ {0, . . . , 10}}, the best C was cho-
sen by 4-fold cross-validation on the training data. For Relief
and Simba we need to set the number of training epochs. We
here used one epoch, as this is default in the implementation
that we used. Longer training sometimes deteriorated the re-
sults. Due to the non-convex optimization, five random starting
points were chosen for Simba for every training. For LMNN its
parameter µ was chosen to be 0.5. The authors described this
to be a good choice (Weinberger and Saul, 2009). To evaluate
the classification performance, we split the data into five almost
equally large parts and used four of these parts for training and
one for testing. The partitioning was used five times for training
and testing, with each part being left out once. This was done
for ten different splits of the data, so that 50 different test and
training sets were obtained. After the weighting was learned on
the training set, k-NN with k = 3 was used to obtain the error
rates on the independent test set.

First, we compared the classification performance on the UCI
datasets. Table 2 shows the results on the raw data. MDM
is clearly superior. The error rates are improved significantly
compared to standard k-NN based on the original scaling (”Eu-
clidean”). Only for the iris data, the original scaling is a good
choice. Relief and Simba sometimes even worsen the classifi-
cation performance compared to the original scaling.

In Table 3 we see the results after a prior rescaling such that
the data distribution is normalized to zero mean and variance
one along each dimension. With prior rescaling, Relief and
Simba become competitive due to a different initial selection
of the neighbors. Obviously, Relief and Simba seem to be very
dependent on a good initial scaling. It seems that the initial
neighbors more or less remain neighbors during the optimiza-
tion procedure. But then, obviously, already the initial scaling
is a good choice and achieves good results. Even though the
other methods in general improve their results on the prepro-
cessed data, MDM remains very competitive. Interestingly, not
for all datasets the preprocessing by normalization yields im-
proved results. Especially for the iris data the initial scaling
seems to be a better choice. This does however demonstrate
that it is not always clear whether a prior rescaling and which

rescaling is beneficial. The main advantage of MDM accounts
for this problem, since it is independent of such a prior rescal-
ing. Another interesting result is that although LMNN is much
more flexible and complex, it does not perform better, at least
on these data sets.

In Table 4 we see the results on the gene expression data.
They were obtained with the same prior rescaling as used for
the UCI data in Table 3. The gene expression data are a lot more
challenging because the number of data dimensions compared
to the number of data points is very large, as shown in Table
1. This curse of dimensionality is very challenging for feature
weighting and metric learning methods. All methods perform
on a similar level as standard Euclidean distance, taking the
large standard deviation into account. However, we see a nice
feature of our MDM method: MDM remarkably reduces the
dimensionality of the data without the use of any parameters.
The dimensionality reduction is directly induced by the formu-
lation of the optimization problem. Methods like Relief and
Simba, which where specifically designed for this task, need a
threshold to be set either by some heuristic or by hand. The
dimensionality can be reduced even further if the soft MDM is
used, but this comes at the expense of the softness parameter
which needs to be set.

4. Conclusion

We presented a simple feature weighting method to handle
the problem of arbitrarily scaled data dimensions. The weight-
ings our method identifies yield very competitive k-NN classifi-
cation results on standard benchmark problems. Since our opti-
mization problem does not directly optimize the error rate of the
locally operating k-NN, we expect that also other distance based
classification methods would benefit from this approach. Inter-
estingly, the error rates we achieve with MDM are compara-
ble to those of the much more complex metric learning method
LMNN for most of the UCI data sets in our experiments. This
shows that the additional flexibility of metric learning is not al-
ways needed. Hence, it is better for some applications to use
feature weighting and keep the interpretability.

What distinguishes our method from commonly used meth-
ods is that it is independent of the initial scaling of the data di-
mensions. By this it eliminates the need for preprocessing. To
achieve this independence, we compare all tuples during opti-
mization and thereby avoid a predefinition of which data points
are adjacent. MDM performed well on most of the benchmark
data with this global approach. Of course, there might be data
sets where local structures should be taken into account. The
Parkinsons data of the UCI data sets seems to be an example.
There, in our comparison (Table 3) the methods based on local
distances perform better.

In addition, we demonstrated the capability of our method to
reduce the dimensionality of a given classification problem on
high dimensional data. Contrary to other methods, parameters
as for example a threshold are not needed to cut off dimen-
sions with small weights. This makes MDM a straightforward
method to use for dimensionality reduction.
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Table 2: Results on UCI datasets. The top entry is the average test error in percent followed by the STD in parentheses. Below the
error rates, the average rank, again followed by the STD, is given. In case of the feature weighting methods, the rank is equal to the
number of non-zero weights. The best results obtained with feature weighting are indicated by bold face.

Euclidean MDM MDM Soft Relief Simba LMNN
Iris 3.87(3.32) 4.33(3.10) 4.00(2.94) 4.00(2.86) 6.27(3.91) 4.00(2.86)

4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 3.96(0.20) 4.00(0.00)
Wine 30.28(7.25) 2.64(2.81) 2.13(2.56) 32.80(6.65) 32.52(7.19) 5.57(3.82)

13.00(0.00) 12.10(0.65) 12.08(0.67) 13.00(0.00) 13.00(0.00) 12.12(0.63)
Breast Cancer 39.20(4.35) 3.50(1.43) 2.86(1.27) 39.36(4.30) 39.36(4.30) 4.06(1.34)

10.00(0.00) 9.94(0.31) 9.70(0.51) 10.00(0.00) 9.64(0.85) 8.02(0.25)
Pima Diabetes 29.99(3.45) 27.34(2.52) 26.43(2.90) 29.41(3.18) 29.92(3.53) 28.42(3.15)

8.00(0.00) 7.90(0.30) 7.76(0.43) 8.00(0.00) 7.42(0.70) 8.00(0.00)
Parkinsons 14.72(4.96) 10.31(4.85) 7.59(4.21) 15.49(4.86) 15.64(4.75) 13.49(4.91)

22.00(0.00) 21.20(0.88) 20.44(0.73) 22.00(0.00) 22.00(0.00) 21.82(0.39)
Seeds 11.90(3.63) 7.52(3.74) 7.00(2.98) 11.71(3.56) 11.86(3.65) 4.86(2.84)

7.00(0.00) 7.00(0.00) 7.00(0.00) 7.00(0.00) 7.00(0.00) 7.00(0.00)

Table 3: Results on the UCI datasets after prior rescaling. The dimensions were normalized such that the data distributions have a
mean equal zero and a variance equal one. The notation and structure of this table is the same as in Table 2.

Euclidean MDM MDM Soft Relief Simba LMNN
Iris 5.40(3.92) 4.33(3.10) 4.00(2.94) 4.87(3.10) 4.73(2.94) 4.47(3.27)

4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00)
Wine 3.88(2.84) 2.64(2.81) 2.13(2.56) 3.37(3.21) 3.43(3.03) 2.42(2.12)

13.00(0.00) 12.70(0.51) 12.96(0.20) 13.00(0.00) 12.54(0.91) 13.00(0.00)
Breast Cancer 3.60(1.43) 3.38(1.48) 2.75(1.36) 3.35(1.38) 4.04(1.42) 3.38(1.50)

10.00(0.00) 10.00(0.00) 9.88(0.33) 10.00(0.00) 9.76(0.62) 9.48(0.79)
Pima Diabetes 26.73(2.64) 27.34(2.52) 26.53(2.89) 26.90(3.54) 27.20(3.45) 26.46(2.67)

8.00(0.00) 8.00(0.00) 8.00(0.00) 8.00(0.00) 5.66(0.85) 8.00(0.00)
Parkinsons 9.13(3.85) 10.31(4.85) 9.59(5.10) 5.69(3.25) 7.13(3.92) 5.74(2.91)

22.00(0.00) 21.50(1.11) 21.16(1.89) 22.00(0.00) 21.92(0.27) 21.96(0.20)
Seeds 8.05(3.00) 7.52(3.74) 7.00(2.98) 10.24(3.51) 9.57(3.77) 6.67(3.50)

7.00(0.00) 7.00(0.00) 7.00(0.00) 7.00(0.00) 6.98(0.14) 7.00(0.00)

Table 4: Results on gene expression data (after prior rescaling). The notation and structure of this table is the same as in Table 2.

Euclidean MDM Relief Simba LMNN
Breast 8.07(6.13) 11.42(7.25) 13.16(7.89) 14.47(7.43) 9.78(7.13)
Cancer 1213.00(0.00) 364.76(62.65) 1213.00(0.00) 1213.00(0.00) 1137.42(2.97)
DLBCL 13.11(5.24) 14.67(5.33) 12.00(5.62) 13.28(6.55) 15.44(4.32)

661.00(0.00) 293.86(34.13) 661.00(0.00) 661.00(0.00) 559.56(1.97)
Leukemia 2.21(2.27) 1.74(1.96) 2.18(2.45) 4.12(2.87) 0.69(1.33)

985.00(0.00) 473.24(55.28) 985.00(0.00) 984.96(0.20) 821.48(7.53)
Lung 4.37(2.77) 5.49(3.18) 4.88(2.78) 8.29(4.12) 4.78(2.66)
Cancer 1000.00(0.00) 536.62(78.55) 1000.00(0.00) 999.78(0.46) 870.86(1.87)
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