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Abstract. Based on Tomaso Poggio’s M-theory, we propose a method to
learn transformation invariant representations. Using an artificial dataset,
we demonstrate that our supervised method learns invariance to shifts,
and on the MNIST data we show first results for learning the unknown
transformations underlying handwritten digits.

1 Introduction

Visual object recognition is a challenging task in computer vision. Even small
changes to an object’s pose can yield dramatic changes to the 2D image in
its pixel representation. Therefore, a representation invariant to such changes
is mandatory for achieving good recognition rates. Modern approaches to that
problem are scale-invariant feature transform (SIFT) [1] for coping with scale
invariance and convolutional neural networks [2, 3] for coping with shift invari-
ance.

Recently, the M-theory [4] was proposed explaining how invariance could be
implemented in the ventral stream. Besides the theoretical insights on invariance,
also a simple algorithm based on this theory is presented to find transformation
invariant representations. However, there are two limitations. First, the theory
explains only in-plane transformations, and, second, in the algorithm presented,
the transformations are assumed to be known in advance. Addressing the later
drawback we present a method based on the M-theory to learn invariance to
unknown transformations. This enables us to gain (approximate) invariance to
complex and unknown transformations.

After introducing the core ideas of the M-theory and describing our approach
we demonstrate its potential in an artificial setting and on handwritten digits, as-
suming these digits undergo complex transformations when written by different
people.

2 M-theory

According to the M-theory [4], invariance to a group G of transformations can be
achieved in a representation using orbits O. This is the core idea of the M-theory,
which we used for our method. In the following we will describe this concept,
and refer the reader to [4] for a more exhaustive description of the theory. Here,
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we use g ∈ G to denote the group elements, and by g(x) we denote the group’s
action applied to the image x ∈ R

D. By applying all transformations gi ∈ G to
some image x an orbit Ox = {gi(x)|gi ∈ G} is induced. This orbit is unique for
the object in x, and it is invariant to the transformations in G. For example the
group of in-plane rotations would induce an orbit containing all possible rotated
versions of the original image x1. The orbit for some other image x2 = gi(x1)
that can be obtained from x1 by rotation would be the same, because for both
x1 and x2 all possible rotated versions are contained in the orbit. Of course for
some different image x3 that can not be obtained from x1 by rotation the orbit
would be different.

For object recognition we would need to generate and compare the orbit of
an unknown object to the stored orbit of a known object. It is not clear how
to measure the similarity of two obits. One possibility is to use the probabil-
ity distribution Px induced by the transformations gi on the image. For these
distribution the following holds:

x1 ∼ x2 ⇐⇒ Ox1
= Ox2

⇐⇒ Px1
= Px2

. (1)

However, these probability distributions are extremely high dimensional making
it impractical to obtain them. Therefore, we would like to embed the invariance
and discrimination properties of the distributions to a space of lower dimension.
The Cramér-Wold theorem [5, 4] ensures that these high dimensional probability
distributions can be described by D distributions P〈gi(x),pn〉 over one dimen-
sional projections 〈gi(x),pn〉, where pn, n = 1, . . . D are the projection vectors.
To discriminate a finite number of distributions, empirically a small number of
projections N < D is sufficient [4].

Instead of transforming the input image x, we can also apply the inverse
transformation to the projection vectors pn:

〈gi(x),pn〉 = 〈x, g−1
i (pn)〉. (2)

By applying the transformations to the templates, we avoid transforming every
new image. This allows an invariant and discriminative representation in a simple
two layer neural network with the transformations stored in the synapses. The
first layer generates all the outputs using scalar products of all weight vectors
win = g−1

i (pn) with the input x, and the second layer quantifies the distributions
over the outputs of the first layer.

The restriction to groups of transformations allows only few transformations
like periodic boundary shifts and in-plane rotations. Other common transforma-
tions such as shifts and scaling may not be fully observed by projection vectors
of finite length. However, invariance to these partially observable groups can be
achieved for a range of parameters and for non-group transformations approxi-
mate invariance can be achieved.

3 Invariance Learning

In the original M-theory, the weight vectors win are derived from the given
transformation, e.g., translation or rotation. In our approach we want to learn
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these weights to be able to adapt to unknown transformations. We quantify the
distributions P〈gi(x),pn〉 by moments m. So every input image x is characterized
by

ynm(x) =

I
∑

i

(

w⊤
inx
)m

, (3)

which is invariant to the transformations gi ∈ G. In order to obtain a unique
and discriminate set of outputs ynm, the number N of projections, the num-
ber I of weight vectors per projection and the set of moments need to be set
appropriately.

For our supervised approach a set of labeled training images is needed, and
there should be multiple images per class available. For every class c ∈ C, mo-
ment m ∈ M , and projection pn, n = 1, . . . N a target value tcmn is introduced.
These target values are used to learn the unknown outputs ynm for every class,
with equal outputs for intraclass tuples and different outputs for interclass tu-
ples. The following energy term enforces the moments of the projections to match
their target

ES =
∑

k

∑

m

(

tcmn −
∑

i

(

w⊤
inxk

)m

)2

. (4)

By minimizing this term invariance to transformations in the training set is
obtained, because the distributions for intraclass tuples are matched. However,
this term will not guarantee a discriminative result. Therefore, a second energy
term is introduced to enforce a minimum distance between the target vectors of
every possible tuple of different classes c and c′

ED =
∑

c,c′

max (1− ||tc − tc′ ||, 0)
2
, (5)

with the target vectors tc =
(

tc,1,1, tc,1,2, . . . , t|C|,|M |,N

)⊤
. The energies ES and

ED are combined using the weighting factor α

E = αES + (1− α)ED. (6)

Using this energy term (6) targets tcmn and the weight vectors win can be
learned by gradient optimization, after the targets tcmn and the weight vectors
win have been initialized randomly. In our experience stochastic gradient descent
was too slow, and, therefore, we used the Sum of Functions optimizer [6], which
in addition to the speed also needs no learning rates to be set.

4 Distance to Center Classification

In case we were able to learn full invariance to a transformation, all images
of one class c∗ will lie exactly on the corresponding target vector tc∗. If only
approximate invariance was achieved, all these images are clustered around tc∗.
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Therefore, the closest target vector determines the class label c∗ for some image
x:

c∗ = argmin
c

||y(x)− tc||, (7)

with y =
(

y,1,1, y1,2, . . . , y|M |,N

)⊤
.

5 Experiments

We show first experimental results. Many of the parameters are not optimized,
yet. For all the presented results only the second moment was used to quantify
the distributions. By setting the weighting parameter α to 0.01, the interclass
term was emphasized, which according to our experience leads to faster conver-
gence. The number of projections and the number of weight vectors per projec-
tion vary for the experiments, and are described for each experiment separately.

As a proof of concept we used shifted binary patches of size 4×4. 100 patches
were generated randomly by setting each pixel to either one or to zero with
probability 0.5. Then every patch was shifted using periodic boundary conditions
(see Figure 1). On the resulting 1600 training samples, we trained two projections
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Fig. 1. The left image shows a random example patch in all its 16 possible shifts. The
plot on the right shows the two second moments we obtain from projecting the orbits
of the test data, i.e., y1,2 and y2,2 from Equation (1). Each patch is denoted by a
different shape and color. All the shifted versions of a patch indeed fall on the same
point, demonstrating perfect shift invariance of this representation. The 10 different
test patches now can easily be discriminated.

with 16 weight vectors each. We used 16 weight vectors per projection, because
we know there are 16 possible shifts. Like the training samples, 160 test samples
were obtained from ten random patches by shifting. The orbits of the test samples
were then projected with the learned weights using Equation (1). Since we only
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use the second moment, the two projections provide two values for each input
image x. In Figure 1 we see that the representation is perfectly invariant to the
learned transform, because all the shifted versions of a patch fall on a single
point.

Going one step further, we tested our method on handwritten digits from the
MNIST [3] dataset. It contains 60.000 training and 10.000 test samples. Here,
we assume that every sample of a certain digit is a transformed version of a
prototype digit. From the training data we learn invariance to the unknown
transforms underlying MNIST, which is a much larger challenge than learning
the known shifting transform in the experiment above. Since the transforms
are unknown, we do not know how to select the number of weight vectors per
projection, and in addition the images are of size 28× 28, therefore many more
parameters need to be learned.

For the visualization shown in Figure 2, we trained 2 projections with 20
weight vectors each and again take the second moments. The test data are nicely
clustered into the ten digits. Since not all equally labeled digits are perfectly
aligned, only an approximately invariant representation was found. However,
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Fig. 2. This plot shows the two second moments we obtain from projecting the orbits
of the MNIST test data using our method. Clearly, for every digit the samples form a
cluster.

if these two projections we chose for visualization are not enough for perfect
separation, we can increase the number of projections. If we use 10 projections,
the distance to center classification described in Section 4 achieves 2.86% error
rate on the test data significantly improving the 16.63% error rate obtained for
the two projection setting. If the distance to center classification is applied in
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the input pixel space of 768 dimensions, 17.97% of the samples are not classified
correctly. This shows how well our method organizes the space.

6 Conclusion

Based on the M-theory, we introduced a supervised learning method to find
an invariant representation. In the experiments we showed that our method can
learn perfect invariance to periodic boundary shifts. For the much more complex,
unknown transformations in MNIST full invariance was not achieved. However,
the data was clustered good enough for a decent classification performance.
We hope to improve these promising results by a better understanding of the
different parameters.
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