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1 Introduction

The k-Nearest-Neighbor (k-NN) [1] algorithm is a popular non-linear classifier.
It is simple and easy to interpret. However, the often used Euclidean distance
is an arbitrary choice, because the data dimensions are not scaled according to
their relevance. Similar to relevance learning in the context of LVQ classifiers [2],
the scaling of the dimensions can be adapted by feature weighting to improve
the classification rate of k-NN.

An optimal rescaling has to minimize the classification error E(X) of the
k-NN algorithm. Often this problem is called the feature weighting problem. We
want to find a weight vector w ∈ ℜD, wµ ≥ 0, µ = 1, ..., D for some given dataset
X = {xi ∈ ℜD, i = 1, ..., N} that helps the classifier to minimize E(X). In case
the Euclidean distance is used, the weighted distance between two data points

x,x′ becomes d(x,x′) = ||x− x
′||w =

√

∑D

µ=1
wµ(xµ − x′

µ)
2.

Well known methods for feature weighting are Relief [3] and Simba [4]. Re-
lated is the more general problem of metric learning with Large Margin Nearest
Neighbor Classification (LMNN) [5] as a popular approach, that optimizes the
Mahalanobis distance d(x,x′) = ||x− x

′||W =
√

(x− x
′)TW (x− x

′).
We here present a method that contrary to the other methods is independent

of the initial dimension scaling and evaluate it on gene expression data.

2 Maximum Distance Minimization

For rescaling the dimensions, we do not look at local neighbors, as the other
methods do. Instead we try to minimize, by a very global optimization, the
maximum distance between all pairs of data points of the same class, while
keeping the pairwise distance between data points of different classes large. We
therefore name our method Maximum Distance Minimization (MDM). Formally,
we are solving the following constrained optimization problem

||xi − xl||
2

w
≥ 1 ∀i, l : yi 6= yl (1)

||xi − xj ||
2

w
≤ r ∀i, j : yi = yj (2)

min
w

r wµ ≥ 0 ∀µ, (3)

where yi, yl, and yj are the class labels of xi, xl, and xj . The above problem
can be formulated as a linear program, which is always solvable, even without
slack variables.
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Euclidean MDM Relief Simba LMNN

Breast 8.07(6.13) 11.42(7.25) 9.68(7.09) 14.07(7.63) 9.78(7.13)
Cancer 1213.00(0.00) 364.76(62.65) 1213.00(0.00) 1213.00(0.00) 1136.96(0.75)

DLBCL 13.11(5.24) 14.67(5.33) 11.17(5.03) 13.56(6.06) 15.44(4.32)
661.00(0.00) 293.86(34.13) 661.00(0.00) 661.00(0.00) 559.54(1.99)

Leukemia 2.21(2.27) 1.74(1.96) 1.86(1.82) 4.48(3.24) 0.69(1.33)
985.00(0.00) 473.24(55.28) 985.00(0.00) 984.94(0.24) 822.50(4.77)

Lung 4.37(2.77) 5.49(3.18) 4.22(2.66) 8.69(3.80) 4.78(2.66)
Cancer 1000.00(0.00) 536.62(78.55) 1000.00(0.00) 999.78(0.42) 870.86(1.87)

Novartis 1.26(2.15) 0.89(2.37) 0.98(1.98) 3.81(4.43) 0.39(1.34)
500.00(0.00) 238.46(32.60) 500.00(0.00) 499.96(0.20) 424.22(3.16)

Table 1. Results for gene expression data. For comparisson we also included LMNN.
The top entry is the average test error followed by the STD in parentheses. Below
the error rates the average number of non-zero weights, again followed by the STD, is
given.

3 Experiments

Experiments on UCI datasets show that MDM is independent of the initial
scaling of the data dimensions [6]. Here we applied it to gene expression datasets
available from the Broad Institute webside1. The data dimensions of each dataset
were normalized so that the data points have zero mean and a variance of one.
The k-NN (k=3) error rates in Table 1 were obtained by a 5-fold cross-validation
that was repeated ten times. None of the tested methods is clearly better then
any other and the variances are quite large. This shows how challanging this
data is. There are only 70 to 250 samples and it has 500 to 1200 dimensions.
Interestingly, MDM reduces the dimensionality heavily, which is worth to have
a closer look at.
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