Workshop New Challenges in Neural Computation 2012

Experience in Training (Deep) Multi-Layer
Perceptrons to Classify Digits

Jens Hocke, Thomas Martinetz

Institute for Neuro- and Bioinformatics, University of Liibeck

1 Introduction

Multi-Layer Perceptrons (MLPs) have been in use for decades. It seemed for
a long time, that MLPs have reached their limits, but recent advances caught
our attention. Ciresan et al. [1] show that by using a proper training set deep
MLPs can outperform all other state of the art machine learning algorithms on
the MNIST dataset for handwritten digits. However, a vast amount of training
samples is needed, which has to be generated artificially with special transfor-
mations. The drawback is that appropriate transformations might be known for
handwritten digits but not in general. Work by Hinton et al. and Bengio et al. [2,
3] suggest that unsupervised pre-training helps to find deep MLPs with better
generalization from the training set, and thus avoiding to generate extra training
data. We are interested in how the better generalization is archived and tested
therefore alternative similar architectures. Here we present some observations
we made in our first tests on the MNIST dataset. There is a lot of room for
improvements to reach the error rates of Ciresan’s approach.

2 Training of a Multi-Layer Perceptron

The standard approach to training a MLP is gradient descent on a cost func-
tion. To archive a faster convergence than with batch learning on a data set
like MNIST with many repeating patterns, usually stochastic gradient descent
is used. The most common cost functions are Mean Squared Error (MSE) and
Cross-Entropy (CE). For the results shown below we used CE because it con-
verged faster in our experiments. Applying it to a fully connected single layer
network of 10 output units (one for each class) we get a test error of about 8.08
percent. By adding a hidden layer with 1000 fully connected units the error rate
decreases to 1.72 percent.

Already the above network with 1000 hidden units has many more weights
than training samples and reaches zero percent training error. It is an under-
determined system with many solutions having zero percent training error. By
adding another layer, the classifier becomes even more powerful and the solution
space for zero training error becomes even larger. There is no reason to expect a
better generalization. Our experiments confirm this. A network with two hidden
layers of 1000 and 500 units performs even worse on the test set (1.82 %). Ciresan
et al. [1] benefited from an increased number of layers, but they circumvented

Machine Learning Reports

113



Workshop New Challenges in Neural Computation 2012

the underdeterminacy by artificially creating a basically infinitely large training
set by applying elastic deformations to the original data. But to generate this
data it must be known which transformations are appropriate for the dataset.

Is it possible to make use of the additional power of the classifier without
generating extra data? Hinton and Bengio [2, 3] suggest the use of autoencoders.
These ensure that the information loss in every layer is minimal. After this kind
of unsupervised training the entire network is retrained in the usual way using
back-propagation. Interestingly, this yields better generalization than plain back-
propagation without pretraining. It is not clear what the autoencoder does. If
the hidden layer is smaller than the previous layer, an encoding similar to PCA is
found. But for a larger hidden layer, the problem is again underdetermined. The
simplest solution would be the identity (Direct connection of input and output).
However, in practice this is not the solution found. Bengio et al. hypothesize
this may be caused by a weight-decay they used preventing large weights, or
stochastic gradient descent finding an arbitrary solution. The weights found by
the autoencoder are usually only used as initialization, as the starting point
for the back propagation learning of large (deep) underdetermined networks. It
seems, that this choice of the starting point lets the network converge to a good
solution in the solution space. Erhan et al. [4] hypothesize that pretraining is a
regularizer with an infinite penalty on certain regions of the parameter space.
Would it not be better to use autoencoders explicitly as a regularization for the
network? This strategy can be motivated by the fact that the brain is not only
performing one specific classification task with its visual input, but many differ-
ent ones. Then for every task different features are used, thus almost all features
need to be encoded in the hidden layer, which is enforced by the autoencoder.
We have tested this approach, but did not archive a good generalization (1.82
%).

Bengio et al. use a layer-wise training for the autoencoder. Would it also
work to add iteratively one hidden layer and train only the newly added layer
and the output neurons to classify correctly? This approach should ensure that
all information needed for the classification is passed from the lower layers to the
output layer. However, our experiments show that this scenario does not lead to
better results. On the test set the performance is just as good as or even worse
than using only one hidden layer (1.73 %). By retraining the entire network using
the previously found weights as initialization leads to a slight improvement (1.70
%), but still worse than the autoencoder result. It is interesting to note that in
all cases the features of the first hidden layer resemble parts of digits, if the
networks are trained with noisy samples.

To summarize, so far the effect of pretraining deep MLPs with autoencoders
is not yet really understood, but also does not really lead to competitive results
on the MNIST dataset.

References

1. Ciresan, D., Meier, U., Gambardella, L., Schmidhuber, J.: Deep, big, simple neural
nets for handwritten digit recognition. Neural computation 22(12) (2010) 3207-3220

114

Machine Learning Reports



Workshop New Challenges in Neural Computation 2012

2. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313(5786) (2006) 504-507

3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of
deep networks. Advances in neural information processing systems 19 (2007) 153

4. Erhan, D., Manzagol, P., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of
training deep architectures and the effect of unsupervised pre-training. Artificial
Intelligence 5 (2009) 153-160

Machine Learning Reports

115



