
A compressed sensing model of crowding in peripheral vision

Jens Hockea and Michael Dorrb and Erhardt Bartha

aInstitute for Neuro- and Bioinformatics, University of Lübeck, Ratzeburger Allee 160,
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ABSTRACT

We here model peripheral vision in a compressed sensing framework as a strategy of optimally guessing what
stimulus corresponds to a sparsely encoded peripheral representation, and find that typical letter-crowding effects
naturally arise from this strategy. The model is simple as it consists of only two convergence stages. We apply
the model to the problem of crowding effects in reading. First, we show a few instructive examples of letter
images that were reconstructed from encodings with different convergence rates. Then, we present an initial
analysis of how the choice of model parameters affects the distortion of isolated and flanked letters.
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1. INTRODUCTION

The human visual system samples only a tiny part of the visual field with high resolution, so that peripheral
vision is not only blurred, but also heavily subsampled. Nevertheless, we experience the illusion of high-fidelity
perception in the periphery despite objectively impaired recognition performance.

Reduced acuity is only one factor that limits peripheral vision. More importantly, peripheral vision suffers
from crowding, such that objects may be recognized when presented in isolation, but not when presented near
flanker objects.1 Although crowded objects cannot be recognized and appear jumbled, they can be detected and
are perceived as having normal contrast. A recent review2 lists the following further properties of crowding:
i) crowding depends on the spacing between target and flankers, and the critical spacing range increases with
eccentricity; ii) crowding is anisotropic; iii) crowding is asymmetric.

Even though most demonstrations show spatial crowding only, crowding is not limited to the spatial domain.
Temporal flankers, i.e., objects shown in the same location as the stimulus before and after stimulus presentation,
can also impair identification.

A large body of literature has described a variety of approaches to model crowding, where the main categories
comprise pooling, substitution, and masking models – for a recent review, see Levi.1 Pooling models average
measured features over large pooling areas, similar to receptive fields, and only the output after pooling is
available for recognition. In substitution models, individual features can be detected, but lack information on
precise location and object identity, so that features of the target stimulus may be substituted by features of the
flankers. Finally, masking models suggest that strong features of flankers suppress features of the target. While
all these approaches can capture some quantitative aspects of crowding, they fail to explain why the subjective
experience of the visual periphery is relatively undegraded.

We here propose an alternative pooling model for retinal vision. It is based on concepts from compressed
sensing,3, 4 a framework that allows to sample signals and images at a significantly lower rate than predicted
by the Shannon-Nyquist theorem. This low sampling rate is achieved using random samples and requires that
the signal is sparse, like natural images are. Particularly good compression rates in technical applications of
compressed sensing were obtained with Poisson-disk instead of truly random sampling;5 for our model, such use
of a Poisson-disk sampling mosaic can also be motivated biologically because the retinal photoreceptor mosaic
follows a similar pattern.6 Nevertheless, our model in its current form is not a detailed model that would
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account for all physiological data, but simplifies retinal processing to the following stages: (i) first convergence
and sampling stage: lateral connections in the retina provide local integration (modeled as Gaussian blur plus
Poisson-disc sampling) with a degree of blur and sampling that both depend on eccentricity; this creates a blurred
and sub-sampled image; (ii) second convergence and sampling stage: retinal output is obtained by compressed
sensing, i.e., a random sampling of the blurred image with a convergence rate (ratio of input and output neurons)
that, again, depends on eccentricity.

The first convergence stage models the well-known fact that image blur is highly eccentricity-dependent,
and varies up to 1000-fold in the human retina.7, 8 In the fovea the blur is small because of the tight packing
of photoreceptors (dense sampling) and the low level of neural integration (one cone signal is processed by
up to several ganglion cells); the periphery, however, shows low cone density and high neural integration and
convergence,8 and therefore a larger blur combined with sparser sampling.

In the second convergence stage, the input neurons are randomly connected to output neurons. There are far
fewer output neurons than input neurons, so each output neuron receives input from several input neurons and
input neurons may project to multiple output neurons. The randomized collection of information by the output
neurons corresponds to what the sensing matrix does in compressed sensing (see below) and allows to transmit a
signal with reduced bandwidth. In the visual system, this is useful because images need to be transmitted from
the retina to visual cortex through the optic nerve, which acts as a bandwidth-limited bottleneck.

In technical systems, signals must be decoded after transmission. Compressed sensing uses the sparseness of
natural signals to reconstruct the original image; mathematically, the reconstruction is equivalent to the solution
of an underdetermined system of equations. The brain, on the other hand, does not need to reconstruct the
original image. However, to obtain an intuitive measure of how much information was encoded by the relatively
few output neurons (in other words, how much information was lost during transmission), we can use standard
compressed sensing tools to visualize the reconstructed image.

This model can be considered a pooling model since the incoming features are combined (pooled). However,
in contrast to alternative pooling models, the features are combined randomly; the similarities of features, such
as similar orientation,9 are not taken into account.

Our model is also related to the work by Coulter et al.,10 who proposed an adaptive version of compressed
sensing as a model of visual processing in the primary visual cortex (V1). This was motivated by sparse coding
models that learn the response properties of simple cells in V1. Instead of one-to-one connections, simple cells are
randomly connected to the input neurons and therefore adaptive compressed sensing allows for a more realistic
model of V1 connectivity. These authors could experimentally show that the same response properties as in
standard sparse coding can be learned with a random compressed-sensing network. Furthermore, they proposed
that such a model of random sampling could be used between cortical areas to avoid the need of a one-to-one
connectivity.

The compressed-sensing model presented here is a model of the retina instead of V1 and, accordingly, adds
a blurring and subsampling stage to the adaptive compressed sensing model. The blur and the subsampling
are motivated by the properties of the foveal and peripheral retina. In contrast to Coulter et al., however, we
did not specifically learn a sparse basis for natural images. Instead, we used the Dual Tree Complex Wavelet
Transform (DT-CWT) for practical reasons: by using the computationally efficient DT-CWT, it was possible to
run simulations faster and on larger image patches.

2. MATHEMATICAL MODEL

To understand our model of early vision we need to have a basic understanding of compressed sensing (CS).3, 4

It is a sampling scheme that allows images to be sampled at a significantly lower rate than predicted by the
Shannon-Nyquist theorem. To achieve this low sampling rate, the measurements are acquired by correlating a
signal x with the sensing waveforms θk:

yk = 〈x, θk〉, k = 1, 2, . . . ,m. (1)

The entries of the sensing waveforms θk, used for CS, are usually generated with a certain degree of random-
ness3, 11 to ensure global measurements of the signal and maximum difference between the sensing waveforms.



The sampling with several sensing waveforms can be expressed by a measurement matrix Θ with m sensing
waveforms θk as rows:

y = Θx. (2)

If x is then represented using a sparse basis Ψ we obtain

y = ΘΨa, (3)

and one can find a good solution for the system of equations defined by Equation 3 although the system is
underdetermined (the dimension of y is lower than that of x). Given signals that are s-sparse, i.e. a has s

non-zero elements, in the basis Ψ, one can use the sparseness constraint

argmin
a

||y −ΘΨa||2 s.t. ||a||0 < s (4)

that defines an optimization problem, which can be approximately solved by using the method of compressive
sampling matching pursuit (CoSaMP).12

In our model we start with an image x that corresponds to the image sampled by the receptors. In the first
convergence stage (see above) the image is blurred and sub-sampled. The blur is Gaussian and is followed by
a Poisson-disk sampling. The blur can be described by the convolution matrix C and the resulting image is
denoted xblur. This blurred image is re-sampled to yield xsampled:

xsampled = Φxblur, (5)

where Φ ∈ R
n×m is a sampling matrix that subsamples xblur (n < m). The Poisson-disk distribution is generated

using the algorithm of Bridson13 and the resulting sampling patterns are illustrated in Figure 1. The convergence
rate defined by blurring and sub-sampling is considered to increase smoothly from the fovea to the periphery. For
the purpose of this paper, however, we simplified this aspect and considered only block-wise constant convergence
rates, i.e. the convergence rates have been varied to simulate foveal and peripheral vision but the images have
been sampled uniformly across the test letters that we considered.

The samples defined by Equation 5 are then considered to be inputs to a network of neurons such that the
output neurons are randomly connected to the input neurons with random weights. The activation of the output
neurons can then be computed using the connection matrix Θ:

xoutput = Θxsampled. (6)

Every row in the connection matrix represents an output neuron. For every input neuron that is connected to
an output neuron there is a non-zero entry in the corresponding column. The values in the matrix represent the
weights of the connections.

Convergence is modeled by allowing for fewer output neurons than input neurons. The convergence rate
(ratio of input and output neurons) varies with eccentricity. As for the first convergence stage, we used different

Figure 1. A foveal (left) and a peripheral (right) distribution of the sampling scheme used in the first stage. The Poisson
disk radius is 1 pixel for foveal sampling and 3 pixels for peripheral sampling.



convergence rates but the convergence rate for a particular letter image did not vary across the image (for
computational reasons only).

Due to convergence, the problem of reconstructing the input pattern from the output neurons is underde-
termined, similar to the reconstruction problem in compressed sensing (Equation 4). Despite the compression
efficiency of CS, there will be a loss of information if the input signal contains more information than can be
encoded by the output neurons. By reconstructing the original image from the activity of the output neurons
we estimate the amount of information delivered at the output. To reconstruct the original image, the signal at
the output neurons is modeled as a linear superposition in a sparse basis Ψ:

xoutput = ΘΦCΨa (7)

where xblur = Cx and x = Ψa. The Dual Tree Complex Wavelet Transform is used as basis, which is biologically
plausible in that its basis elements are oriented Gabor-like functions similar to simple cells in primary visual
cortex.14, 15 The basis is sparse in the sense that relatively few coefficients are needed to describe natural images
in this basis. The CoSaMP algorithm is then applied to solve the following optimization problem:

argmin
a

||xoutput −ΘΦCΨa||2 s.t. ||a||0 < s. (8)

From the recovered coefficients a the image x̂ can be then reconstructed. This image visualizes the information,
which is still represented by the (rather few) samples in xoutput.

3. EXPERIMENTS

An everyday activity that is clearly affected by crowding is reading: at a certain eccentricity a single letter may
be readable, but when the letter is flanked by other letters (i.e., embedded in a word), the same letter may not
be readable. Once foveated, however, even flanked letter can be easily identified.

To simulate this phenomenon qualitatively, 10 images each of single letters and of letters flanked by two
random letters were generated. The two letters were placed to the left and to the right of the central letter. The
images had a size of 128 by 128 pixels and bright letters (about 30 pixels high) were placed in the center on a
dark background. Foveal and peripheral representations of these letters were simulated by using our model. For
the fovea only a small Gaussian blur of variance 2 was used and the radius for the Poisson disk sampling was
just 1 pixel, which resulted in roughly 10800 samples for the 16384 pixels of the image. In the periphery, the
images were blurred with a Gaussian of variance 4 pixels, and the Poisson disk had a radius of 3 pixels, which
resulted in about 1750 samples. Convergence in the second model stage, i.e., the number of output neurons, was
varied from 1500 to 50, resulting in overall convergence rates of 11 to 328.

To estimate the amount of information represented by the final samples, the input images were reconstructed
as described above. The DT-CWT was used with 5 levels of evaluation depth. In Figure 2 example reconstructions
are shown. To compare the input and output images, the mean squared error was used as a difference measure.
The mean squared error was computed only within a bounding box around the central letter to avoid measuring
errors due to the flanking letters.

We tested the reconstruction quality depending on the number of output neurons, and for the above selected
values of the Gaussian blur and Poisson-disc sampling. The errors were measured for all images and averaged
over 10 images.

4. RESULTS

In Figure 2 one can see that the foveal output neurons have sufficient information encoded to allow for a good
reconstruction for both the un-flanked and the flanked letter image. The overall quality of the reconstruction
from the peripheral output neurons is of course worse, but the letter ’X’ is still recognizable if it is not flanked
by other letters. Note that the reconstruction is based on only 1.5% of the input pixels in case of a convergence
rate of 66 in stage 2 (250 output neurons). If the letter is flanked by other letters the reconstructed images
exhibit typical crowding artifacts in the sense that the letter can be located, but its features are jumbled and



recognition is impossible. However, if the convergence rate in stage 2 is decreased to 27 (600 output neurons),
also the flanked letter ’X’ becomes recognizeable.

Figure 3 shows mean squared error (MSE) as a function of the overall convergence rate. The parameters
of the first convergence stage have been kept fixed at the same two foveal and the peripheral values that were
used to create the images in Figure 2 – see previous section. Only the number of output neurons in the second
convergence stage has been varied. First note that the errors increase with increasing convergence rate and that
the two error curves (single letter vs. flanked letter) diverge. This shows us that the crowding effect in our model
is due to a limited encoding capacity of the output neurons. However, the first convergence stage does also play
a role since the results for the foveal and the peripheral simulation differ. It seems particularly interesting that
the critical convergence rate (where the errors start rising) differ for the four curves. Especially in the right plot
(peripheral first stage), it becomes evident that a convergence rate optimized for single letters is not optimal for
letter with flankers. In the left plot (foveal first stage) the difference between the two optima is small. Note also
that the reconstruction errors are in all cases higher for the flanked letter. For both settings the errors of flanked
and un-flanked images do not reach the same level. The difference between the errors becomes smaller for the
foveal model. Probably the residual errors when many output neurons are used are not due to a limited coding
capacity, but due to the under-sampled deconvolution problem. This deconvolution problem sets a limit to the
best possible reconstruction. With a full sampling of a sharp image by the receptors and the use of one fourth
of the number of pixels as output neurons, a perfect reconstruction is possible for any number of flankers, since
that is a standard compressed sensing problem.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. The letter X is shown in isolation (a) and flanked by other letters (e). All other images show reconstructed
versions of these input images. The letters can still be easily recognized after reconstruction from a high-bandwidth foveal
representation (b, f). These two images correspond to the two arrows in the left plot of Figure 3; the convergence rate
is 13, i.e. the second stage has 1250 output neurons. The images on the right (c, d, g, h) are reconstructed from the
peripheral first stage (see text) with two different convergence rates in the second stage. The four images correspond to
the four arrows in the right plot of Figure 3. The two convergence rates are 27 and 66, i.e., the second stage had 600 and
250 output neurons, respectively. These four images illustrate the available information at convergence rates where the
flanked letter turns unrecognizable while the un-flanked letter can still be read.



5. DISCUSSION

It is well known that natural images exhibit redundancies. As a consequence, natural images can be compressed.
A more specific insight from the theory of sparse coding is that natural images can be encoded with few coefficients
in a proper basis. The framework of compressed sensing provides further insight by showing that if a signal can
be encoded in a sparse way, the number of samples one needs to sample the image is much lower than indicated
by the classical Shannon/Nyquist rate. To explore the consequences of this for retinal coding, we proposed a
simple model of low-level vision that uses compressed sensing for the coding of input signals. The model consists
of two convergence stages. The convergence rates of these two stages, i.e., the blur in the first stage and the
number of output neurons in the second stage, may reduce the amount of information that can be represented.
As we move towards representations with loss of information, i.e., we move towards the periphery, we find a clear
crowding effect in the sense that the reconstruction errors for letters images are significantly higher when the
letters are flanked by other letters.

We have not provided a full analysis of the model. Instead, we have fixed the parameters of the first stage to
two (foveal and peripheral) values and have varied the convergence rate of the second stage for those two values.
We have found that for both locations in the first stage, the reconstruction error increases with the convergence
rate of the second stage. The errors are lower at the foveal location of the first stage and they are lower for the
un-flanked letter than for the flanked letter. A more interesting result is that the two error curves (flanked and
un-flanked) are qualitatively different at the two locations (foveal and peripheral in the first stage). To optimize
the representation, one would choose a second-stage convergence rate as the rate at which the error starts rising.
At the foveal location it seems possible to choose a convergence rate that is optimal for both the un-flanked and
flanked letters, see arrows in the left plot of Figure 3. At the peripheral location, however, it seems that one can
go for a higher convergence rate for the un-flanked letter than one could for the flanked letters. Therefore, if the
peripheral system had been optimized for the recognition of un-flanked letters, flanked letters may already be
unreadable. Our reconstructed images in Figure 2 can give some guidance as to where the thresholds may lie.

We believe that out model is simple compared to alternative pooling models. We avoid, for example, assump-
tions such as the combination of similar features in the models of Balas et al.16 and Freeman et al.9 Although we
here modeled crowding at the retinal level, we believe that there may also be crowding effects due to processing
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Figure 3. The graphs show the reconstruction errors for a foveal (left) and a peripheral (right) sample of the first stage
and as a function of the total convergence ratio (number of input samples in x divided by the number of output samples
in xoutput), i.e., as a function of the number of output neurons in the second stage. The parameters of the first stage are
those given in the text. The six arrows correspond to the six reconstructed images shown in Figure 2 and the values of
the parameters are given in the caption of Figure 2. Note that, in both plots, the reconstruction error increases with the
convergence rate and that the errors are lower for the un-flanked letter (dotted line) than for the flanked letter. Also note
that the two error curves (flanked and un-flanked) are qualitatively different in the two plots.



in later stages. Many open questions remain and dedicated experiments need to be performed to address specific
issues of the model assumptions.

In conclusion, we hope to have shown that the principles of sparse coding and compressed sensing have the
potential to provide some new insights regarding visual coding in general and the crowding phenomenon in
particular.
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