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Abstract—Recognizing objects in natural images is an
intricate problem involving multiple conflicting objectives.
Deep convolutional neural networks, trained on large datasets,
achieve convincing results and are currently the state-of-the-
art approach for this task. However, the long time needed to
train such deep networks is a major drawback. We tackled
this problem by reusing a previously trained network. For
this purpose, we first trained a deep convolutional network
on the ILSVRC-12 dataset. We then maintained the learned
convolution kernels and only retrained the classification part
on different datasets. Using this approach, we achieved an
accuracy of 67.68% on CIFAR-100, compared to the previous
state-of-the-art result of 65.43%. Furthermore, our findings
indicate that convolutional networks are able to learn generic
feature extractors that can be used for different tasks.

I. INTRODUCTION

Recognizing objects in natural images is an intricate
task for a machine, involving multiple conflicting objectives.
The effortlessness of the human brain deceives the complex
underlying process. Inspired by the mammalian visual sys-
tem, convolutional neural networks were proposed [1]–[4].
They are the state-of-the-art approach for various pattern
recognition tasks. Unlike many other learning algorithms,
convolutional networks combine both feature extraction and
classification. The advantage of this approach was impres-
sively demonstrated by LeCun et al. [4] on MNIST and
Krizhevsky et al. [5] on ILSVRC-12, achieving better results
than previous learning methods.

A schematic representation of a convolutional network is
shown in Figure 1. The given network comprises five differ-
ent layers, i.e. input, convolution, pooling, fully-connected
and output layer. The input layer specifies a fixed size for the
input images, i.e. images may have to be resized accordingly.
The image is then convolved with multiple learned kernels
using shared weights. Next, the pooling layer reduces the
size of the image while trying to maintain the contained
information. These two layers compose the feature extraction
part. Afterwards, the extracted features are weighted and
combined in the fully-connected layer. This represents the
classification part of the convolutional network. Finally,
there exists one output neuron for each object category in
the output layer.

Recent results indicate that very deep networks achieve
even better results on various benchmarks [6], [7]. Moreover,
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Fig. 1. Schematic diagram of a convolutional neural network. The network
comprises five different layers. Both feature extraction and classification are
learned during training.

an ensemble of multiple networks and additional training
data are often used to further increase the performance [8],
[9]. Thus, the general formula for a convincing performance
are seemingly multiple deep convolutional networks with
many layers and a huge amount of training data.

One drawback of this trend, however, is the long time
needed to train such deep networks. To tackle this problem,
we reused a previously trained network. For this purpose,
we first trained a convolutional network on a large dataset,
maintained the learned feature extraction part, and only re-
trained the classification part on multiple different datasets.
We then compared the results to a full training, i.e. both
feature extraction and classification, of the same network on
the same dataset.

II. DATASETS

In this work, we used four different datasets, namely
ILSVRC-12, MNIST, CIFAR-10 and CIFAR-100. We used
ILSVRC-12 to pretrain our network and MNIST, CIFAR-10
and CIFAR-100 to retrain our network afterwards. In the
following section, we will briefly introduce each dataset. An
overview of some statistics of all four datasets is given in
Table I.

The IMAGENET [10] dataset contains more than 14 mil-
lion labeled high-resolution color images of natural objects
and scenes belonging to over 21,000 different categories.
The images were collected from the web and labeled by hu-
mans using Amazon Mechanical Turk1. A subset of these im-
ages is taken as an annual competition called the ImageNet

1http://www.mturk.com



TABLE I. STATISTICS OF THE USED DATASETS.

Dimension No. Images

Dataset Classes Width Height Depth Training Validation Test

MNIST 10 28 28 1 60,000 - 10,000
CIFAR-10 10 32 32 3 50,000 - 10,000
CIFAR-100 100 32 32 3 50,000 - 10,000
ILSVRC-12 1,000 - - 3 1,281,167 50,000 150,000

Fig. 2. 100 randomly selected images from MNIST. The dataset represents
handwritten digits. It has ten different classes, one for each digit from zero
to nine. The digits are centered and normalized in size. MNIST comprises
70,000 grayscale images with dimensions of 28× 28.

Large-Scale Visual Recognition Challenge (ILSVRC). We
used the dataset from the competition in 2012 (ILSVRC-12).
It consists of nearly 1.5 million color images, which are
varying in size, and 1,000 different categories.

The MNIST [11] dataset contains grayscale images of
handwritten digits. 100 randomly selected images from
MNIST are shown in Figure 2. It possesses ten different
categories, namely one for each digit from zero to nine.
Each grayscale image has a fixed size of 28×28 pixels. The
digits are centered inside the image and normalized in size.
In total, MNIST contains 70,000 images, split into 60,000
training and 10,000 test images.

The CIFAR-10 and CIFAR-100 [12] datasets contain small
color images of natural objects. An excerpt of 96 randomly
chosen images is shown in Figure 3. They are labeled subsets
of the 80 Million Tiny Images2 database. CIFAR-10 possesses
ten and CIFAR-100 possesses 100 different categories, respec-
tively. Each color image has a fixed size of 32×32 pixels. In
total, they both consist of 60,000 images, split into 50,000
training and 10,000 test images.

III. METHODS

The architecture of our trained convolutional network is
shown in Table II. It is based on the architecture proposed
by Krizhevsky et al. [5]. The network comprises 24 layers.
In particular, five convolution and three maximum pooling
layers with different square kernel sizes and kernel strides.
Moreover, we added zero padding in some cases to obtain
convenient sizes of the feature maps. As a nonlinear acti-
vation function, we settled for the rectified linear unit [13].
Moreover, layers of dropout [14] were applied after each
fully-connected layer. The probability to randomly drop a
unit in the network is 50%. Finally, to obtain a probability
distribution, we employed a softmax layer.

Just like Krizhevsky et al. [5], we trained the network
on ILSVRC-12 and reached comparable results, i.e. a top-1
accuracy of 59.23% and a top-5 accuracy of 83.58%. For
this purpose, we resized all images of the dataset to a fixed

2http://groups.csail.mit.edu/vision/tinyimages/

Fig. 3. 96 randomly selected images from CIFAR-100. The dataset
represents 100 different natural objects. It contains 60.000 color images
with dimensions of 32 × 32. CIFAR-10 possesses the same statistics, except
that it has ten classes with 6,000 images each.

size of 256× 256 pixels and randomly cropped a subimage
of 227 × 227 pixels. This increased the number of training
images by a factor of 900. We used the deep learning
framework Caffe [15] to train our convolutional networks. It
allowed us to employ the GPU3 of our computer for faster
training. This resulted in a speedup of approximately ten,
compared to training with the CPU4.

96 learned kernels of the first convolution layer are
shown in Figure 4. Each kernel is a color image of 11× 11
pixels. Though the colors are difficult to interpret, Gabor-
like filters of different frequencies and orientations can be
recognized. They are used to extract edges of the input
image. Further learned kernels of deeper convolution layers
with a size of 5× 5 and 3× 3 are too small to provide any
noticeable information and are therefore not shown.

We then maintained the feature extraction part – i.e.
the learned convolution kernels – of the previously trained
network and only retrained the classification part – i.e.
the fully-connected layers – on different datasets, namely
MNIST, CIFAR-10 and CIFAR-100. To adjust the three datasets
to our network architecture, we had to alter two things. First,
to resize the images to 256×256 pixels. Note that we had to
convert the grayscale images of MNIST to color images by
simply copying the grayscale channel three times. Secondly,
to change the number of output neurons to the number of
different object categories, depending on the dataset.

To evaluate the performance of the trained network on an
independent test set, we averaged ten different predictions of
a single image as proposed by Krizhevsky et al. [5]. For this
purpose, we averaged the output of the four corner crops and
the center crop of the input image and – except for MNIST
– additionally mirrored each image along the vertical axis.
We then trained the same network a second time for each
dataset. This time, however, we trained the full network, i.e.
both feature extraction and classification, and compared both
obtained results.

The networks were trained for 30 epochs. An epoch
means a complete training cycle over all images of the
training set. We started with a fixed base learning rate
η = 0.001 and decreased it by a factor of ten to η = 0.0001
after 20 epochs. Furthermore, we selected a momentum
value of µ = 0.9, a weight decay value of λ = 0.0005, and

3NVIDIA GeForce GTX 770 with 2GB of memory
4Intel Core i7-4770



TABLE II. ARCHITECTURE OF OUR IMPLEMENTED
CONVOLUTIONAL NETWORK.

No. Layer Dimension Kernel Stride Padding

Width Height Depth

0 Input 227 227 3 - - -

1 Convolution 55 55 96 11 4 -
2 Relu 55 55 96 - - -
3 Pooling 27 27 96 3 2 -
4 Normalization 27 27 96 - - -

5 Convolution 27 27 256 5 1 2
6 Relu 27 27 256 - - -
7 Pooling 13 13 256 3 2 -
8 Normalization 13 13 256 - - -

9 Convolution 13 13 384 3 1 1
10 Relu 13 13 384 - - -

11 Convolution 13 13 384 3 1 1
12 Relu 13 13 384 - - -

13 Convolution 13 13 256 3 1 1
14 Relu 13 13 256 - - -
15 Pooling 6 6 256 3 2 -

16 Fully Connected 1 1 4096 - - -
17 Relu 1 1 4096 - - -
18 Dropout 1 1 4096 - - -

19 Fully Connected 1 1 4096 - - -
20 Relu 1 1 4096 - - -
21 Dropout 1 1 4096 - - -

22 Fully Connected 1 1 1000 - - -
23 Softmax 1 1 1000 - - -

Fig. 4. 96 learned kernels of the first convolution layer. Each kernel
has dimensions of 11 × 11 × 3. They were maintained when retraining a
network.

a batch size of β = 80. These parameters were determined
based on a validation set.

IV. RESULTS

Our results are shown in Figure 5. The horizontal axis
represents the number of epochs. The vertical axis shows
the accuracy of the independent test set. Note that, for
simplicity, the results in Figure 5 were computed only for
the center crop of the input images. The solid lines represent
full training, i.e. the learning of both feature extraction and
classification. The dashed lines represent the retraining of the
classification part only. The red lines correspond to MNIST,
the blue lines correspond to CIFAR-10 and the green lines
correspond to CIFAR-100, respectively.

The results show that, regarding full training and retrain-
ing, comparable accuracy rates are achieved after 30 epochs
for all three datasets. More precisely, while both rates for
MNIST are nearly identical, the rate for retraining is slightly
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Fig. 5. Comparison between full training and retraining on three different
datasets. We trained the network for 30 epochs. The solid lines represent
full training, i.e. both feature extraction and classification. The dashed lines
represent retraining, i.e. classification only.

worse in case of CIFAR-10 and slightly better in case of
CIFAR-100 compared to full training.

Note that training the full network is considerably slower
than retraining: it takes about ten epochs to achieve the
accuracy that the retrained network has after a single epoch
in case of CIFAR-100 and about eight epochs in case of
CIFAR-10, respectively. Further note the slight increase in
accuracy for CIFAR-10 and CIFAR-100 after 20 epochs due
to the decrease of the learning rate.

Further results are given in Table III. It shows the
accuracy of the independent test set after 30 epochs both
for full training and retraining. Moreover, the state-of-the-art
results from the literature are given as reference values. Note
that this time the accuracy rates were calculated by averaging
the predictions of multiple crops of the input image. For
CIFAR-10 and CIFAR-100 we averaged the outputs of ten
crops. Since we did not mirror the images for MNIST, for
obvious reasons, we only averaged the outputs of five crops.

The results additionally underline the comparable ac-
curacy rates between full training and retraining for the
respective dataset. As for the CIFAR-100 dataset, retraining
the network achieves an accuracy rate of 67.68%, which is
2.25% better than the state-of-the-art accuracy.

V. DISCUSSION

Deep convolutional neural networks are the state-of-the-
art approach for object recognition. One drawback, however,
is the long time needed to train such deep networks, espe-
cially on large datasets. We tackled this problem by reusing
the feature extraction part of a previously trained network
and only retrained the classification part on multiple different
datasets.

As expected, our findings show that this approach con-
siderably reduces the necessary amount of training time. Our
results indicate a speedup by a factor of up to ten, depending
on the dataset. Besides the three presented datasets, we
applied the proposed method to a self-made dataset with
nearly 500, 000 images from Flickr belonging to 110 dif-
ferent object categories and obtained very good results in a
short time. We did not present the results, however, since the
accuracy rates of the fully trained network are not available
for comparison.



TABLE III. RESULTS OF THE TEST SET FOR FULL TRAINING AND
RETRAINING AFTER 30 EPOCHS.

Accuracy (%)

Dataset Full Training Retraining State of the Art

MNIST 99.68 99.54 99.79 [22]
CIFAR-10 89.99 89.14 91.78 [23]
CIFAR-100 63.65 67.68 65.43 [23]

More interestingly, both fully trained and retrained
networks achieve comparable accuracy rates on all three
datasets. The learned feature extractor from our pretrained
network is therefore applicable to multiple situations. Even
though the feature extractor was trained on ILSVRC-12, con-
taining natural images and scenes, it still achieves excellent
results even on digits from the MNIST dataset. This finding
indicates that further datasets can be classified with the same
feature extractor.

Our experiments confirm and extend the results reported
by Razavian et al. [16], Donahue et al. [17] and Girshick et
al. [18], who have also trained linear and nonlinear classifiers
on features obtained from deep learning with convolutional
networks.

Note that we trained all networks – including the one
from pretraining – in a supervised manner using backprop-
agation [19]. The obtained feature extractor was therefore
trained for a specific purpose. Its generic characteristics
are somewhat surprising. Previously, mostly unsupervised
algorithms, like sparse coding and related representation
learning algorithms, have been used for pretraining. This
approach achieves state-of-the-art results on the STL-10 [20]
dataset, as shown by Miclut et al. [21].

However, our results show that it is also possible to
perform supervised pretraining and obtain excellent results.
This approach even improved the accuracy on CIFAR-100,
compared to a fully trained deep convolutional network. This
suggests that more appropriate kernels were learned from
ILSVRC-12 than from CIFAR-100 itself.

VI. CONCLUSIONS

Reusing a previously trained convolutional network not
only vastly reduces the necessary time for training, but also
achieves comparable results regarding the full training of
the network. For particular datasets, the accuracy is even
increased. This finding is especially relevant for practical
applications, e.g. when only limited computing power or
time is available. Our results indicate the existence of a
generic feature extractor concerning the three used datasets.
To either support or reject this hypothesis, further research
for multiple datasets in different situations should be con-
sidered.
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