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Abstract. We describe an approach to incorporate new evidence into
an existing world model. The method, Evidence-based World state Es-
timation, has been used in the RoboCup soccer simulation scenario to
obtain a high precision estimate for player and ball position.

1 Introduction

One of the problems which agents in realistic multiagent scenarios are facing is
the need for an adequate world model. Set in the context of the RoboCup soccer
server, we describe an approach to reconstruct the true world state of an agent
and of objects (here: the ball) sensed by it as closely as possible by incrementally
incorporating new evidence. In this approach, EWE (Evidence-based World
state Fstimation), new evidence, e.g. sensor readings, is incorporated into the
current world model striving to maintain a maximum degree of consistency.

EWE in many ways a natural approach for a near-optimal reconstruction of
a world state. It is clear-cut, conceptually concise and can be given a well-defined
interpretation. We believe it has a strong potential to be generalized to domains
beyond the simulated RoboCup world. In fact, many important state recon-
struction methods can be regarded as special case of EWE. The EWE concept
acts: 1. as a generalization of nonlinear Kalman filtering (Lewis 1986) towards
model-based filtering; 2. in a geometric context, as a world state description in
terms of a generalized interval arithmetic; 3. as a natural extension of Markovian
Self-Localization (Fox et al. 1999) to spaces beyond 2-dimensional spatial posi-
tions; 4. as a continuous implementation of BDI (Burkhard et al. 1998; Rao and
Georgeff 1995) for world state estimation, since it strives at consistency between
hypotheses about the world state and evidence.

2 Evidence-Based World State Estimation

In EWE, a single-valued state variable in the world model is replaced by a (multi-
valued) set or a probability distribution of possible values for that variable.
This multi-valued representation of the state variable is a model of the set of



hypotheses that the agent carries about the true world state. The arrival of
any new evidence imposes restrictions on the set of possible and/or probable
hypotheses, discarding some of them altogether and modifying the probability
of others. An advantage of the model is that evidence can be used whenever it
is available, not being forced to obtain sensor data every step, a difference to
many standard filter models.

The EWE concept was implemented specifically for agents participating in
the RoboCup simulation league tournaments. Since it is slower than the con-
ventional approaches, efficiency considerations had to be made. For this reason,
EWE concept was limited to the estimation of only the most important world
state variables, namely player position and ball movement. Originally, EWE
was first used to determine ball position and velocity and later extended to also
calculate the player position. For presentation purposes we will first describe cal-
culation of the agent position, followed by the mechanism for ball localization.
A first version of EWE was already implemented in the team Lucky LUBECK,
but not yet activated for the Eurobocup Amsterdam 2000 tournament for lack
of stability. The first use of EWE in an official tournament was in the Melbourne
2000 event!.

2.1 Determining the Agent Position

Player position is a two-dimensional vector p € R2. In the EWE concept, we
use a two-dimensional polygon as corresponding multi-valued representation. It
can be interpreted as a probability density distribution for the agent position
that attains the value 1/A in the inside the polygon and 0 outside (with A the
polygon area). Equally possible is the interpretation as the basis for a “polygon
arithmetic” as generalization of standard interval arithmetic to the 2-dimensional
plane. The probability view leads to slower algorithms, so we restricted ourselves
to the polygon arithmetic view.

In EWE, one starts with an a priori model for the position. Data which is sent
to the agent by the server, representing the noisy and inaccurate sensor read-
ings, is called raw data. Each piece of raw data received represents an evidence
which restricts the available possibilities for the true position. When a real-valued
quantity s sent to the agent by the server, be it angle or distance, it is converted
to a quantized value § = Q(s) via a quantization function @ : R — R which
depends on the type of data (Corten et al. 1999). For the soccer server quanti-
zation functions the inverse quantization S := Q~'(3) for any given value 5§ € R
is either an interval [a,b] C R or empty (if § cannot result from quantization).
To determine its position, our agent uses its neck angle, its body orientation and
flag landmarks. From the raw neck angle ¢neck an interval @peck = Q! (Aneck) of
possible (true) neck angles is computed. The orientation of the view cone (which
is the sum of body orientation and neck angle) is obtained from the observed
angle of the field border lines, again yielding an interval @yjew. The interval

! We gratefully acknowledge the work of the MAINZ ROLLING BRAINS 1999 team on
whose agent code the present work is based (Polani and Uthmann 1999).
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Fig. 1. Sector defined by an orientation and distance interval reconstructed by inverse
quantization of raw server data representing the possible true relative positions of a
landmark flag w.r.t. the agent. The solid line represents the form of the area as derived
by the raw data. For the polygon algorithms, the area is slightly enlarged to the polygon
denoted by the dashed lines.

arithmetic used now mimics the arithmetic procedure to determine agent orien-
tation by single-valued variables. Thus, the angle interval for agent orientation is
calculated to give Porient = Pview B (—Preck)- — denotes inversion of an interval
at the origin, reversing its orientation (i.e. —[a,b] = [—b, —a], where a < b). If
the intervals were interpreted as probability distributions, & is the convolution
operation, but we implemented @ as interval arithmetic addition.

The landmark flag position data sent by the server give quantized values
for distance and angle. Reconstruction via the inverse quantization gives an
interval for possible true distances and another one for the possible true angles
of the flag. With these, the set of possible flag positions relative to the agent
can be reconstructed (sector in Fig. 1 marked by solid line). The sector is then
extended to the polygon marked by dashed lines to simplify treatment by polygon
arithmetic.

The same way the calculation of @,peny traces the computation of a single-
valued variable for orientation, we trace the computation of the agent position
from its orientation and the flag data obtained. We appropriately rotate Phag
(widening its area to take into account the interval structure of Syiey) and, by
shifting the result w.r.t. the absolute flag position, we calculate the polygon area
PBylayer representing the possible player positions. This process is done for every
flag seen in the current time step, each time yielding a set of agent positions
consistent with the observed flag. The “true” position, i.e. the agent position
in the soccer server must be consistent with all observations made and thus
with the (set) intersection of all these sets. Also here a probabilistic formalism
would have been a viable alternative. An estimate for the current position of the
player is obtained by averaging the corner positions of the intersection polygon.
We found this polygon usually to be quite small and the resulting estimated
positions to deviate typically around 5-10 cm from the true positions, which is
more than an order of magnitude more accurate than the values obtained by
conventional approaches, as averaging the position estimated directly from the
raw data.

To estimate the player position, the CYBEROOS team independently imple-
mented a mechanism similar to the one described in this section (private com-
munication, Amsterdam 2000); so did the MAINZ ROLLING BRAINS (private
communication, Melbourne 2000). They restricted themselves to the calculation



of the agent position. This task can be seen as a special instantiation of the
EWE concept. In fact, we used EWE first to estimate the ball state (Sec. 2.2)
and only later applied it to the estimation of the player position.

2.2 Ball State Estimation

The generality of the EWE method allows us to determine ball movement in
a conceptually similar fashion. For this, the approach of incorporating evidence
needs to be applied to the phase instead of position space as in Sec. 2.1. The
phase space is the set of the ball states which are fully represented by ball
position and velocity. For simplicity, we limit ourselves to explain a situation
where the player is placed at the origin of the coordinate system and looks along
the z-axis, the ball moving exclusively and undisturbedly along the z axis, the
y-component of its movement vanishing. The equation of movement during a
single time step for an undisturbed ball in the soccer server is given by
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where z is the location of the ball along the z-axis, v, is its velocity and A
is the decay rate for the ball movement (Corten et al. 1999). The ball state is
completely specified by the pair x, v, because of our assumption that y = 0.

Denote the time before any evidence has been observed as ¢t. At time ft,
the ball state is unknown. This means that the ball can be at any z-position
inside the field and have any velocity v, € [—vP®* v22X] where vI®* denotes
the maximum ball speed. The set of these possible initial ball states forms a
rectangle in phase space (the full rectangle is not shown in Fig. 2 to not clutter
the figure). When evidence about the ball is observed, one obtains a distance
(and an angle which vanishes in our example). This distance defines a distance
interval, restricting the possible z-positions of the ball to an interval. In phase
space this defines the strip marked by the dotted lines in Fig. 2 (observation 1).
After obtaining this evidence, the velocity, however, is still unknown. Due to the
maximum velocity limits, the set of possible ball states in phase space is now
delimited by the rectangle with solid lines in Fig. 2 (observation 1).

After one simulation step, by virtue of Eq. (1), for any given state in phase
space we can predict the state in the next time step. In particular, the region
of phase space that is consistent with observation 1 after a single simulation
step is the oblique parallelogram depicted in Fig. 2. With a possible additional
observation (no. 2 in Fig. 2), the requirement of consistency of the simulated
phase space region with this observation restricts the region of possible ball
states to the grey region in the figure. This obviously leads to a strong restriction
of the set of possible velocities. During time this leads to a mutual restriction of
z and v, and thus to a quickly shrinking volume of phase space allowing a very
precise localization of a ball as far away as 30-40 m after few time steps.

The method relies heavily on the mixing of the z and v,-components of the
feasible phase space region during time. By continued observations, the current
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observation 1

Fig. 2. Identifying position and velocity in phase space via observations

state of the system can be identified with increasing accuracy, similarly to the
state identification models in chaotic systems, where under certain circumstances
mixing effects also allow the accurate reconstruction of an initial system state.

3 A Simple Scenario

For illustration, we show some results from the method implemented in a regular
player, with a full agent world model used in the Melbourne tournament. It
therefore has more features than described above; we cannot discuss all particu-
lars of the results presented here. We consider a player that repeatedly runs to
the ball placed at the center, kicking it towards the goal.

Figure 3 shows the initial rectangle at the left. The horizontal width of the
rectangle shows the initial uncertainty in determining the z-position of the ball.
The agent now moves from its initial position at z = —10 m towards the ball. In
subsequent simulation steps the rectangle is transformed into a parallelogram;
new evidence defining vertical strips in the z/v,-plane then increasingly restricts
the set of possible ball states. Note that, since the ball is not moving in the initial
phase of the simulation, the slices stay approximately at the same place. Thus
the process of incrementally slicing parts from the possible positions is not spread
out in z-direction as in the schematic Fig. 2. When the ball is kicked (the kick
is modeled in the polygon simulation), the ball velocity jumps up and EWE is
used to keep state model and observation synchronized.

Comparison of EWE with previously used ball position estimation algorithms
shows that the ball position is indeed estimated to a much higher accuracy. Here,
the agent regularly approaches the ball to kick it and therefore regularly obtains
a more precise view of the ball. However, further experiments show that even
for a ball as far as 30-40 m away from the agent, after a few simulation steps,
the error in estimating the ball position quickly drops much below the size of
the quantization levels.
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Fig. 3. The z/v,-plane showing the development of the phase space estimation of the
ball position x and velocity v;.

4 Summary and Future Work

We introduced EWE, a general concept for the incorporation of new evidence
into a internal world model and applied it to a scenario from the RoboCup
simulation league, using it to estimate the player position and ball movement to
a high degree of accuracy. Assuming an accurate model of world dynamics in a
one-dimensional setting, the estimation of the ball movement even becomes near-
optimal for the soccer server scenario. A number of difficulties with the current
implementation, e.g. in presence of unmodeled noise or external influences will
be discussed in future. We plan to extend our implementation to allow mixing
of more than 2 dimensions and thus to better utilize existing evidence, also in
more complex settings.

References

Burkhard, H.-D., Hannebauer, M., and Wendler, J., (1998). Belief-Desire-Intention
Deliberation in Artificial Soccer. The AI Magazine, 1998(3):87-93.

Corten, E.; Heintz, K. D. F., Kostiadis, K., Kummeneje, J., Myritz, H., Noda, I., Riekki,
J., Riley, P., Stone, P., and Yeap, T., (1999). Soccerserver Manual Ver. 5 Rev. 00
beta (for Soccerserver Ver.5.00 and later).
http://www.dsv.su.se/ johank/RoboCup/manual/, March 19, 2001

Fox, D., Burgard, W., Dellaert, F., and Thrun, S., (1999). Monte Carlo Localization:
Efficient Position Estimation for Mobile Robots. In Proc. (AAAI-99), 343-349.

Lewis, F. L., (1986). Optimal Estimation - with an introduction to stochastic control
theory. John Wiley & Sons, Inc.

Polani, D., and Uthmann, T., (1999). Between Teaching and Learning: Development
of the Team MAINZ ROLLING BRAINS for the Simulation League of RoboCup ’99.
In Proc. 8rd RoboCup Workshop, Stockholm.

Rao, A. S., and Georgeff, M. P., (1995). BDI Agents: from theory to practice. In Lesser,
V., editor, Proc. ICMAS, 312-319. San Francisco, CA: MIT Press.



