Scale-Invariant Range Features for Time-of-Flight Camera Applications

Martin Haker, Martin Bohme, Thomas Martinetz, and Erhardt Barth
Institute for Neuro- and Bioinformatics, University of Liibeck
Ratzeburger Allee 160, 23538 Liibeck, Germany
http://www.inb.uni-luebeck.de

Abstract

We describe a technique for computing scale-invariant fea-
tures on range maps produced by a range sensor, such as a
time-of-flight camera. Scale invariance is achieved by com-
puting the features on the reconstructed three-dimensional
surface of the object. The technique is general and can
be applied to a wide range of operators. Features are
computed in the frequency domain; the transform from the
irregularly sampled mesh to the frequency domain uses
the Nonequispaced Fast Fourier Transform. We demon-
strate the technique on a facial feature detection task. On
a dataset containing faces at various distances from the
camera, the equal error rate (EER) for the case of scale-
invariant features is halved compared to features computed
on the range map in the conventional way. When the scale-
invariant range features are combined with intensity fea-
tures, the error rate on the test set reduces to zero.

1. Introduction

The fact that the apparent size of an object in a camera im-
age changes with the distance of the object from the camera
leads to one of the fundamental problems in computer vi-
sion: Finding scale-invariant image features, i.e. features
that, by their mathematical formulation, are unaffected by
image scale (for an example of a recent approach, see [7]).
Achieving scale invariance usually requires increased algo-
rithmic complexity and additional computation. For exam-
ple, the image can either be scanned for objects of different
sizes, or it can be transformed into scale-space [5], where
the feature extraction is computed individually at different
levels of scaling. In both cases, the treatment of objects at
different scales has to be made explicit within the algorithm.
In this paper, we suggest a novel approach to the problem
of scale-invariance: If we use a range sensor — such as a
time-of-flight (TOF) camera [8] — to image the object, we
can compute features directly on the reconstructed surface
of the object in 3D space. In this way, the features become
scale-invariant, because the 3D reconstruction — unlike the

image of the object — does not undergo scale changes as the
object moves towards or away from the camera.

We are particularly interested in the TOF camera as a basis
for this type of approach because it provides a range map
that is perfectly registered with an intensity image in a sin-
gle device, making it easy to create detectors based on a
combination of range and intensity features. The TOF cam-
era uses an active illumination to produce a distance mea-
surement at each pixel at 20 frames per second or more, de-
pending on the integration time. The distance is computed
from the phase shift of an emitted sinusoidally modulated
infrared signal and the reflected signal, which depends on
the scene. The intensity image corresponds to the ampli-
tude of the reflected signal and is hence often referred to as
the amplitude image. It depends on the objects’ reflectivity
and quantifies the confidence one has in the distance mea-
surement, which can be readily inferred from the signal to
noise ratio.

Naturally, one can compute image features on the regular
image grid of both range and amplitude images directly [3].
Note, however, that interpreting the range map as an array
of height values measured over a regular grid is equivalent
to the weak perspective assumption, i.e. to assuming that the
total depth variation within the object is small compared to
the distance of the object from the camera. If this assump-
tion is violated, the geometry of the surface reconstructed
using weak perspective will differ markedly from the true
geometry of the object. Furthermore, the size of an object
in the image changes with its distance to the camera.

Alternatively, if the intrinsic camera parameters are known,
we can apply the inverse of the camera projection to the
range data, thus obtaining an actual sampling of the object’s
surface in three-dimensional Cartesian coordinates. Obvi-
ously, the measured object does not undergo any scaling in
the 3D scene if it is moved towards or away from the cam-
era; instead, only the spatial sampling frequency decreases
as the distance to the camera is increased (see Fig. 1). It
is important to note, however, that the sampling grid in this
representation is no longer regular; the spacing between two
samples depends on the distance of the relevant part of the
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Figure 1. Top: Sampling of a face 35 cm from the camera. Bot-
tom: Sampling of a face at 65 cm from the camera. Note that the
spatial sampling frequency is significantly lower compared to the
face at 35 cm, but the physical size of the face in 3D space is still
the same.

object to the camera. Many techniques for extracting image
features, such as convolution with a filter kernel, require a
regular sampling and can thus no longer be used.

To overcome this problem, we compute the features not in
the spatial domain, but in the frequency domain. We trans-
form the sampled object shape to a frequency domain repre-
sentation using the Nonequispaced Fast Fourier Transform
(NFFT, see Sect. 2), an efficient algorithm for computing
the Fourier transform of a signal sampled on an irregular
grid. Thus, any feature computation that can be performed
in the Fourier domain can now be evaluated efficiently. The
main advantage of this approach is that any filter operation
has, in theory, the same effect on an object independently of
the distance of the object to the camera. The NFFT has been
used for image processing tasks such as CT and MRI recon-
struction (see e.g. [9]), and it has also been used to extract
features from vector fields for visualization [11]. However,
to our knowledge, the approach of using the NFFT to com-

pute scale-invariant features for classification is novel.

We demonstrate this approach using a set of geometric fea-
tures called generalized eccentricities, which are related to
mean and Gaussian curvature (see Sect. 3). When evalu-
ated on the image in the conventional way, these features
are sensitive to scale changes; however, when evaluated on
the object surface using the NFFT, the features are invari-
ant to scale. We verify this using a synthetic test object in
Sect. 5.

Finally, we use these features for a facial feature tracking
problem. In previous work [2], we tackled this problem
using features evaluated conventionally on the camera im-
age; this solution had limited robustness towards scale vari-
ations. The new scale-invariant features yield greatly im-
proved detection at varying distances from the camera, as
we show in Sect. 5.

2. Nonequispaced Fast Fourier Transform
(NFFT)

2.1. Definition

As noted in the introduction, we need to compute the
Fourier transform of a function sampled on a nonequispaced
grid. To do this, we use the NFFT [10], an algorithm for the
fast evaluation of sums of the form

Fx5) =Y fue 1)
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where the x; € [—%7 %)d,j =1,..., M are arbitrary nodes

in the spatial domain (of dimension d), the k are frequencies
on an equispaced grid, and the fk are the corresponding
Fourier coefficients. The equispaced frequency grid I is
defined as

In = {k = (kt)i=1,..a € Z°:

where N = (Ny,..., Ny) is the so-called multibandlimit,
which specifies the band limit along each dimension. (Note
that all /V; must be even.)

We refer to (1) as the Nonequispaced Discrete Fourier
Transform (NDFT). The Discrete Fourier Transform (DFT)
(with equispaced nodes in the spatial domain) can be
obtained by setting the ﬁj to the nodes of the grid
X = (%)t:l,‘.wd: ki € {—7’:, ey % — 1}

Equation (1) describes the transform from the frequency do-
main to the spatial domain. In the case of the equispaced
DFT, because the matrix that describes the transform is uni-
tary, the same algorithm can be used for the opposite trans-
form (from the spatial to the frequency domain). This is not
true in the nonequispaced case; here, to transform from the



spatial to the frequency domain, i.e. to find Fourier coeffi-
cients fk such that evaluation of (1) will yield certain given
values f(x;), we need a second algorithm (see [6]), which
is based on a combination of the conjugate gradient method
with the NFFT. Note that this algorithm (which transforms
from the spatial to the frequency domain) is sometimes re-
ferred to as the “inverse NFFT”, whereas the term “inverse”
is otherwise usually applied to a transform from the fre-
quency to the spatial domain.

2.2. Applying the NFFT to Range Data

We assume that the object surface, reconstructed from the
range data by inverting the camera projection, is given in
Cartesian coordinates z, y, z, where the z-y-plane is par-
allel to the image plane and the z-axis is parallel to the
camera’s optical axis. To apply the NFFT to this data, we
interpret the z-coordinate as a function z(x,y) of the -
y-coordinates; hence, the z-y-coordinates define the grid
nodes for the NFFT. As noted in the previous section, these
nodes need to lie in the interval [-3,1) x [-1,1). Gen-
erally, this means that the z-y-coordinates of the surface
points need to be scaled to this interval. We wish to use the
same scaling for all images so that the interpretation of the
Fourier domain remains the same.

To define this scaling, we will introduce the concept of an
equivalence range; we want to choose such a scaling that,
for an object at the equivalence range e, the effect of ap-
plying a particular transfer function to the FFT spectrum
and to the NFFT spectrum is the same. The correct scal-
ing is computed by intersecting the camera’s field of view
with a plane perpendicular to the view direction at distance
e from the camera, yielding a rectangle; the x-y-plane is
then scaled such that this rectangle fits exactly within the
interval [—3,4) x [-3, 3).

Note that the z-y-coordinates of points beyond the equiva-
lence range may lie outside the interval [—3, ) x [—3, 3);
these points are discarded. The equivalence range thus
needs to be chosen such that the resulting clipping volume
is large enough to contain the objects of interest. The cen-
troid of these objects should be shifted to x = 0, y = 0 to
ensure they are not clipped.

Another point of note is that it is advisable, if possible,
to segment the foreground object of interest and apply the
NFFT only to the points belonging to that object. There are
various reasons for doing this: (i) Steep edges between the
foreground and background can lead to ringing artefacts.
(i1) The grid nodes in the background region are spaced
further apart; the greater the spacing between grid nodes,
the lower the frequency where aliasing begins. (iii) Pass-
ing fewer points to the NFFT reduces the computational re-
quirements.

Finally, note that the transform from the spatial domain to

the frequency domain is often an underdetermined opera-

tion. In this case, the NFFT computes the solution with
minimal energy, meaning that the background region, where
there are no grid nodes, is implicitly set to zero. To avoid
steep edges between the foreground and the background,
we subtract a constant offset from the z values so that the
maximum z value becomes zero.

3. Geometric Features

The features we employ for demonstrating our approach to
scale invariance are related to the Gaussian curvature and
are referred to as generalized eccentricities [1]. These fea-
tures were already applied to TOF images in [3, 2] for the
task of nose detection and tracking, using the weak perspec-
tive assumption as described in Sect. 1. In the following,
we will extend this work to the perspective camera model
to obtain scale invariant features.

For the definition of the invariant geometric features, we
interpret the range data as a particular type of surface, the
Monge patch or the 2-1/2-D image, defined as a function
f:R2 = R3 (2,9) — (2,9, f(x,y)). Note that this defi-
nition holds for both the weak perspective and the true per-
spective projection model. In the first case, x and y specify a
position on the image sensor and f(z,y) is the correspond-
ing range value. In the latter case, (x,y, f(x,y)) are the
Cartesian coordinates of a point on the object surface (i.e.
f(z,y) is the z coordinate).

On this data model, the generalized eccentricities [1] are
defined as

€2 = (enl(@,y) * f2,9)" + (sulz,y) * f(2,9)° , 3)

forn =0,1,2,.... Here, ¢, (z,y) and s, (z,y) are convo-
lution kernels corresponding to the transfer functions

Cn =1i"A(p)cos(nd) , S, =1"A(p)sin(nf)  (4)

(defined in terms of polar coordinates p and #), where A(p)
is a radial filter tuning function. The radial filter tuning
function can be combined with a low-pass filter for noise
reduction where the noise filter, e.g. a Gaussian low-pass
filter, should be adapted to the distribution of noise inherent
in the data.

As discussed in more detail in [3], the generalized eccentric-
ities provide basic and reliable alternatives to the Gaussian
curvature K and the mean curvature H for the purpose of
surface classification.

In particular, the measures ¢, for n =0 and n = 2 can
be used to distinguish between the six well-known surface
types in the feature space spanned by €y and e5. Figure 2
shows where the different surface types lie in feature space.
For example, because the nose is a local minimum in the
range data, we would expect the corresponding pixels to lie
in the region labeled pit. Conversely, since the nose tends to
be a local maximum in the intensity data, we would expect
to find the corresponding pixels in the region labeled peak.
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Figure 2. Discrimination of the six surface types pit, peak, saddle,
valley, ridge, and planar within the feature space spanned by €g
and e2.

4. Nose Detector

In previous work, we have used the geometric features for
the task of nose detection and tracking, and we briefly re-
view the algorithm described in [3]. For each pixel in an
image we compute the generalized eccentricities €y and ey
and, thus, map it to the feature space given in Fig. 2. In
feature space, noses are characterized by a bounding box
which is learned from a set of labeled training data. During
classification, a given pixel is said to belong to the tip of a
nose iff it is mapped into this bounding box in feature space.
We computed feature values only on the foreground object
of interest. For the FFT-based approach, the background
was set to a constant value (the maximum value occurring in
the foreground); for the NFFT-based approach, background
pixels were simply discarded, as described in Sect. 2.2.

To segment the foreground object, we first applied an adap-
tive threshold to the amplitude image (see [3]); then, we
applied a range threshold (at the top 20th percentile of pix-
els segmented in the first step) to ensure a smooth transition
between foreground and background all along the border.

5. Experimental Results

The algorithms were implemented in Matlab; the NFFT 3.0
library [4] (implemented in C) was used to compute the
NFFT.

5.1. Synthetic Data

To begin, we will examine the feature values computed
on a synthetic test object using both the classical scale-
dependent FFT-based approach and the scale-independent
NFFT-based approach. We synthesized range images of
a sphere at various distances from the virtual camera and
computed the generalized eccentricity €g using the FFT- and
NFFT-based approaches.

Figure 3 shows the value of ¢y at the apex of the sphere
as a function of distance. (e is not shown because it is
identically zero for objects that, like the sphere, exhibit the
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Figure 3. Generalized eccentricity o, computed on a synthetic test
image of a sphere, as a function of distance from the camera.

same curvature in all directions.) It is apparent that while
the feature value changes noticeably with distance for the
FFT-based approach, it remains essentially constant for the
NFFT-based approach. Note also that at the equivalence
range of e = 0.5m, both approaches compute the same
feature value.

5.2. Real-World Data

To evaluate the performance of the features on a real-world
problem, we compare the detection rates of the nose de-
tector [3] on images of an SR3000 TOF camera using the
NFFT-based algorithm and the original FFT-based version,
respectively. In both cases, the training was done on a
database of three subjects who were imaged at a fixed dis-
tance of 60 cm from the camera. During evaluation, the
detector had to generalize to a dataset of 87 face images
showing a different subject. The test images were taken at
distances ranging from 35 to 70cm. Figure 4 shows two
examples of range maps from the test set along with the
scale-invariant features.

In the case where only the range data of the TOF images is
considered, the results are given in Fig. 5. Here, the NFFT-
based algorithm achieves an EER of 20% in comparison
to 39% in case of the FFT-based version and, thus, clearly
yields a significant improvement in detection performance.
We have shown the detection results on features extracted
from the range data alone to make the effect more clearly
visible; for optimal detection performance, we would ad-
ditionally use the same type of features computed on the
intensity data. As we will discuss in Sect. 6, we still com-
pute the intensity features in the conventional way using the
FFT, and they are thus not scale-invariant. Nevertheless,
when they are combined with the FFT-based range features,
we obtain an EER of 4%; when NFFT-based range features
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Figure 4. Two different range image samples from the test set,
taken at 35 cm (left column) and 65 cm distance (right column).
The corresponding features €y and e2 computed at foreground pix-

els via the NFFT are shown, respectively.

are used, the EER drops to 0%, i.e. there are no errors on
the test set — a larger test set would be required to measure
a more meaningful EER. (As a point of note, the EER on
the intensity features was 78%; it is only the combination
of range and intensity features that yields low error rates.)
It should be mentioned that, while the NFFT has the same
asymptotic running time as the FFT, it is slower by a rel-
atively large constant factor. Our Matlab implementation,
running on a 2.66 GHz E6750 Intel CPU, requires 0.1 s to
compute the FFT-based features, versus 5s for the NFFT-
based features. A C implementation of the FFT-based de-
tector runs at camera frame rates [2]; the NFFT-based detec-
tor is currently too slow for this type of application. How-
ever, we believe there are ways of achieving the same effect
at lower computational cost; in the meantime, we see NFFT-
based scale-invariant features as an attractive technique for
non-interactive applications.
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Figure 5. Left: ROC curve showing detection rate vs. false posi-
tive rate for the nose detection task using the NFFT. Right: The
ROC curve obtained on the same database using the FFT. The de-
tection rate indicates the percentage of images in which the nose
has been identified correctly, whereas the false positive rate de-
notes the percentage of images where at least one non-nose pixel
has been misclassified. Thus, strictly speaking, the curves do not
represent ROC curves in the standard format, but they convey ex-
actly the information one is interested in for this application, that
is, the accuracy with which the detector gives the correct response
per image.

6. Discussion

Features computed directly on the three-dimensional geom-
etry of the object are, by their nature, scale-invariant. As we
have shown, this allows for a more robust classification than
when the same features are computed directly on the range
map, where they are sensitive to scale variations. We have
demonstrated this using a specific set of features, the gen-
eralized eccentricities, but the method itself is very general
and can be applied to a wide range of operators.

We have used our technique to implement a facial feature



detector using a time-of-flight camera. The detector gener-
alizes from faces presented at a fixed training distance to a
test set containing different faces at different distances. It
achieves good detection performance, making no errors on
the test set. Two important factors that help us achieve this
result are the scale-invariant features and the fact that the
time-of-flight camera provides a perfectly registered inten-
sity image in addition to the range map. The combination
of range and intensity data yields substantially better classi-
fication results than either type of data alone.

Currently, we still compute the intensity features on the im-
age, where they are sensitive to scale variations. Ideally,
we would like to compute these features on the object sur-
face, too. This is, however, a slightly more complicated
problem, because intensity is a function of the position on a
two-dimensional sub-manifold (the object surface) in three-
dimensional space; the geometry of this sub-manifold must
be taken into account when computing the intensity fea-
tures. This is an avenue for future work.

On a general level, our key point is this: The perspective
transformation that is inherent in the image formation pro-
cess causes scale variations, which present additional diffi-
culties in many computer vision tasks. This is why, in our
view, the time-of-flight camera is an attractive tool for com-
puter vision: In effect, it can act as a digital orthographic
camera, thereby simply eliminating the problem of scale
variations.
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