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Abstract: Convolutional neural networks (CNNs) provide reliable segmentation results on biomedical images. However, they 

can only develop their full potential with a representative dataset. Unfortunately, a large dataset is hard to create in biomedical 

research, since labeling images is time consuming and requires expert knowledge. Active learning seeks to determine those 

images that will yield the best results, which effectively reduces labeling cost. We present an active learning method for the 

stepwise identification of images that should be labeled next and test this method on an axon segmentation dataset. We 

outperform a baseline and a state-of-the-art method. 
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I. Introduction

With the use of convolutional neural networks (CNNs), 

many biomedical computer vision challenges are tackled 

more and more successfully. However, the quality of the 

respective CNN largely depends on a large amount of data. 

This poses a problem, especially for the segmentation of 

biomedical images, since expert knowledge is often needed 

and labeling is a time-consuming task. If only a limited 

amount of time for data labeling is available, only those 

samples that are most likely to improve the performance 

should be labeled. We propose a novel, task-driven 

approach for image segmentation that, given an already 

trained model and a set of not yet labeled images, will 

determine which images should be labeled next to improve 

the generalization performance of the model. We show on 

an axon segmentation dataset that i.) this strategy 

outperforms the random picking of images as well as an 

ensemble-based method and that ii.) a better performance 

can be reached with fewer labeled images. 

This paper focuses on pool-based active learning (AL) [1] 

in segmentation: a small set of labeled data is already given, 

while there exists a larger portion of unlabeled data 𝒰. A 

machine learning model can select a certain amount of data 

from  𝒰 as queries for an oracle. This oracle can be a human 

annotator for example, who subsequently labels the 

queries. ℒ is updated and the whole process can be 

repeated. For CNNs, the sample technique query-by-

committee is often used: an ensemble is trained by using 

bagging and the variance of the ensemble's output for a 

sample measures its uncertainty [2].  

Many strategies use an influence measure to enforce 

selected queries to be similar to a large number of samples 

in 𝒰 [2], [3]. Finding the right samples is often transformed 

into a set-cover task [2]. Our strategy incorporates the 

computation of the expected error reduction if a sample is 

labeled. Konyushkova et al.[4] showed an impressive error-

reduction strategy by training a regression model that can 

predict the expected error reduction of a query, using 

decision trees rather than CNNs. 

II. Material and methods
A dataset 𝒳 =  𝒰 ∪ ℒ is given, with only a small set ℒ of 

labeled data and many unlabeled data in 𝒰. In addition, a 

model 𝑓ℒ is trained on ℒ and a budget 𝑏 defines the

maximum number of datapoints we can choose as queries. 

The goal is then to find a subset of 𝒵 ⊆ 𝒳 with |𝒵\ℒ| = 𝑏 

and 𝒵 ∩  ℒ =  ℒ, that leads to the best outcome. In our 

particular case,  𝒳 would be a set of images 𝑥𝑖⃗⃗⃗  , 𝑖 =
1,… , 𝑁. 

For each image pair (𝑥𝑖⃗⃗⃗  , 𝑥𝑗⃗⃗⃗  ), our approach aims to

numerically answer the following question: ''If we train a 

network on image 𝑥𝑖⃗⃗⃗  , how well will it predict 𝑥𝑗⃗⃗⃗  ?''. This

defines a similarity measure, by assuming that 𝑥𝑖⃗⃗⃗   and 𝑥𝑗⃗⃗⃗   are

similar if a network trained on 𝑥𝑖⃗⃗⃗   will predict 𝑥𝑗⃗⃗⃗   well. To a

certain extent, this should also hold true for a noisy or 

imperfect label. If we have a network 𝑓ℒ already trained on

a few images, it is easy to generate a pseudo label �̂�𝑖
⃗⃗   for

each image 𝑥𝑖⃗⃗⃗  :

�̂�𝑖
⃗⃗  = 𝑓ℒ(𝑥𝑖⃗⃗⃗  ). (1) 

Hence, we define image similarity as: 

d(xi⃗⃗⃗  , xj⃗⃗⃗  ) = g(fxi⃗⃗  ⃗(xj⃗⃗⃗  ), ŷj
⃗⃗⃗  ). (2) 

𝑓𝑥𝑖⃗⃗  ⃗(𝑥𝑗⃗⃗⃗  ) is the prediction of 𝑥𝑗⃗⃗⃗   by a network 𝑓𝑥𝑖⃗⃗  ⃗ trained from

scratch on 𝑥𝑖⃗⃗⃗  . 𝑔 is a quality measure, in our case we use the
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dice score. Note that we define 𝑑(�⃗⃗�⃗𝑖 , ⃗𝑥⃗𝑖 ) = 1, which is the 
maximum dice-score. 

When picking a subset 𝒵, we have 𝑏 values for each ⃗𝑥�⃗�  that 
can be used to model an expected dice score. Hence, we 

defined the expected performance on an image �⃗⃗��⃗�  to be:

𝑝(𝑥𝑗⃗⃗⃗  ) =
1

𝑏
∑ 𝑑(𝑥𝑧⃗⃗  ⃗, 𝑥𝑗⃗⃗⃗  )

𝑥𝑧⃗⃗ ⃗⃗  ∈𝒵

. 
(3) 

To avoid exhaustively training a network for each image 

𝑥𝑖⃗⃗⃗  ∈ 𝒳, we picked a random image set 𝑥𝑘⃗⃗⃗⃗ ∈ 𝒦 ⊆ 𝒰, using

a heuristic to approximate the image similarities. Both 

similarities between two points  𝑥𝑖⃗⃗⃗   and 𝑥𝑗⃗⃗⃗   are set to the

known value, if only one is known. For unknown values, 

we look at all paths that start from image 𝑥𝑖⃗⃗⃗  , move to 𝑥𝑘⃗⃗⃗⃗ 
and then go to 𝑥𝑗⃗⃗⃗  , defining the final similarity as follows:

𝑑(𝑥𝑖⃗⃗⃗  , 𝑥𝑗⃗⃗⃗  ) =  max
𝑥𝑘⃗⃗⃗⃗  ⃗∈𝒦

1

2
(𝑑(𝑥𝑖⃗⃗⃗  , 𝑥𝑘⃗⃗⃗⃗ ) + 𝑑(𝑥𝑘⃗⃗⃗⃗ , 𝑥𝑗⃗⃗⃗  )) . (4) 

In conclusion, the algorithm is defined as: 

1. Compute pseudo labels �̂�𝑖
⃗⃗   with model 𝑓ℒ for all 𝑥𝑖⃗⃗⃗  ∈ 𝒳.

2. Pick a random subset of images 𝑥𝑘⃗⃗⃗⃗ ∈ 𝒦 ⊆ 𝒰.

3. For each  𝑥𝑘⃗⃗⃗⃗ , train a network 𝑓𝑥𝑘⃗⃗⃗⃗  ⃗ from scratch.

4. Compute the similarities 𝑑(𝑥𝑘⃗⃗⃗⃗ , 𝑥𝑖⃗⃗⃗  ), 𝑥𝑘⃗⃗⃗⃗ ∈ 𝒦, 𝑥𝑖⃗⃗⃗  ∈ 𝒳.

5. Compute the remaining similarities 𝑑(𝑥𝑖⃗⃗⃗  , 𝑥𝑗⃗⃗⃗  ).

6. Find the subset 𝒵 that maximizes min
𝑥𝑗⃗⃗⃗⃗ ∈𝒳

𝑝(𝑥𝑗⃗⃗⃗  ).

7. Update ℒ ≔ 𝒵.

III. Data & experiments
We created a dataset for axon segmentation of murine 

primary cortical neurons. A microfluidic device is used to 

separate neuronal cell bodies from axons and grayscale 

images of the axons are captured via phase contrast 

microscopy. We determined a training and test set 

containing 16 and 26 images respectively. Labeling one 

image takes approximately one hour. For our CNN, we 

used a classical u-net architecture [5], slightly modified 

with batch normalization. For each dataset, we did 5 

experiments. Each experiment started with 3 randomly 

drawn labeled images. We trained on subsets with 

increasing size 𝐵 =  { 5, 7, 12, 15, 16 }. On each subset, a 

neural network was trained and evaluated on the test set. 

As a baseline, we picked the images randomly. We did this 

eight times and averaged the test scores to estimate the 

expected outcome. Additionally, we compared our 

approach with an ensemble based method [2]. At each step, 

we trained an ensemble of 4 networks. 3 were trained on a 

random subset containing roughly 80% of the current 

training data (bagging) and a fourth network was trained on 

the full dataset. We used the mean KL-Divergence between 

each network's output and the mean output of all networks 

to measure uncertainty. We selected half of the images 

from 𝒰 with the highest uncertainty as our candidates. The 

network trained on the full dataset was used to extract 

feature vectors from each image in 𝒰, by global average 

pooling of the last feature layer. This method defined 

similarity of two images as the cosine similarity of the two 

feature vectors. 
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Figure 1: Dice coefficients obtained from the axon data. The size 

of the training set is plotted against the resulting dice score on the 

test set. The dashed black line shows the average for our 

approach, diamonds show the five individual scores. The blue line 

shows the average random scores, blue crosses the individual 

scores. Finally, the red dash-dotted line shows average 

performance of the ensemble approach, red plus signs indicate the 

scores.  

We found the subset of candidates that maximizes the 

similarity again by exhaustive search in contrast to the 

greedy algorithm in the original paper. We here refer to this 

method as the ensemble method. 

IV. Results & discussion
The results in Figure 1 show that our method outperforms 

the baseline as well as the ensemble approach on almost all 

image subsets. However, in a next step a rigid cross-

validation should be done to cover all possible test runs in 

our experiments and to better understand the intricacies of 

active learning. For example, further research is needed to 

evaluate what happens if the labeled images differ from the 

majority of images in the unlabeled set. 

Yet, given the proposed setup, our method obtained better 

intermediate results. Thus, in circumstances where only a 

specific time budget for labeling is given, or early decisions 

need to be made based on few labeled data, using active 

learning to pick the right samples might help to reach 

desired performance levels while saving valuable man-

hours spent on labelling resources. 
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