
Journal of Vision (2022) 22(1):8, 1–20 1

FP-nets as novel deep networks inspired by vision

Philipp Grüning
Institute for Neuro- and Bioinformatics,
University of Lübeck, Lübeck, Germany

Thomas Martinetz
Institute for Neuro- and Bioinformatics,
University of Lübeck, Lübeck, Germany

Erhardt Barth
Institute for Neuro- and Bioinformatics,
University of Lübeck, Lübeck, Germany

Feature-product networks (FP-nets) are inspired by
end-stopped cortical cells with FP-units that multiply the
outputs of two filters. We enhance state-of-the-art deep
networks, such as the ResNet and MobileNet, with
FP-units and show that the resulting FP-nets perform
better on the Cifar-10 and ImageNet benchmarks.
Moreover, we analyze the hyperselectivity of the FP-net
model neurons and show that this property makes
FP-nets less sensitive to adversarial attacks and JPEG
artifacts. We then show that the learned model neurons
are end-stopped to different degrees and that they
provide sparse representations with an entropy that
decreases with hyperselectivity.

Introduction

For machine learning to work, one needs appropriate
biases to constrain the solution for the problem at
hand. Deep convolutional neural networks (CNNs),
for example, are successful due to two constraints
that specialize them relative to more general networks
such as the multilayer perceptron (MLP): sparse
connections and shared weights. It is well known that
biases cannot be learned from the data or derived
by logical deduction (Watanabe, 1985). In computer
vision, appropriate biases can be obtained, as in the
case of the CNNs, by studying biological vision (LeCun
et al., 2015; Majaj & Pelli, 2018). Besides inspiring the
use of localized (oriented) filters (the two CNN biases
above) followed by a pointwise nonlinearity, biological
vision can provide additional insight, an issue that
currently receives somewhat limited attention in the
deep-learning community (Majaj & Pelli, 2018; Paiton
et al., 2020).

We here focus on the principle of efficient coding
(Barlow, 1961; Simoncelli & Olshausen, 2001) and the
related neural phenomenon of end-stopping (Hubel &
Wiesel, 1965). Statistical analysis shows that oriented

linear filters reduce the entropy of natural images by
encoding oriented straight patterns (one-dimensional
[1D] regions) such as vertical and horizontal edges
(Zetzsche et al., 1993). In cortical area V2, however,
the majority of cells are end-stopped to different
degrees (Hubel & Wiesel, 1965). End-stopped cells
are thought to detect two-dimensional (2D) regions
such as junctions and corners. Since 2D regions are
unique and sparse in natural images (Barth & Watson,
2000; Mota & Barth, 2000; Zetzsche et al., 1993), they
represent images efficiently, that is, with a high degree
of sparseness and minimal information loss. A standard
way of modeling end-stopped cells is to multiply
outputs of orientation-selective cells, resulting in an
AND-combination of simple-cell outputs (Zetzsche &
Barth, 1990). For example, a corner can be detected
by the logical combination of “horizontal edge AND
vertical edge.” In Paiton et al. (2020), the authors argue
convincingly that principles adopted from vision should
be beneficial for deep networks and that the exploitation
of multiplicative interactions between neurons has not
been sufficiently explored in this specific context. There
is, nevertheless, a vast literature on sigma-pi networks
in general (e.g., Mel & Koch, 1990; Rumelhart et al.,
1986), which is not surprising since such networks
define a large class of possible systems.

It has been shown that end-stopping can emerge from
the principle of predictive coding based on recursive
connections (Rao & Ballard, 1999); the latter has also
been observed in Barth and Zetzsche (1998). Note that
in Rao and Ballard (1999), end-stopping emerges based
on unsupervised learning with natural images and, in
our case, on task-driven supervised learning in a natural
vision task.

Feature-product networks (FP-nets) implement
a network architecture that contains explicit
multiplications of the feature maps obtained with pairs
of linear filters. The main feature of these networks
is that they learn the appropriate filter pairs to be

Citation: Grüning, P.,Martinetz, T., & Barth, E. (2022). FP-nets as novel deep networks inspired by vision. Journal of Vision, 22(1):8,
1–20, https://doi.org/10.1167/jov.22.1.8.

https://doi.org/10.1167/jov.22.1.8 Received February 28, 2021; published January 13, 2022 ISSN 1534-7362 Copyright 2022 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.Downloaded from jov.arvojournals.org on 02/09/2022

https://www.inb.uni-luebeck.de/mitarbeiter/mitarbeiter/wissenschaftliche-mitarbeiter/philipp-gruening.html
mailto:gruening@inb.uni-luebeck.de
https://www.inb.uni-luebeck.de/mitarbeiter/mitarbeiter/professoren/107.html
mailto:martinet@inb.uni-luebeck.de
https://www.inb.uni-luebeck.de/mitarbeiter/mitarbeiter/professoren/erhardt-barth.html
mailto:barth@inb.uni-luebeck.de
https://doi.org/10.1167/jov.22.1.8
http://creativecommons.org/licenses/by/4.0/

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 2

multiplied based on the task at hand. An early FP-net
architecture has been presented as a preprint (Grüning
et al., 2020b), and it has been shown in Grüning et al.
(Grüning & Barth, 2021) that a similar network can
predict subjective image quality well. Of course, we
do not assume that neurons would compute ideal
multiplications; the AND terms could be created in
alternative ways, for example, by using logarithms
(Grüning et al., 2020b) or the minimum operation
(Grüning & Barth, 2021a) instead of multiplications.
AND terms could also be generated by traditional
CNNs with linear filters followed by simple ReLU
nonlinearities (Barth & Zetzsche, 1998), but this would
require larger networks and would be limited in terms
of the possible tuning properties of the resulting
nonlinear functions (see also Paiton et al., 2020,
regarding the limits of pointwise nonlinearities). Here,
we present a novel FP-net architecture that is closer to
vision models than the ones introduced previously in
Grüning and Barth (2021b) and Grüning et al. (2020b).
We first demonstrate its performance and then analyze
the learned units by relating them to biological vision.

Regarding the use of multiplicative terms in CNNs,
Zoumpourlis et al. (2017) have shown that quadratic
forms added to the first layer of a CNN can improve
generalization. An FP-net can be interpreted as a special
case of a network with an additional second-order
Volterra kernel, but it has much fewer parameters.
However, CNNs are also special cases of MLPs and, as
we have argued above, the challenge is to find the right
biases that can take us from the general to the more
special case. For more comprehensive overviews on how
FP-nets relate to various deep-network architectures,
especially to bilinear CNNs (Li et al., 2017), see
Grüning et al. (2020a) and Grüning and Barth (2021b).
In addition, we would like to mention recent work
of Chrysos et al. (2020), which illustrates that the
Hadamard product of layers in deep network and the
resulting higher-order polynomial representation can
improve classification performance. Finally, in recurrent
networks, multiplications are used to implement useful
gating mechanisms (Collins et al., 2016).

FP-nets as competitive deep
networks

With FP-nets, we denote a deep-network architecture
that contains one or several FP-blocks. Each block
of a deep network implements a sequence of layers
and operations that transforms an input tensor
T0 ∈ Rh×w×din to an output tensor Tout ∈ R

h
s × w

s ×dout . A
tensor consists of a number (e.g., din, dout) of feature
maps, each with spatial width w and height h that may
be altered by a factor s. The typical input tensor for
a CNN is an image, the three color channels being

Figure 1. The structure of an FP-block is illustrated with
rectangles and circles for the various operations applied to the
input tensor T0 gradually transforming it into Tout . The first row
within each rectangle denotes which operations are applied in
sequence. In the second row, the number of feature maps is
given and din → qdout indicates that the input number of
feature maps din changes to qdout . The arrows in the figure
indicate the inputs to the different operations and are labeled
with the tensors defined in the equations (see text). Note that
T1 is input to two different depthwise-separable 3 × 3
convolutions (DWS, middle rectangles) that are learned.
Convolutions are followed by instance normalization (IN) and
ReLU nonlinearity, resulting in two different tensors. T2 is the
result of element-wise multiplication of these two tensors (see
Equation 2). A second linear combination, depicted by the
bottom rectangle, yields T3. For the final output Tout , a residual
connection adds the input tensor T0 to T3 (see Equation 5).

the feature maps. The sequence of operations in an
FP-block is shown in Figure 1 and consists of three
steps: (a) a first linear combination, (b) the feature
product, (c) a second linear combination. In the first
step, the din feature maps of an input tensor T0 are
linearly combined, followed by a ReLU, to yield the
tensor T1 with qdout feature maps:

T1[i, j,m] = ReLU

(din∑
n=1

wn
mT0[i, j, n]

)
;

m = 1, ..., qdout. (1)

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 3

T1[i, j,m] is the value of T1 at pixel position (i, j)
and feature map m; wn

m are learned weights and q is
an expansion factor that controls the block size. By
Tm
1 ∈ Rh×w, we denote the mth feature map of T1. The

second step is the computation of feature products,
the centerpiece of the FP-block. Each feature map
Tm
1 ;m = 1, ..., qdout, is convolved with two learned

filters Vm and Gm ∈ Rk×k. Filtering is followed by
instance normalization (IN) (Ulyanov et al., 2016) and
ReLU nonlinearity yielding two new feature maps.
Subsequently, the product of the two filter outputs is
computed. For any particular image patch X ∈ Rk×k,
with the center pixel being (i, j), of a particular feature
map Tm

1 , the filter operation for the vectorized image
patch x = vect(X) ∈ Rk2 is the scalar product of the
image patch with the vectorized filters v = vect(Vm)
and g = vect(Gm):

T2[i, j,m]= 1
σvσg

ReLU (xT v− μv)ReLU (gTx− μg). (2)

T2 ∈ R
w
s × h

s ×qdout is the resulting tensor and s the stride
of the filter operation. If s is greater than 1, T2’s width
and height are subsampled. μ and σ are the mean value
and standard deviation of Tm

1 after convolution with
either Vm or Gm:

μv = s2

hw

∑
i, j

(Tm
1 ∗ Vm)[i, j], (3)

σv = s2

hw

∑
i, j

(Tm
1 ∗ Vm − μv)2[i, j], (4)

with (Tm
1 ∗ V)[i, j] being the (i, j)th pixel of the filter

result. In the third step, a second linear combination
transforms T2 ∈ R

h
s × w

s ×qdout into T3 ∈ R
h
s × w

s ×dout . To
comply with the baseline architectures ResNet and
MobileNet, a residual connection defines the final
output as:

Tout = T0 + T3. (5)

Using the above FP-block, we designed four different
FP-nets based on different baseline architectures: an
FP-net based on (a) the original ResNet, and (b) the
PyrBlockNet trained on Cifar-10, (c) a ResNet-50,
and (d) a MobileNet-V2 both trained on ImageNet.
A stack is a larger segment of the network, consisting
of several blocks. Except for the first stack that
may have a stride of 1, each new stack starts with
a block with a stride of 2 that reduces the size of
each feature map. Within a stack, all blocks operate
on feature maps of the same size. Different network
architectures may have different numbers and types
of blocks. In our case, basic blocks, pyramid blocks,
bottleneck blocks, and inverted residual blocks define
the ResNet-Cifar, PyrBlockNet, ResNet-50, and

MobileNet-V2 architecture, respectively. The block
is the core module of an architecture and contains
several layers. Layers are the smallest network building
units such as convolution layers and max-pooling
layers. Figure 2 shows an example of a ResNet-Cifar
architecture that has three stacks with five blocks each.
Each first block of the second and third stacks contains
a convolution layer with stride s = 2 that downsamples
the input. The two other architectures that we used are
similar: The ResNet-50 has four stacks with varying
numbers of bottleneck blocks. The MobileNet-V2 has
six stacks consisting of inverted-residual blocks.

We transform the four baseline architectures
defined above into FP-nets using a simple design rule:
Substitute each stack’s first block with an FP-block.
The input and output dimensions of the block are kept
equal; only the internal operations differ.

We developed this design rule to improve upon
already well-established architectures, making FP-nets
practical since only a few changes need to be done to
create an FP-net. To be compatible with state-of-the-art
architectures, the FP-block has a structure similar to
the MobileNet-V2 block (Sandler et al., 2018). We
found that combinations of convolution blocks and
FP-blocks work best and that larger kernel sizes do not
improve performance. One way to view a stack is that
it constitutes a visual processing chain for a specific
image scale. One would expect end-stopping to be more
useful at the beginning of this chain. Thus, we replaced
the first block of each stack. Note, however, that later
stacks, for example, the second and third stack in the
Cifar-10 networks, already work with highly processed
inputs coming from the previous stacks. Therefore,
one would expect that there is a lower necessity of
extracting 2D regions in later stacks. Indeed, we will
show, when analyzing the γ values of FP-blocks, that
highly selective neurons are more common in earlier
stacks.

We train and test several FP-nets on the two
well-known benchmarks Cifar-10 (Krizhevsky et al.,
2021) and ImageNet (Deng et al., 2009).

Due to the moderate size of the data set, Cifar-10 is
often used to evaluate the potential of new architectures
and designs. For our experiments on this data set, we
used ResNets (He et al., 2016) as baseline; see Figure 2
for an example. These networks have three stacks, each
consisting of N blocks. We evaluated two types of the
ResNet-20, ResNet-32, ResNet-44, and ResNet-56,
withN = 3, 5, 7, and 9 blocks, respectively (the numbers
after the names indicate the number of convolution or
linear layers). Since the first publication of the ResNet
architecture, several additional blocks were proposed;
see Han et al. (2017) for an overview. As two baselines
on Cifar-10, we used the original ResNet and a variant
using the pyramid block that we denote PyrBlockNet.
For both variants, we created FP-nets by replacing
baseline blocks with FP-blocks according to our design

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 4

Figure 2. Architecture of the ResNet-32 used on Cifar-10: The network contains three stacks with five blocks each. Each block contains
several layers such as convolution layers with a kernel of size 3 × 3 pixels, batch normalization (BN) layers, and ReLU and Softmax
nonlinearities. Convolution layers with a stride s larger than 1 subsample the input, for example, from 32 × 32 pixels to 16 × 16 or
8 × 8 pixels. The number of feature maps can change within a block; for example, 16 → 32 indicates an increase from 16 to 32 feature
maps. The FP-net has the same baseline architecture, but each first block in a stack (colored in red) is replaced with an FP-block.

rule. We used the same number of blocks, but note that
an FP-block contains one additional convolution layer
in each block. The FP-net-23, FP-net-35, FP-net-47,
and FP-net-59 are based on the PyrBlockNet: Each
stack’s first block is an FP-block, and all other blocks
are pyramid blocks. Analogously, FP-net (basic)
denotes an FP-net based on the original ResNet: Each

stack’s first block is an FP-block, and the remaining
blocks are basic blocks.

Next, we evaluated the performance of FP-nets
with the larger ImageNet data set that contains over
1.2 million training examples and 50,000 validation
examples (we tested on the publicly available validation
set). With an input size of at least 224 × 224 pixels

Figure 3. The y-axis displays the best test score on Cifar-10 averaged over five runs, and the bars indicate the standard deviations. The
transparent area indicates the range from the minimum to the maximum. Each diamond represents one network having a specific
number of parameters (in thousands) denoted on the x-axis. On the left, the black solid line shows the baseline ResNet results with
20, 33, 44, and 56 layers, and the green solid line the results for the corresponding FP-nets (basic). On the right, the black solid line
shows the baseline PyrBlockNet and the green solid line the results for the FP-nets. Substituting each stack’s first block with an
FP-block yielded, in all but one case, a significantly better performance with a reduced number of parameters.

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 5

Model No. of parameters (M) Error

ResNet-50 (baseline) 25.6 23.61
FP-net-50 (q = 0.8) 24.3 23.80
FP-net-50 (q = 1) 26.0 23.24
MobileNet-V2 (baseline) 3.5 28.71
FP-MobileNet 3.5 28.53

Table 1. ImageNet validation errors for different FP-nets and
baselines: We transformed two baseline network architectures,
the ResNet-50, and the MobileNet-V2, into FP-nets, here
denoted as FP-net-50 and FP-MobileNet. The transformations
are done by substituting specific blocks of the baseline
networks with an FP-block (see text). Additionally, by choosing
different expansion factors q, we created one FP-net that is
smaller than the baseline (q = 0.8) and one larger network
(q = 1). Note that FP-nets perform better than the baseline
models if there is only a slight increase in the number of
parameters (shown in millions).

and 1,000 classes, ImageNet poses a greater challenge
than Cifar-10. We compared the ResNet-50 to two
FP-net-50: one smaller net with an expansion factor
q = 0.8 and a slightly larger network with q = 1. In
both cases, for each of the four stacks of the ResNet-50,
the first block was replaced by an FP-block to obtain
the FP-net-50. Note that, if not explicitly mentioned,
the term FP-net-50 refers to the q = 1 variant.

To further validate our approach, we evaluated
an FP-net based on the popular MobileNet-V2
architecture. As with the ResNet, we replaced the first
block of each stack with an FP-block, using q = 3.

The results of the Cifar-10 experiments are shown in
Figure 3: The left side compares the original ResNet
to the FP-net (basic), and the right side compares the
PyrBlockNet to the FP-net. Each point of the two
curves shows the best possible test error occurring over
all training epochs averaged over five runs and for
one particular network (i.e., one particular number of
blocks). The black line shows the baseline network,
the green line the resulting FP-net when substituting
the first blocks of the baseline’s stacks. The x-axis
displays the number of parameters, a number that
increases with the number of blocks. Note, however,
that the inclusion of FP-blocks reduces the number of
parameters. Overall, the FP-nets are more compact and
perform better with a lower test error and only a small
overlap in the standard deviations.

Table 1 shows the results on ImageNet. Note that
the FP-net (q = 1) performs better than the baseline
ResNet-50, and the validation error is reduced by
almost 0.4. When considering the already compact
MobileNet architecture, the FP-net performs better
than the MobileNet with an error decreased by 0.2. We
trained the MobileNet-V2 baseline network ourselves
to obtain its validation error. For the ResNet-50, we

Figure 4. Number of parameters vs. ImageNet validation error
for the ResNet-50 (black diamond) and two FP-nets (green dots)
with different expansion factors q.

report the value from the Tensorpack repository (Wu,
2016). The performance depending on the number of
parameters for the ResNet and FP-variants is illustrated
in Figure 4.

FP-nets and visual coding

Hyperselectivity of FP-units

Vilankar and Field (2017) used the term
hyperselectivity to quantify how strongly a neuron is
tuned to its optimal stimulus, that is, how quickly the
response drops when the optimal stimulus changes.
In the context of deep learning, hyperselectivity
is relevant because it can increase robustness, for
example, robustness against adversarial attacks (Paiton
et al., 2020). One way to quantify hyperselectivity is
to measure the curvature of iso-response contours.
Given an n-dimensional input to a function f , an
(n − 1)-dimensional surface may exist such that for all
points s on the surface, the output f (s) is a constant.
As n can be a high dimension, 2D projections are used
to analyze such iso-surfaces, which in two dimensions
become iso-response contours s = φ(t), t ∈ R.

The typical linear-nonlinear (LN) model neuron
used in CNNs is a function fLN (x) that involves a
linear projection on a weight vector w ∈ Rn followed
by a pointwise nonlinearity ρ(x). To analyze the
iso-response contour of such a neuron, one first
projects the input on w, the axis corresponding to

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 6

Figure 5. Iso-response contour plots for different values of the angle γ . Each plot shows values that were determined by using
Equation 23; furthermore, normalization and quantization to six bins were applied. The horizontal axis points in the direction of the
optimal stimulus and is indexed by the y value in Equation 23. The vertical axis is orthogonal to the optimal stimulus and indexed by x.
The black lines indicate the zero contour.

the optimal stimulus xopt. To find a second axis,
one searches for a vector orthogonal to xopt, for
example, by picking n random values and using the
Gram–Schmidt process (see Equation 16) to transform
the random vector to one that is orthogonal to
xopt. When looking at the output of an LN-neuron
for xopt perturbed by any orthogonal vector z with
xoptT z = wT z = 0, the iso-response contour is always
a straight line parallel to z, because fLN (xopt + z) =
ρ(wT (xopt + z)) = ρ(wTxopt) = fLN (xopt). Thus, for
LN-neurons, the iso-response contours have zero
curvature. For hyperselective neurons (fHS(x)),
there exist vectors z that are orthogonal to xopt and
decrease the neuron’s optimal response such that
fHS(xopt + z) < fHS(xopt). In this case, the exo-origin
iso-response contour bends away from the origin of the
basis defined by xopt and z. A higher curvature of this
bend indicates a more significant activation dropoff
in regions that are different from the optimal stimulus
(i.e., a greater hyperselectivity). One way to quantify
the curvature is to use the coefficient of the quadratic
term obtained by fitting a second-order polynomial to
the iso-response contour. FP-nets contain FP-blocks
that consist of FP-units, or FP-neurons, which yield
the feature-product output for a pixel (i, j) in a feature
map m as defined by Equation 2. As shown in the

Appendix, FP-neurons exhibit curved exo-origin
iso-response contours with a curvature that depends
on the angle γ = �(v, g). Iso-response contours are
shown in Figure 5 for different values of γ . Note that
curvature, and thus hyperselectivity, increases with γ .
Accordingly, a large γ leads to a lower entropy of the
resulting feature maps; see Figure 6.

Entropy and degree of end-stopping

To further support the view that FP-neurons are
hyperselective depending on γ , we analyzed the entropy
of the feature maps generated by different FP-neurons.
The results in Figure 6 show that the learned filters tend
to have a γ larger than zero, that is, the majority of
FP-neurons are hyperselective and that a high γ -value
leads to a lower entropy. Details of how the entropy is
computed are given in the Appendix.

In order to analyze the end-stopping behavior of
the model neurons that are learned in the FP-nets
trained on Cifar-10 and ImageNet, we needed to
quantify the degree of end-stopping. In order to relate
to physiological measurements, we started by analyzing
the response of FP-neurons to straight lines and line
ends, but this turned out to be problematic because
the FP-nets use small 3 × 3 filters and subsample the

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 7

Figure 6. Scatterplots of entropy over hyperselectivity (indicated by the angle γ). Each dot corresponds to an FP-neuron. The color
codes indicate the position of each neuron in the network (i.e., the number of convolution layers). The entropy of a particular
FP-neuron’s feature map is estimated as described in the Appendix and plotted against γ = �(v, g). The left panel shows results for
the FP-net-50 trained on ImageNet after 2, 11, 23, and 41 convolution layers, and the right panel shows results for the FP-net-59
trained on Cifar-10 after 2, 21, and 40 convolution layers. Note the correlation between entropy and γ . Hyperselectivity is directly
linked to γ , as illustrated in Figure 5.

Figure 7. Distribution of neurons plotted over the degree of end-stopping. Distributions are shown for the first block of the first stack
for different models. The left image shows the activation of the first convolution, after batch normalization and ReLU, of a pyramid
block in a PyrResNet (nine blocks per stack). Middle: the FP-neuron (T2) of an FP-block for an FP-net trained on Cifar-10 (nine blocks
per stack). Right: T2 of an FP-block for the FP-net-50 trained on ImageNet. Blue bars show normalized histograms for the ratio 1 − 1D

2D
that quantifies the relation between responses to straight edges (1D) and corners (2D); see Appendix. Neurons that respond to 0D
regions (the center of a square) are excluded from the blue histogram and shown separately as orange bars. Neurons that do not
respond at all (0D, 1D, and 2D responses are all zero) are also excluded from the blue histogram and are shown as green bars.

input. To keep the analogy, but with a more robust
measure, we used a square as input and quantified the
average responses to the uniform zero-dimensional (0D)
regions, the straight 1D edges, and the 2D corners. The
degree of end-stopping is then defined by the relation
between 1D and 2D responses. In order to account
for ON/OFF- type responses, we used both a bright
and a dark square. The results are shown in Figure 7,
and the details of the algorithm are given in the
Appendix.

Note that, as the real neurons in cortical areas V1 and
V2, the model neurons in the FP-net are end-stopped
to different degrees. Thus, end-stopping seems to be
beneficial for both the ImageNet and Cifar-10 tasks,
since the emergence of end-stopping is here driven by
the classification error. As expected, the multiplication
in the FP-block shifts the distribution toward a higher
degree of end-stopping. However, the network could
have learned filter pairs that do not lead to end-stopped
FP-neurons. The bias that we introduce (i.e., the

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 8

Figure 8. Distribution of FP-neurons (T2) as a function of hyperselectivity (indicated by the angle γ = �(v, g)) and for different
positions in the network. Note that the majority of neurons are hyperselective to different degrees and that hyperselectivity is
reduced later in the network. The left panel shows results for the FP-net-50 trained on ImageNet after 2, 11, 23, and 41 convolution
layers. The right panel shows results for the FP-net-59 trained on Cifar-10 after 2, 21, and 40 convolution layers.

multiplication) just makes it easier for the network to
learn end-stopped representations.

The angle distributions in Figure 8 show that indeed
linear FP-neurons are learned as well since more
than 15% of FP-neurons have a γ -value near zero.
With increasing network depth, the number of linear
FP-neurons increases, indicating that hyperselectivity
and especially end-stopping are more frequent in earlier
stages of the visual processing chain.

FP-neurons are more robust against adversarial
attacks

Although outperforming almost all alternative
approaches on many vision tasks, CNNs are
surprisingly sensitive to barely visible perturbations of
the input images (Szegedy et al., 2013). An adversarial
attack on a classifier function f adds a noise pattern
η to an input image x so that f (x + η) does not
return the correct class y = f (x). Furthermore, the
attacker ensures that some p-norm of η does not
exceed ε. In many cases, including this work, the
infinity-norm is chosen, and the ε values are in the set
{1/255, 2/255, ...}. Thus, for example, for ε = 1/255,
each 8-bit pixel value is at most altered by adding or
subtracting the value 1. Goodfellow et al. (2014) argue
that the main reason for the sensitivity to adversarial
examples is due to the linearity of CNNs: With a
high-dimensional input, one can substantially change a
linear neuron’s output, even with small perturbations.
Consider the output of an LN-neuron for an input
x with dimension n perturbed by η. We choose η to
be the sign function of the weight vector multiplied

with ε: η = sign(w) · ε. Thus, η roughly points in the
direction of the optimal stimulus (which is also the
gradient), but its infinity-norm does not exceed ε.
Assuming that the mean absolute value of w is m,
fLN (η) is approximately equal to εnm. Accordingly, a
significant change of the LN-neuron’s output can be
achieved by a small ε value if the input dimension n is
large, which is the case for many vision-related tasks.
This gradient-ascent method can also be applied to
nonlinear neurons. Within a local region, the output of
almost any function f can be approximated by a linear
function. To optimally increase the output, the input
needs to be moved along the gradient direction. The
fast gradient sign method (FGSM; Goodfellow et al.,
2014) perturbs the original input image x by adding
η = εsign(∇ f (x)). Another approach is to define η to
be the gradient times a positive step size τ followed by
clipping to η ∈ [−ε, +ε]n. The clipped iterative gradient
ascent (CIGA) greedily moves along the direction of
the highest linear increase,

η0 = 0; τ > 0
qi+1 = ηi + τ∇ f (x + ηi)
η
j
i+1 = min(max(q j

i+1, −ε), ε),
(6)

with q j
i being the jth entry of the unbounded result

qi at the ith iteration step. In the following, we use
CIGA in our illustrations of the principle, and in
our experiments, we employ FGSM as it is a widely
recognized adversarial attack method. When regarding
an iso-response contour plot, one can easily spot the
direction of the gradient, which is orthogonal to an
iso-response contour (Paiton et al., 2020). In Figure 9
on the left, the gradient for an LN-neuron is parallel to

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 9

Figure 9. Iso-response contours and iteration path of CIGA for (left) an LN-neuron and (right) an FP-neuron: The LN-neuron’s weight
vector is w = (1, 0)T and o = (0, 1)T is an orthogonal vector. The FP-neuron’s filter-pair is v = (1, 0)T and g = (0, 1)T . The black lines
point in the directions of the respective optimal stimulus. The blue dashed line shows the iteration path of the CIGA (see Equation 6).
All other colored solid lines show iso-response contours; the number on each line shows the function value of the contour. For each
neuron, CIGA aims to find a perturbation η with ‖η‖∞ ≤ ε = 1 that maximally increases the output f (x + η). x = (0, 0.3)T is the
initial input to the neurons; τ = 0.001 is the step size, and a total of 10,000 iterations were computed. CIGA quickly finds an optimal
solution for the LN-neuron since any step along the positive gradient (parallel to the optimal stimulus, orthogonal to the iso-response
contours) optimally increases the function value. For the FP-neuron, the iteration path first moves toward the optimal stimulus, then
almost parallel to it, and finally, moves upward once the bound on ε is reached along the v-axis. This longer, more complex
optimization path shows that CIGA is less effective for a hyperselective FP-neuron, indicating that FP-neurons are more robust against
adversarial examples.

the optimal stimulus (black line). As long as the initial
input yields a nonzero gradient, each step of CIGA
maximally increases the LN-neuron output. Thus,
the algorithm’s effectiveness is only bounded by ε but
widely independent of the initial input x. For a step
size larger than ε, CIGA finds the optimal solution in
one step. We now investigate the effects of CIGA on a
simplified version of an FP-neuron:

F (x) = xT vgTx. (7)

Note that in the following particular example, the input
is chosen to yield nonnegative projections on v and g;
thus, we can remove the ReLUs. The resulting gradient
is

∇F (x) = (vTx)g + (gTx)v. (8)

The effectiveness of an iteration step strongly depends
on the current position. The highest possible increase
would be obtained along the line defined by the optimal
stimulus. In Figure 9 on the right, this is the black line.
If the initial input is located on this line, any step in
the gradient direction yields an optimal increase of the
FP-neuron output. However, for any other position
with a nonzero gradient, an unbounded iteration step
would move toward the optimal stimulus line. The blue
curve in Figure 9 shows the path for several iterations

of CIGA: Starting above the optimal stimulus line,
each step slowly converges to the optimal stimulus line,
eventually moving almost parallel to it. Once the ε
threshold of 1 is reached in the horizontal dimension,
the (now bounded) path runs parallel to the vertical
dimension to increase the neuron output further. The
optimal solution is found once the ε bound is also
reached in the vertical dimension. The important
difference when comparing with LN-neurons is that
there are numerous conditions (depending on τ , x,
γ , and ε) where CIGA would need several steps to
find an optimal solution. This reduced effectiveness
of the gradient ascent illustrates why hyperselective
neurons are more robust against adversarial attacks;
for example, if ε is too small, or τ is chosen poorly, or
with too few iterations, an attack might not increase the
FP-neuron output by much. Note that single neurons
are usually not the target of adversarial attacks; instead,
the gradient is determined on the classification loss
function. Still, the argument holds that hyperselective
neurons are harder to activate than LN-neurons,
resulting in an increased robustness.

To test this hypothesis, we created new Cifar-10
test sets Sεi = {FGSM(x, εi) : x ∈ XC10} derived from
the original test set XC10. Here, we focused on the
most subtle adversarial attacks: we created one test set
S1/255, where each test image was perturbed by using
FGSM with ε = 1/255. Results for larger ε-values
are shown in the Appendix (see Table 2 and Table 3).

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 10

Figure 10. Percentage of changed predictions (see Equation 9) on the adversarial example test set S1/255. A lower value indicates that
a network is more robust against attacks created by the FGSM.

To exclude the hypothesis that the better accuracy
(with perturbations) is due to the fact that the FP-nets
already generalize better, we present results where we
measure the percentage of changed predictions of the
classifier f .

Perc. of changed predictions(f , 	, θ)

= 1
|XC10|

∑
x∈XC10

1(f (x) 	= f ((x, θ))), (9)

1 is the indicator function returning a 1 for a true
statement and a zero otherwise. 	 is some function
(here, FGSM) that perturbs the original image x based

on some parameter θ . We evaluated this metric for
each of the four architectures that we trained on the
original Cifar-10 training set (see Section “FP-nets as
competitive deep networks”); no additional adversarial
training scheme was employed. As shown in Figure 10,
40% to 50% of the predictions did change. However,
for both baseline models, substituting some of the
LN-neurons with FP-neurons increased the robustness
against FGSM attacks.

The results reiterate that CNN predictions can be
significantly altered by deliberate and subtle attacks
(we show some example images in the Appendix).
Unfortunately, this lack of robustness creates problems
of practical relevance beyond such attacks. For

Figure 11. Percentage of changed predictions (see Equation 9) for the JPEG-compressed Cifar-10 test set S90. A lower value indicates
that a network is more robust against JPEG artifacts.

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 11

Figure 12. An example of learned filters pairs. The top row
shows the two learned 3 × 3 filters (arrows indicate
orientation) and the row below the corresponding Fourier
spectra. The third row depicts the responses of the two filters
to the image shown in the bottom left (image used as T1 to
illustrate the selectivity of the FP-unit). The bottom-right panel
shows the response of the FP-unit (the product of the filter
responses). Such textbook units, however, are rather rare. This
particular unit has emerged in the FP-net-59 trained on Cifar-10
without instance normalization and without the ReLU in
Equation 2.

example, JPEG-compression can create artifacts that
have similar effects. To evaluate robustness against
JPEG artifacts, we created the Cifar-10 test sets
SQi = {JPEG(x,Qi) : x ∈ XC10}, with JPEG(x,Q)
being the JPEG-compressed version of the original
image x with a quality rate Q ∈ {1, 2, ..., 100}, 100
being the original image. A low quality indicates a high
compression with stronger artifacts (example images
are given in the Appendix). In Figure 11, we show the
results for the low compression test set S90 and further
results in the Appendix (see Tables 4 and 5).

Again, using FP-neurons increased the robustness
against artifacts. However, even amoderate compression
alters up to 10% of the CNNs’ predictions.

Example FP-unit

As shown above, the learned FP-neurons are
hyperselective and end-stopped to different degrees.
However, these two properties do not fully specify an
FP-neuron. When analyzing the individual FP-neurons
in more detail, it is difficult to further specify them
according to simple properties such as orientation
or phase. Nevertheless, some FP-neurons look as if
they were taken from a textbook on “how to model
end-stopped neurons,” and we show one example in
Figure 12.

Discussion and conclusions

We have presented a novel FP-net architecture and
have demonstrated its competitive performance. To do
so, we have designed experiments with state-of-the-art
deep networks and showed that we could improve their
performance by substituting original blocks in the
network architecture with FP-blocks that implement
an explicit multiplication of feature maps. Given
this simple design rule, we can expect our approach
to be of practical use, since any traditional network
can easily be transformed into an FP-net that will
most likely perform better. We did not employ any
hyperparameter tuning specific to the FP-nets but just
used the hyperparameters of the original networks;
one may thus expect even better performance with
additional tuning. We believe that the improvement that
comes with FP-nets is due to an appropriate bias, which
allows the network to learn efficient representations
based on units (model neurons) that are end-stopped to
different degrees. The multiplications that we introduce
allow for AND rather than OR combinations and thus
make the resulting units more selective than linear filters
with pointwise nonlinearities. Note that the key feature
of FP-nets is that one learns pairs of linear filters,
which are then AND combined. In case of FP-nets,
the AND is implemented by multiplications. We could,
however, show that logarithms (Grüning et al., 2020b)
and the minimum operation (Grüning & Barth, 2021a)
can also work as AND operation. We consider the
improvements that bio-inspired FP-nets achieve over
the baseline networks to be the main contribution of
our article.

Moreover, we have analyzed the selectivity of the
FP-units in an attempt to relate them to what is known
about visual neurons. We could show that FP-units are
indeed end-stopped to different degrees. The emergence
of end-stopping in a network that learns based on only
the classification error demonstrates that end-stopping
is beneficial for the task of object recognition. This
finding is supported by previously known mathematical

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 12

results, according to which (a) 2D features such as
corners and junctions are statistically rare in natural
images, leading to sparse representations (Zetzsche
et al., 1993), and (b) 2D features are still unique since
there exists a mathematical proof that 0D (uniform) and
1D (straight) regions in images are redundant (Mota &
Barth, 2000), although being statistically frequent.

Of course, the considerations above cannot be
taken to imply that biological vision implements
an FP-net architecture, especially as the FP-nets
implement additional and typical deep-network
operations such as linear recombinations that increase
the entropy of the representation. In other words,
much of what well-performing deep networks do is
not something one would necessarily consider to be
optimal.

It is known that sparse-coding units are more
selective than typical CNN units, that is, than linear
neurons with pointwise nonlinearities (Paiton et al.,
2020), and thus less prone to certain adversarial attacks.
This increased selectivity has been quantified with
the curvature of the iso-response contours. We could
show that the iso-response contours of the FP-units
are curved, with the degree of curvature depending on
the angle between the multiplied feature vectors, and
that a large number of hyperselective units emerge in
FP-nets trained for object recognition. Furthermore,
our results show that FP-nets are indeed more robust
against adversarial attacks and compression artifacts,
and this is, again, due to the vision-inspired FP-units.

Keywords: deep networks, FP-nets, hypercomplex cells,
end-stopping, efficient coding, curvature, hyperselectivity

Acknowledgments

Commercial relationships: none.
Corresponding author: Philipp Grüning.
Email: gruening@inb.uni-luebeck.de.
Address: Institute for Neuro- and Bioinformatics,
University of Lübeck, Germany.

References

Barlow, H. (1961). Possible principles underlying
the transformation of sensory messages. Sensory
Communication, 1(1), 217–234.

Barth, E., & Watson, A. B. (2000). A geometric
framework for nonlinear visual coding.
Optics Express, 7(4), 155–165. Available from
http://webmail.inb.uni-luebeck.de/inb-publications/
pdfs/BaWa00.pdf.

Barth, E., & Zetzsche, C. (1998). Endstopped operators
based on iterated nonlinear center-surround

inhibition. In B. E. Rogowitz, & T. N. Pappas
(Eds.), Human vision and electronic imaging
(Vol. 3299, pp. 67–78). Bellingham, WA: Optical
Society of America, Available from http:
//webmail.inb.uni-luebeck.de/∼barth/papers/spie98.
fm4.pdf.

Bradski, G. (2000). The openCV library. Dr. Dobb’s
Journal: Software Tools for the Professional
Programmer, 25(11), 120–123.

Chrysos, G. et al. (2020). P-nets: Deep polynomial
neural networks. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, pp. 7323–7333,
doi:10.1109/CVPR42600.2020.00735.

Collins, J., Sohl-Dickstein, J., & Sussillo, D. (2016).
Capacity and trainability in recurrent neural
networks. Stat, 1050, 29.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K.,
& Fei-Fei, L. (2009). ImageNet: A large-scale
hierarchical image database. 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pp.
248–255, doi:10.1109/CVPR.2009.5206848.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015).
Explaining and harnessing adversarial examples.
In Y. Bengio, & Y. LeCun (Eds.), 3rd International
Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, Conference Track
Proceedings. Opgehaal van, http://arxiv.org/abs/
1412.6572.

Gray, G. (2017). Sequential-imagenet-dataloader.
Retrieved February 20, 2021, from, https://github.
com/BayesWatch/sequential-imagenet-dataloader.

Grüning, P., & Barth, E. (2021a). Bio-inspired min-nets
improve the performance and robustness of deep
networks. In SVRHM 2021 Workshop @ NeurIPS,
https://openreview.net/forum?id=zxxdFLB8F24.

Grüning, P., & Barth, E. (2021b). Fp-nets for blind
image quality assessment. Journal of Perceptual
Imaging, 4(1), 10402-1–10402-13.

Grüning, P., Martinetz, T., & Barth, E. (2020a). Feature
products yield efficient networks. arXiv preprint
arXiv:2008.07930.

Grüning, P., Martinetz, T., & Barth, E. (2020b).
Log-nets: Logarithmic feature-product layers
yield more compact networks. In I. Farkaš, P.
Masulli, & S. Wermter (Eds.), Artificial Neural
Networks andMachine Learning – ICANN 2020 (pp.
79–91). Cham, Switzerland: Springer International
Publishing.

Han, D., Kim, J., & Kim, J. (2017). Deep pyramidal
residual networks. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, pp. 6307–6315,
doi:10.1109/CVPR.2017.668.

Downloaded from jov.arvojournals.org on 02/09/2022

http://webmail.inb.uni-luebeck.de/inb-publications/pdfs/BaWa00.pdf
http://webmail.inb.uni-luebeck.de/~barth/papers/spie98.fm4.pdf
https://doi.org/10.1109/CVPR42600.2020.00735
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1412.6572
https://github.com/BayesWatch/sequential-imagenet-dataloader
https://openreview.net/forum?id=zxxdFLB8F24
https://doi.org/10.1109/CVPR.2017.668

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 13

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep
residual learning for image recognition. 2016
IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778,
doi:10.1109/CVPR.2016.90.

Howard, J. (2018). Imagenet-fast. https://github.
com/fastai/imagenet-fast. Accessed February 20,
2021.

Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields
and functional architecture in two nonstriate
visual areas (18 and 19) of the cat. Journal of
Neurophysiology, 28(2), 229–289.

Kim, H. (2020). Torchattacks: A pytorch repos-
itory for adversarial attacks. arXiv preprint
arXiv:2010.01950.

Krizhevsky, A., Nair, V., & Hinton, G. (2021). Cifar-10
(Canadian Institute for Advanced Research).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep
learning. Nature, 521(7553), 436–444.

Li, D., Zhou, A., &Yao, A. (2021).Mobilenetv2.pytorch.
Retrieved February 20, 2021, from https:
//github.com/d-li14/mobilenetv2.pytorch.

Li, Y., Wang, N., Liu, J., & Hou, X. (2017). Factorized
bilinear models for image recognition. In 2017
IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, pp. 2098–2106,
doi:10.1109/ICCV.2017.229.

Lu, L. (2020). Dying ReLU and initialization:
Theory and numerical examples. Communications
in Computational Physics, 28(5), 1671–1706,
doi:10.4208/cicp.OA-2020-0165.

Majaj, N. J., & Pelli, D. G. (2018). Deep learning—
Using machine learning to study biological vision.
Journal of Vision, 18(13), 2–2.

Mel, B. W., & Koch, C. (1990). Sigma-pi learning:
On radial basis functions and cortical associative
learning. In D. Touretzky (Ed.), Advances in Neural
Information Processing Systems, 2.

Mota, C., & Barth, E. (2000). On the uniqueness
of curvature features. Dynamische Perzeption,
9, 175–178, Available from https://webmail.inb.
uni-luebeck.de/inb-publications/htmls/ulm2000.
html.

Paiton, D. M., Frye, C. G., Lundquist, S. Y.,
Bowen, J. D., Zarcone, R., & Olshausen, B.
A. (2020). Selectivity and robustness of sparse
coding networks. Journal of Vision, 20(12), 10,
https://doi.org/10.1167/jov.20.12.10.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
& Chanan, G. et al. (2019). Pytorch: An imperative
style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, R. Garnett, A. Paszke, S.

Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
. . . S. Chintala (Eds.),Advances in neural information
processing systems (Vol. 32, pp. 8026–8037). Red
Hook, NY: Curran Associates, Inc.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding
in the visual cortex: A functional interpretation of
some extra-classical receptivefield effects. Nature
Neuroscience, 2(1), 79–87.

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L.
(1986). A general framework for parallel distributed
processing. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition,
1(26), 45–76.

Sandler, M., Howard, A., Zhu, M., Zhmoginov,
A., & Chen, L. (2018). MobileNetV2: Inverted
residuals and linear bottlenecks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, pp.
4510–4520, doi:10.1109/CVPR.2018.00474.

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural
image statistics and neural representation. Annual
Review of Neuroscience, 24(1), 1193–1216.

Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015).
Training very deep networks. Proceedings of the
28th International Conference on Neural Information
Processing Systems - Volume 2, pp. 2377–2385.
Presented at the Montreal, Canada. Cambridge,
MA, USA: MIT Press.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
& Anguelov, D. et al. (2014). Going deeper with
convolutions.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J.,
Erhan, D., Goodfellow, I., . . . Fergus, R. (2014).
Intriguing properties of neural networks. Paper
presented at 2nd International Conference on
Learning Representations, ICLR 2014, Banff,
Canada.

Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2016).
Instance normalization: The missing ingredient for
fast stylization. arXiv preprint arXiv:1607.08022.

Veit, A., Wilber, M. J., & Belongie, S. (2016). Residual
networks behave like ensembles of relatively shallow
networks. In D. Lee, M. Sugiyama, U. Luxburg, I.
Guyon, & R. Garnett (Eds.), Advances in Neural
Information Processing Systems (Vol 29). Curran
Associates, Inc.

Vilankar, K. P., & Field, D. J. (2017). Selectivity,
hyperselectivity, and the tuning of v1 neurons.
Journal of Vision, 17(9), 9, https://doi.org/10.1167/
17.9.9.

Watanabe, S. (1985). Pattern Recognition: Human
and Mechanical. Hoboken, New Jersey:
Wiley-Interscience.

Downloaded from jov.arvojournals.org on 02/09/2022

https://doi.org/10.1109/CVPR.2016.90
https://github.com/fastai/imagenet-fast
https://github.com/d-li14/mobilenetv2.pytorch
https://doi.org/10.1109/ICCV.2017.229
https://doi.org/10.4208/cicp.OA-2020-0165
https://webmail.inb.uni-luebeck.de/inb-publications/htmls/ulm2000.html
https://doi.org/10.1167/jov.20.12.10
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1167/17.9.9

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 14

Wu, Y. (2016). Tensorpack, https://github.com/
tensorpack/tensorpack/tree/master/examples/
ResNet. Accessed February 20, 2021.

Zetzsche, C., & Barth, E. (1990). Fundamental
limits of linear filters in the visual processing of
two-dimensional signals. Vision Research, 30,
1111–1117. Available from http://webmail.inb.
uni-luebeck.de/inb-publications/pdfs/ZeBa90a.pdf.

Zetzsche, C., Barth, E., & Wegmann, B. (1993). The
importance of intrinsically two-dimensional image
features in biological vision and picture coding.
In A. B. Watson (Ed.), Digital images and human
vision (pp. 109–38). Cambridge, MA: MIT Press.
Available from http://webmail.inb.uni-luebeck.de/
inb-publications/htmls/ZeBaWe93a.html.

Zoumpourlis, G., Doumanoglou, A., Vretos, N.,
& Daras, P. Non-linear convolution filters for
CNN-based learning. In 2017 IEEE International
Conference on Computer Vision (ICCV), Venice,
Italy, pp. 4771–4779, doi:10.1109/ICCV.2017.510.

Appendix

Details on network design and training
procedure

All experiments were conducted using the PyTorch
deep-learning framework (Paszke et al., 2019). Note that
in all cases, for Equation 1, the output of the weighted
sum has been normalized via batch normalization
before applying the ReLU nonlinearity.

Residual connections
For the residual connections in Equation 5, some

additional computations are needed if the dimensions
of T0 and T3 differ. In case that dout is greater than din,
zero padding is used to match the dimension of the
feature maps. If din is greater than dout, an additional
linear combination is learned to reduce the number
of feature maps. If the FP-block’s stride s is greater
than 1, T0 is subsampled by average pooling. For more
implementation details regarding residual connections,
see Han et al. (2017). Residual connections enable a
more stable gradient flow during training, allow to
better model identity functions (He et al., 2016), and
enable CNNs to behave like ensembles of shallower
networks (Veit et al., 2016).

Cifar-10 experiments
Cifar-10 contains 50,000 training and 10,000 test

images (RGB, with height and width 32) of 10 different
commonplace objects, such as airplane, bird, cat, and
ship. For each FP-net and each PyrBlockNet, five

experiments were conducted with five different random
seeds that control the initialization of each network’s
random weights and the random mini-batch collection
during training. The networks were trained for 200
epochs, using stochastic gradient descent (SGD), with a
learning rate of 0.1 that was reduced to 0.01 and 0.001
after the 100th and 150th epoch. We used a momentum
of 0.9, a weight decay of 0.0001, and a batch size of
128. For data augmentation, during training, with
a probability of 50%, each input image was flipped
horizontally. Subsequently, all images were padded
with 4 pixels, and then a random crop of 32 × 32 were
used. Furthermore, the RGB crop was first divided
by 255 and normalized with the ImageNet mean
μimNet (0.485, 0.456, 0.406) and standard deviation
σimNet (0.229, 0.224, 0.225) for the three input channels,
respectively. When computing the test scores, no
random cropping and no horizontal flipping were used.
Each FP-block’s expansion factor q was set to 2. Based
on the work of Srivastave et al. (2015), the best test
error was reported to better reflect the variance of the
results due to different network initializations.

FP-ResNet on ImageNet
The FP-net-50 was trained for 100 epochs with

randomly initialized weights using SGD on 224 × 224
crops with a batch size of 512. After one third, and
then again after two thirds of the training time, the
initial learning rate of 0.1 was decreased by a factor of
10. The weight decay was 0.0001 and the momentum
0.9. For data augmentation, we used the code from
the sequential-imagenet-dataloader repository (Gray,
2017); during training, crops of various random sizes
were passed to the network ranging from 8% to 100%
of the original image size. The aspect ratio was chosen
randomly between 3/4 and 4/3. Furthermore, different
photometric distortions (e.g., random contrast changes)
were applied as described in Szegedy et al. (2014)
and the Tensorpack repository (Wu, 2016). When
computing the test scores, each input image is first
resized such that the shortest edge’s length is 256. Next,
the image is cropped in the center to size (224, 224),
divided by 255, subtracted with 0.5, and again divided
by 0.5.

MobileNet-V2 and FP-MobileNet
The FP-MobileNet was trained from scratch with

SGD for 150 epochs and with a batch size of 256. The
initial learning rate of 0.05 was decreased according
to a cosine scheduling; see Li et al.’s repository (Li
et al., 2021). The training data augmentation included
random resizing and cropping, random horizontal
flips, color jitters, division by the maximum value,
and normalization by μimNet (0.485, 0.456, 0.406) and
σimNet (0.229, 0.224, 0.225). During testing, the input

Downloaded from jov.arvojournals.org on 02/09/2022

https://github.com/tensorpack/tensorpack/tree/master/examples/ResNet
http://webmail.inb.uni-luebeck.de/inb-publications/pdfs/ZeBa90a.pdf
http://webmail.inb.uni-luebeck.de/inb-publications/htmls/ZeBaWe93a.html
https://doi.org/10.1109/ICCV.2017.510

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 15

images were first resized to 255 × 255 and then a center
crop of size 224 × 224 was computed. Subsequently,
the crop was normalized as described above. For more
information, see Fastai’s repository (Howard, 2018).

Entropy

We analyzed the entropy of all FP-neurons T2 for
the FP-ResNet-50 (ImageNet) and the FP-ResNet-59
(Cifar-10). One hundred randomly sampled images
from the respective test set (in case of ImageNet, the
validation set) were passed to each network. For each
input, we computed the corresponding feature maps
for every FP-block, one tensor T2 for every block.
We normalized each feature map Tm

2 from R+ to
{0, 1, ..., 255} and computed the entropy of the pixel
distribution over the 256 integer values. For the 100
input images, we obtained 100 entropy values for each
feature map. We averaged these 100 values resulting
in the mean entropy for each feature map (i.e., each
FP-neuron).

We observed that some of the feature maps Tm
1 had

all pixel values equal to zero (so-called dying ReLUs;
Lu et al., 2019). The corresponding FP-neurons were
removed from the analysis. For the FP-ResNet-50, the
percentage of dying ReLUs was 23%, 0.002%, 7%, and
18% for the first, second, third, and fourth FP-blocks,
respectively. For the FP-ResNet-59, only the third
FP-block had 5% dying ReLUs. We tested different
weight initializations or alternative nonlinearities, such
as the leaky ReLU. However, although, using leaky
ReLUs stopped the emergence of dying ReLUs, we only
noticed a small gain in performance.

Degree of end-stopping

To measure the degree of end-stopping, we used
two input images I0, I1 , one with a bright and one
with a dark square: Pixels belonging to the square
had a value of +1 or −1, respectively; all other pixels
were zero. Each image was normalized to have zero
mean and a standard deviation of 1. We computed the
intermediate outputs T2(I0) and squared them to obtain
the activation energy. For the PyrResNet, we used the
ReLU after the first convolution as intermediate output.
Ti(I0) is the ith tensor that is computed using the image
I0 as input. We then normalized each tensor Tn from R+
to [0, 1] by dividing it with the mean plus three times the
standard deviation and clipped any values greater than
1 to make the normalization less susceptible to possible
outliers. The percentage of outliers never exceeded 10%.
For each feature map, we determined the values 0D,
1D, and 2D by summing the feature map pixel values
(i.e., the activations) over specific regions of interest

that were either homogeneous areas, straight edges, or
corners in the input image:

ψD(Tm
n) =

∑
i, j

Tn[i, j,m]Wψ [i, j]. (10)

Wψ is a binary matrix used to compute the ψD value.
All pixels within the region of interest are 1; the others
are zero. The weighted areas are shown in Figure 13 in
the right panel: The square in the middle is the region
of interest for 0D. The four small squares along the
straight edges of the input square measure 1D; the
four small squares at the corners measure 2D. Note
that the three different regions of interest have the
same total area. The left panel shows the input image
I0. The ψD(Tm

n) for both input images is the sum
ψD(Tm

n) = ψD(Tm
n (I0)) + ψD(Tm

n (I1)). The degree of
end-stopping of a feature map is then defined as:

φ(Tm
n) = 1 − 1D(Tm

n)
2D(Tm

n) + ε
(11)

with ε = 0.1. Note that the degree of end-stopping is
high (close to 1) if the 2D activation is high and the
1D activation is low. However, two special cases were
considered: (a) a feature map is “silent,” if all values are
very small (i.e., 0D + 1D + 2D < 0.1). (b) The feature
map is “0D” if the 0D and 1D activations are similar:

Tm
n is ′0D′ ⇔ 1 − 0D(Tm

n)
1D(Tm

n) + ε
< 0.1. (12)

For these two special cases, Equation 11 would no
longer quantify the degree of end-stopping. Therefore,
the degree of end-stopping values was not evaluated
for silent and 0D feature maps. The plots in Figure 7
show the normalized histograms for the degree of
end-stopping. All bars have a bin width of 0.1 and their
heights sum up to 1.

Iso-response contours

In this section, we derive the analytical expression for
the iso-response contours of FP-neurons. We follow a
geometric approach in order to show explicitly how the
exo-origin curvature depends on the angle γ = �(v, g).
An alternative approach would be to work with the
eigenvector of the symmetric matrix 1

2 (vg
T + gvT).

In the two-dimensional subspace defined by v and g,
and for a specific constant z ∈ R+, we can derive the
coordinates of the iso-response contours analytically by
using a simplified version of Equation 2: Equation 7.
F (x) is the output of the FP-neuron, that is, the
product of the outputs of two linear filters v and

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 16

Figure 13. Measuring the degree of end-stopping: panel (a) shows the input image presented to the model. Subsequently, we
measure the normalized activations Tmn of the feature mapm of a tensor n. We determine the 0D-, 1D-, and 2D-amount via a
weighted sum of the feature map and a binary region of interest image (see Equation 10). The regions are depicted in panel (b): For
0D, we measure the activation of the smaller square in the middle. For 1D, we measure the four small squares located between the
corners of the input square, corresponding to the straight lines of the input signal. For 2D, we measure the four small squares located
on the corners of the input square.

g ∈ Rn, n = k2. For simplicity, we disregard the instance
normalization. Thus, we assume that the mean values
are zero (μv = μg = 0) and the standard deviations are
1 (σv = σg = 1), which are the two variables used for
instance normalization. Furthermore, we constrain the
input space of x to S = {x ∈ Rk2 : xT v ≥ 0 ∧ xTg ≥ 0}
to account for the ReLU nonlinearities. Furthermore,
we restrict γ to [0, π) since for γ = π , both vectors
point in opposite directions, and for any point x, one
scalar product is always negative.

The optimal stimulus of F (x) is not parallel to one of
the filters but points in the direction of the bisector of
γ . This property becomes more obvious when rewriting
F (x) as a function depending on α = �(v, x) and
β = �(g, x):

F (α, β, x) = cos(α)cos(β)‖v‖‖g‖‖x‖2. (13)

To simplify this particular equation, we assume ‖x‖ = 1
and disregard the vector lengths ‖v‖ and ‖g‖ since
the arguments α and β, and the argmax of F , do not
depend on vector length. With α + β = γ , we obtain

F (α, β) = cos(α)cos(γ − α)

= 1
2
(cos(2α − γ) + cos(γ)). (14)

Note that for α = 1
2γ , F reaches the maximum

value 1+cos(γ)
2 .

The subspace of input vectors that do not alter the
FP-neuron’s output is defined by

F (x + p) = F (x) ⇔ pT v = pTg = 0. (15)

For any vector p orthogonal to v and g, the iso-response
contours are straight, as they are for LN-neurons.
However, as we will show in the following, there
exists an orthogonal direction o relative to which
FP-units exhibit curved iso-response contours and,
thus, hyperselectivity.

It is important to note that any input vector x is
projected to the plane defined by the vectors v and
g (see Equation 7); any vector p from the subspace
of Equation 15 is orthogonal to this plane. We can
consider the function f (a) that operates on only 2D
input vectors a = (a, b)T , which are the projections of
x onto the vectors v

‖v‖ and o
‖o‖ , respectively. Unless g is

parallel to v, we can derive o as the direction orthogonal
to v by using the Gram–Schmidt process:

o = g − vTg
‖v‖2 v. (16)

If g = λv, λ ∈ R, o is simply any vector orthogonal to v.
A point (a, b)T in the two-dimensional projection space
can be injected into the original input space S:

xab = a
‖v‖v + b

‖o‖o. (17)

xab denotes that the vector depends on only the position
in the projection space a = (a, b)T . The relations

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 17

Figure 14. Finding the iso-response contour of the FP-neuron for a two-dimensional subspace: A high-dimensional signal space is
illustrated in the left panel for just three dimensions, and the right panel displays the corresponding two-dimensional projection. To
obtain the FP-neuron output for a vector p ∈ R3, the scalar product of p and v is multiplied with the scalar product of p and g (see
Equation 7). Note that the resulting product does not change when p is projected to q, that is, projected on the plane spanned by v
and g. The coordinates of q are defined by the orthogonal axes v and o. The green curve depicts the iso-response contour: Any point
on this curve results in the same activation z. The axes y and x span a basis with y pointing into the direction of the optimal stimulus
(see Equation 14). The green curve is an exo-origin iso-response contour (see Equation 24) since it bends away from the direction of
the optimal stimulus. The point (0, y(0))T is the intersection of the green curve and the optimal stimulus axis y. Equation 26 shows
that when moving away from this point along the x-direction, the neuron’s activation decreases quadratically.

between the scalar products in the input space and the
scalar products in the projection space are given by

xTabv = ‖v‖(a, b)e1 = a‖v‖ (18)
xTabo = ‖o‖(a, b)e2 = b‖o‖ (19)

xTabg = ‖g‖(a, b)(cos(γ), sin(γ))T
= ‖g‖(acos(γ) + bsin(γ)), (20)

with e1 = (1, 0)T and e2 = (0, 1)T . Accordingly, the
multiplication of xT v with xTg yields

xT vxTg = (a‖v‖)(acos(γ) + bsin(γ))‖g‖

=
(
a2
ab

)T (
c1cos(γ)
c1sin(γ)

)
= f (a), (21)

with c1 = ‖v‖‖g‖. In the projection space, the
direction vector of the optimal stimulus aopt is
given by (cos(γ

2), sin(
γ

2))
T (see Equation 14).

aorth = (−sin(γ

2), cos(
γ

2))
T is orthogonal to it. We aim

to find all points x, y ∈ R such that

f (xaorth + yaopt) = z, (22)

with z ∈ R+. Substitution and simplification yields:

z = c1
(
y2cos2

(γ

2

)
− x2sin2

(γ

2

))
. (23)

For a given value x, and c = c1
z , the y position of the

iso-response contour is given by

y(x) =
√
tan2

(γ

2

)
x2 + c

cos2
(

γ

2

) . (24)

With this equation, we can estimate the curvature of the
exo-origin bend by using the quadratic coefficient of
the second-order Taylor approximation around x = 0
to obtain

1
2

[
d2

dx2
(y)

]
(0) = tan2(γ

2)

2
√

c
cos2(γ

2)

. (25)

For x = 0, y(0) is the position along the optimal
stimulus, where f (y(0)aopt) = z. Keeping y(0) fixed, the
attenuation of f when moving in a direction orthogonal
to the optimal stimulus is quadratic:

�z = f (xaorth + y(0)aopt) − f (y(0)aopt)

= −c1x2sin2
(γ

2

)
. (26)

Figure 14 gives a three-dimensional example to
illustrate how a 3D point p ∈ R3 can be mapped to
the plane spanned by v and g. The axes a and b of
the projection space coincide with v and o. Thus,

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 18

Model; ε = 1/255 2/255 4/255 8/255 16/255

FP-net (N = 3) 58.460 72.766 82.036 86.180 86.444
FP-net (basic) (N = 3) 56.662 73.634 82.296 86.406 89.108
PyrBlockNet (N = 3) 60.458 75.566 83.992 88.150 89.762
ResNet (N = 3) 57.284 71.912 80.378 84.338 88.016
FP-net (N = 5) 53.634 70.694 81.088 85.020 88.152
FP-net (basic) (N = 5) 51.112 68.510 79.036 84.034 86.830
PyrBlockNet (N = 5) 54.620 70.018 79.748 84.392 87.666
ResNet (N = 5) 52.434 69.652 79.678 84.166 86.956
FP-net (N = 7) 51.082 67.468 78.728 83.510 86.814
FP-net (basic) (N = 7) 48.360 66.104 77.236 82.486 86.256
PyrBlockNet (N = 7) 53.244 69.966 80.764 85.880 88.662
ResNet (N = 7) 49.788 67.852 78.590 83.290 86.544
FP-net (N = 9) 49.226 66.902 78.634 83.524 87.216
FP-net (basic) (N = 9) 45.896 64.284 76.076 81.652 85.484
PyrBlockNet (N = 9) 52.048 68.442 78.932 84.590 87.620
ResNet (N = 9) 47.888 66.056 77.066 81.992 86.410

Table 2. Robust error values, in percentages, when using FGSM
perturbations for all Cifar-10 models and different ε values. We
report the mean values averaged over five different training
runs.

there is a direct correspondence between p and the
projected point q = (a, b)T (see Equation 17). To
estimate the curvature, we rotate the (a, b) coordinate
frame clockwise by π−γ

2 to the frame (x, y). From
this perspective, we can measure the change of y
when moving along the x-axis and away from x = 0:
Equation 24 shows that for γ ∈ (0, π), y(x) increases
when changing x. Accordingly, the iso-response
contour bends away from the origin of the rotated
frame (x, y).

Adversarial attacks

The mean robust errors (i.e., the errors regarding the
perturbed images), in percentages, averaged over five
runs for different architectures and ε-values are given
in Table 2, and the averaged percentages of changed
predictions (see Equation 9) are given in Table 3. We
show a selection of adversarial examples in Figure 15.
We observed that, for the basic block networks, the FP-
net (basic) consistently outperformed the ResNet for all
Ns except N = 3. For the pyramid block networks, the
larger FP-nets (N ∈ {7, 9}) consistently outperformed
the PyrBlockNets. Accordingly, especially for larger
CNNs, we increased the robustness against adversarial
attacks by using FP-blocks. To compute the FGSM

Model; ε = 1/255 2/255 4/255 8/255 16/255

FP-net (N = 3) 50.766 65.140 74.596 79.320 82.030
FP-net (basic) (N = 3) 48.858 65.928 74.906 80.128 85.654
PyrBlockNet (N = 3) 52.560 67.818 76.752 82.592 87.562
ResNet (N = 3) 49.526 64.228 73.038 78.480 85.148
FP-net (N = 5) 47.030 64.132 74.858 80.258 86.418
FP-net (basic) (N = 5) 44.482 61.960 72.662 78.526 83.700
PyrBlockNet (N = 5) 47.808 63.416 73.736 80.064 85.782
ResNet (N = 5) 44.996 62.298 72.546 78.148 83.916
FP-net (N = 7) 44.968 61.452 73.000 78.932 84.772
FP-net (basic) (N = 7) 42.102 59.922 71.294 77.402 83.376
PyrBlockNet (N = 7) 47.054 63.978 75.342 81.884 86.844
ResNet (N = 7) 42.820 60.948 71.898 77.538 83.390
FP-net (N = 9) 43.536 61.314 73.444 79.506 85.424
FP-net (basic) (N = 9) 39.804 58.240 70.196 76.448 82.376
PyrBlockNet (N = 9) 45.988 62.592 73.590 80.620 85.988
ResNet (N = 9) 41.206 59.426 70.662 76.534 83.808

Table 3. Percentage of changed predictions when using the
FGSM perturbations for all Cifar-10 models and different
ε values.

attacks for each test image, we used the code provided
by Kim (2020). The RGB test images were first divided
by 255, then the FGSM algorithm was applied,
and finally, the image was normalized as described
above.

JPEG-compression

The mean robust errors percentages averaged
over five runs are given in Table 4, and the averaged
percentages of changed predictions are given in Table 5.
Examples for JPEG-compressed images depending on
the quality level are given in Figure 16. To compute
the compression, we used the software provided by the
OpenCV library (Bradski, 2000). Wemade the following
observations: A decrease in quality by 10 was followed
by an error increase of roughly 3–4%. Analogously,
each quality decrease increased the number of changed
predictions by 3–4%. Deeper networks performed
better. Networks using the basic block, the ResNet and
the FP-net (basic), performed better than networks
based on the pyramid block. Except for a quality of
10, the FP-net (basic) outperformed the ResNet, and
similarly, the FP-net outperformed the PyrBlockNet.
From this, we concluded that using FP-blocks in a
CNN increased the robustness against noise coming
from JPEG-compression.

Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 19

Figure 15. Examples of Cifar-10 adversarial attacks on the FP-net (basic) N = 9 model. From left to right: original image, perturbation,
and resulting adversarial example. Image titles denote the ground truth class (GT), the ε value (Eps), the predicted class (P), and the
Softmax output (Conf.), that is, the confidence of the network, ranging from low = 0 to high = 1.

Model; Q = 90 80 70 60 50 40 30 20 10

FP-net (N = 3) 12.412 16.468 19.686 22.624 25.230 28.116 32.920 41.044 57.940
FP-net (basic) (N = 3) 12.288 16.338 19.636 22.734 25.306 27.890 32.744 40.138 56.260
PyrBlockNet (N = 3) 13.080 17.356 20.676 23.790 27.108 30.324 35.326 42.798 57.336
ResNet (N = 3) 12.910 17.322 20.830 24.416 27.308 30.404 35.252 43.356 58.722
FP-net (N = 5) 11.040 15.154 18.742 22.076 24.676 27.864 32.772 41.240 58.466
FP-net (basic) (N = 5) 10.908 14.866 18.142 21.282 23.792 26.760 31.736 40.024 58.488
PyrBlockNet (N = 5) 11.918 16.412 20.342 23.898 27.078 30.694 35.888 44.424 60.176
ResNet (N = 5) 11.592 15.654 19.114 22.330 24.590 27.462 32.100 40.726 56.878
FP-net (N = 7) 10.456 14.596 18.214 21.292 24.112 26.720 31.768 40.582 58.022
FP-net (basic) (N = 7) 10.624 14.274 17.590 20.384 23.020 26.014 30.646 39.382 56.966
PyrBlockNet (N = 7) 11.396 15.928 19.344 23.356 26.518 30.456 35.908 44.706 59.660
ResNet (N = 7) 11.338 15.294 18.288 21.254 23.968 27.044 31.534 40.168 56.540
FP-net (N = 9) 10.118 14.228 18.020 21.116 23.820 26.894 32.382 40.830 57.930
FP-net (basic) (N = 9) 10.128 13.984 16.996 19.912 22.116 24.956 29.710 38.096 56.040
PyrBlockNet (N = 9) 10.974 15.290 19.088 22.640 25.504 29.244 34.520 43.218 59.616
ResNet (N = 9) 10.788 14.830 18.162 21.558 24.200 27.728 32.272 40.942 57.842

Table 4. Error values in percentages when using JPEG-compression for all Cifar-10 models and different quality (Q) values.
Downloaded from jov.arvojournals.org on 02/09/2022

Journal of Vision (2022) 22(1):8, 1–20 Grüning, Martinetz, & Barth 20

Model; Q = 90 80 70 60 50 40 30 20 10

FP-net (N = 3) 9.024 14.124 17.676 21.014 23.714 26.688 31.580 40.116 57.502
FP-net (basic) (N = 3) 8.868 13.914 17.602 21.064 23.636 26.590 31.540 39.208 55.918
PyrBlockNet (N = 3) 10.112 15.086 18.864 22.176 25.670 29.102 34.168 41.842 56.930
ResNet (N = 3) 9.996 15.192 19.108 22.826 25.972 29.366 34.340 42.522 58.384
FP-net (N = 5) 8.374 13.158 17.104 20.644 23.232 26.690 31.766 40.412 58.090
FP-net (basic) (N = 5) 8.146 12.820 16.488 19.986 22.540 25.586 30.744 39.296 58.002
PyrBlockNet (N = 5) 9.322 14.590 18.746 22.488 25.770 29.656 35.006 43.668 59.840
ResNet (N = 5) 8.650 13.584 17.396 20.806 23.168 26.280 31.188 39.802 56.370
FP-net (N = 7) 8.058 12.868 16.780 19.898 22.830 25.714 30.818 39.848 57.782
FP-net (basic) (N = 7) 7.832 12.222 15.932 18.960 21.662 24.748 29.682 38.688 56.742
PyrBlockNet (N = 7) 8.804 13.980 17.920 22.114 25.410 29.432 34.964 44.002 59.232
ResNet (N = 7) 8.478 13.066 16.464 19.640 22.540 25.884 30.492 39.142 55.986
FP-net (N = 9) 7.694 12.482 16.704 19.866 22.700 25.886 31.402 40.064 57.774
FP-net (basic) (N = 9) 7.632 12.124 15.522 18.564 21.014 23.992 28.952 37.426 55.786
PyrBlockNet (N = 9) 8.740 13.498 17.594 21.258 24.294 28.190 33.596 42.560 59.332
ResNet (N = 9) 8.180 12.760 16.728 20.056 22.892 26.606 31.298 40.196 57.468

Table 5. Percentage of changed predictions when using JPEG-compression for all Cifar-10 models and different quality (Q) values.

Figure 16. JPEG-compression examples. The number above each image denotes the image quality Q ∈ {1, 2, ..., 100}. Q = 100 is the
original image.

Downloaded from jov.arvojournals.org on 02/09/2022

