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Abstract

Min-Nets are inspired by end-stopped cortical cells with units that output the
minimum of two learned filters. We insert such Min-units into state-of-the-art deep
networks, such as the popular ResNet and DenseNet, and show that the resulting
Min-Nets perform better on the Cifar-10 benchmark. Moreover, we show that
Min-Nets are more robust against JPEG compression artifacts. We argue that the
minimum operation is the simplest way of implementing an AND operation on
pairs of filters and that such AND operations introduce a bias that is appropriate
given the statistics of natural images.

1 Introduction

We present a novel network architecture that is based on the AND combination of pairs of linear
filters. The linear filters in deep networks can be considered as basic measurements of the input signal,
each filter capturing signal energy along some relevant direction in feature space. In differential
geometry, the basic measurements are the main curvatures. In the case of 2-dimensional manifolds,
it is known that the structure of the manifold is captured by the Gaussian curvature, which is the
product of the main curvatures (do Carmo (1976)). In higher dimensions, the Riemann curvature
tensor captures the structure of the manifold, and it is based on sums of products of main curvatures
(OR combinations of pairwise AND combinations). Inspired by differential geometry, in computer
vision, different algorithms have been designed to capture interest points in images, for example, by
analysing the invariants and eigenvalues of the Hessian or of the structure tensor (Guiducci (1988);
Jähne (1995)). Both the product and the minimum of the eigenvalues have been used for the detection
of interest points (Shi & Tomasi (1994)).

In related work on feature product (FP)-nets (Grüning et al. (2021)), the AND operation has been
implemented by using explicit multiplications. FP-nets have been shown to improve the perfor-
mance of state-of-the-art networks. Moreover, FP-units are hyperselective (for more information
on hyperselectivity, see (Paiton et al. (2020)) and (Vilankar & Field (2017))) and thus more robust
against compression artifacts and adversarial attacks (Grüning et al. (2021)). As an alternative to the
computationally more intensive multiplications, the log-nets introduced in Grüning et al. (2020) are
more efficient by using convolutions in log-space. However, the main feature of both the FP-nets and
the log-nets is that the networks learn appropriate filter pairs to be AND-combined.

FP-nets and the here proposed Min-Nets are inspired by what is known about biological vision since
the seminal work of Hubel and Wiesel (Hubel & Wiesel (1965)). They discovered oriented neurons
in primary visual cortex V1 but also end-stopped cells in V1 and V2. End-stopped cells extract
features such as corners and line ends, provide an efficient representation of the visual input, and
can be modelled as AND combinations of linear, oriented filters (Zetzsche & Barth (1990)). Motion

3rd Workshop on Shared Visual Representations in Human and Machine Intelligence (SVRHM 2021) of the
Neural Information Processing Systems (NeurIPS) conference, Virtual.

ar
X

iv
:2

20
1.

02
14

9v
1 

 [
cs

.C
V

] 
 6

 J
an

 2
02

2



selective neurons have also been modelled by using AND combinations of linear spatio-temporal
filters based on the Riemann tensor (Barth & Watson (2000)).

The question of why end-stopped neurons and AND combinations of linear filters are useful for
vision can be answered based on the statistics of natural images. A first useful bias is due to the
fact that 0D-features, i.e., local image patches of uniform intensity or color, are both redundant and
frequent in natural images. Therefore, a representation of images in terms of edges is efficient; it
reduces the entropy of the representation. 1D-features such as straight edges and lines, however,
are also redundant and more frequent in natural images than 2D-features, such as curved edges and
corners. Therefore, a representation provided by end-stopped units is more efficient than one provided
by oriented filters. Details on the above-summarized statistics and on why AND combinations are
needed to exploit them can be found in Zetzsche et al. (1993).

However, we do not assume that real neurons would compute ideal multiplications and strict minimum
operations, but that they may approximate such operations in some way and thus generate AND
combinations of filters instead of just using point-wise non-linearities (see also Paiton et al. (2020)
regarding the limits of point-wise non-linearities). Here, we present the novel Min-Net architecture
that implements the minimum operation as the simplest kind of AND operation on pairs of learned
filters. Moreover, minimum operations are faster than multiplications and make training easier due to
more conservative gradients.

2 Methods

Min-Nets are CNNs containing a certain number of Min-blocks that process an input Tensor T0

and, via a sequence of different layers, transform them to a tensor Tout. The block structure
resembles the inverted residual block of the well-known MobileNet-V2 (Sandler et al. (2018))
architecture, with the important extension that it contains two filter operations that are combined by
a minimum operation. In short, the block consists of (i) a convolution layer with kernel size one,
batch normalization, and ReLU, increasing the number of input feature maps, (ii) two depth-wise
separable (DWS) convolutions, each learning one filter per feature map with instance normalization
and ReLU, the outputs of which are element-wise combined by the minimum function, (iii) a second
1× 1-convolution with batch normalization and ReLU, recombining the outputs of (ii) to the desired
number of feature maps and, finally, (iv) a residual connection. The next subsection gives a more
detailed description. The middle panel of Figure 1 depicts a Min-block.

2.1 Min-blocks

First, qdout feature maps are computed as weighted sums of the d feature maps of T0 ∈ Rh×w×d. q
is an expansion factor, and dout the desired number of output feature maps. Thus, a convolution layer
with kernel size one, and subsequent ReLU, computes the (i, j)-th pixel of the m-th feature map as:

T1[i, j,m] = ReLU(

din∑
n=1

wn
mT0[i, j, n]);m = 1, ..., qdout. (1)

Note that before the ReLU, T1 is normalized via batch normalization. Next, two DWS convolutions
are applied: for each feature map Tm

1 a filter-pair Vm and Gm ∈ Rk×k is learned. For each pixel
(i, j), the filter operation computes the scalar product of the filter vectors (i.e., the vectorized filter
kernels vect(Vm) = vm and gm ∈ Rk2

) and the vectorized feature map patch xm ∈ Rk2

with (i, j)
being the pixel-coordinates of the center pixel. Subsequently, instance normalization (Ulyanov et al.
(2016)) is applied with µvm and σvm being the mean and standard deviation of the feature map Tm

1
filtered with vm. Again, a ReLU is applied afterwards. Using the min-function, we combine these
two intermediate outputs to T2 ∈ Rh

s×
w
s ×qdout , s being the stride of the DWS-convolution that

allows for subsampling. The Min-unit, as the main building block of the proposed network, is defined
as:

T2[i, j,m] = min

[
ReLU(xm

Tvm − µvm)

σvm
,
ReLU(gm

Txm − µgm)

σgm

]
. (2)

Note that such a Min-unit, or Min-neuron, will have a significant output only if both filters vm and
gm are activated.
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A second linear recombination with batch normalization and ReLU (see Equation 1) creates the
tensor T3 ∈ Rh

s×
w
s ×dout . Finally, a residual connection adds the original input to T3:

Tout = T0 + T3. (3)

Some additional computations need to be applied if the dimensions of T0 and T3 do not match. See
the Appendix for details.

2.2 Transforming state-of-the-art CNNs to Min-Nets

In our experiments, we evaluate how the addition of Min-blocks changes the performance of state-
of-the-art CNNs. Networks such as the DenseNet (Huang et al. (2017)) and the ResNet (He et al.
(2016)) have a similar overall structure: after an initial convolution layer, the networks consists
of several stacks that are larger structures containing a number of blocks. Analogously, a block
contains a number of layers, for example, convolutions, batch normalization, and non-linearities.
After the last stack, global average pooling is applied with a subsequent linear layer and softmax to
compute the class probabilities. Stacks are separated by a downsampling layer (strided convolution or
a max-pooling layer), except for the first stack after the initial convolution. When applied to smaller
datasets, e.g., Cifar, both the DenseNet and ResNet consist of three stacks, containing N blocks each,
with the input heights and widths 32 × 32, 16 × 16, and 8 × 8. Thus, only the second stack and
third stack employ downsampling. We use a simple design rule to enrich these architectures with
blocks that directly compute pairwise AND-combinations: Each first block of a stack is substituted
by a Min-block. Note that this approach was derived empirically. In preceding experiments, other
combinations of Min-blocks and convolutional blocks were tested but yielded somewhat inferior
or equal results. We chose a ResNet implementation that uses pyramid blocks (Han et al. (2017))
since it performs better than the original ResNet and is currently often used for different applications.
Here, the sequence of layers consists of batch normalization, 3× 3 convolution, batch normalization,
ReLU, 3 × 3 convolution, and batch normalization. The sequence output is added to the original
input of the block. As a second reference network, we use the DenseNet-BC. In this architecture,
each so-called bottleneck block consists of batch normalization, ReLU, and a 1× 1 convolution layer,
followed by a second batch normalization and ReLU and a 3× 3 convolution layer. A comparison of
the different block structures is given in Figure 1.

2.3 Hyperselectivity

CNNs employ linear neurons with points-wise non-linearities (LN-neurons), e.g., a ReLU that is
applied to each pixel independently. Thus, the direction of maximal activation, i.e., the optimal
stimulus, x∗ points in the same direction as the neuron’s weight vector w. Any deviation o orthogonal
to the optimal stimulus does not alter the neuron’s output: ReLU(wT (x∗ + o)) = ReLU(wTx∗).
In contrast, a neuron f(x) is hyperselective, if there exist orthogonal perturbations, that reduce the
output:

f is hyperselective ⇔ ∃o : f(x∗ + o) < f(x∗);x∗To = 0 (4)

For a Min-neuron (see Equation 2), the optimal stimulus is the bisector of the angle γ between the
filter vectors v and g. Any perturbation within the plane spanned by v and g that is orthogonal to the
optimal stimulus reduces the neuron’s output, because one of the scalar products is smaller than it
would be without the perturbation, e.g., vT (x∗ + o) < vTx∗. Hyperselective neurons are harder to
activate by signals that differ from the optimal stimulus. Thus, unwanted perturbations, such as those
due to adversarial examples (Szegedy et al. (2013); Goodfellow et al. (2014)) or compression artifacts,
have a smaller impact on the neuron’s – and consequently, the whole network’s – output. Note that
an LN-neuron located in the second or higher layer of a CNN can become hyperselective indirectly
when regarding the pixel space as input. In contrast, a Min-neuron is directly hyperselective to its
input.

3 Experiments

We hypothesize that Min-Nets introduce a useful inductive bias to a CNN architecture: the minimum
of a learned filter-pair, a Min-neuron, explicitly models end-stopped neurons and leads to efficient
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𝑑!" → 4𝑘

BN, ReLU, 3x3
4𝑘 → 𝑘

Pyramid Block
(ResNet)

Min-Block Bottleneck-block 
(DenseNet)

Figure 1: Comparison of different block architectures. The left scheme shows the basic block of a
ResNet adopted from the PyramidNet. The middle scheme shows the proposed Min-block, the right
scheme the DenseNet’s bottleneck block. Arrows show the data flow; the abbreviations within the
boxes denote different layers and operations. BN: batch normalization, IN: instance normalization,
3× 3: a convolution with kernel size 3, DWS 3× 3: a depthwise-separable convolution with kernel
size 3. din → dout expresses a change in feature maps from din to dout. k is the growth factor, q is
the expansion factor. The plus in the circle is a residual connection, the min in the circle a minimum
operation of two inputs. Ti denotes the (intermediate) tensor results (see for example Equation
2). Note that instead of using residual connections, the DenseNet concatenates feature maps from
previous layers – which is not depicted here.

representations, which are adapted to the statistics of natural images, thus leading to better generaliza-
tion. Furthermore, unlike traditional model neurons, Min-neurons are hyperselective, a property that
should make them more robust, e.g., to compression artifacts. We ran two experiments to investigate
these conjectures.

3.1 Classification performance on Cifar-10

We compared models with different depths created from two reference network architectures: the
ResNet and the DenseNet. For each model, we created a Min-Net version using our design rule. We
compared models with different depths, defined by the number of blocks per stack. For the ResNets,
we created models with N ∈ {3, 5, 7, 9} blocks. We trained DenseNets with N ∈ {3, 9, 16} blocks
and a growth-rate k = 12, corresponding to networks (L = 22, k = 12), (L = 58, k = 12), and
(L = 100, k = 12) in the DenseNet paper’s naming convention. For all models, we set the expansion
factor q = 2, and we trained and tested the models on Cifar-10 (Krizhevsky et al. (2021)) with a
standard procedure for data augmentation (see Appendix). Each ResNet was trained for 200 epochs
with a learning rate of 0.1, a weight decay of 0.0001, and using SGD with a momentum of 0.9. The
batch size was 128. After 100 and 150 epochs, the learning rate was divided by 10. Each net was
trained for five random seeds, altering the batch order and random initialization. We trained the
DenseNets for 300 epochs, where the initial learning rate of 0.1 was divided by ten after 150 and 225
epochs. Instead of 128, a batch size of 64 was used. In addition, we used the Nesterov momentum.
We trained each network with three different random seeds. All other parameters were equal to the
ResNet experiments. Note that we did not employ an early stopping strategy but rather report the
final test results after 200 or 300 epochs, respectively.

3.2 Robustness to compression artifacts

Since Min-Nets have neurons that are hyperselective, one can expect the networks to be more robust
against perturbations. To evaluate robustness, in a second experiment, each model trained in the
first experiment was tested on JPEG-compressed versions of the Cifar-10 test set Xtest. We created
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(a) ResNet (b) DenseNet
Figure 2: Cifar-10 test error results. Black dashed lines show the baseline results – solid blue lines
the Min-Net results. Each diamond denotes the mean error of a model with a specific number of
blocks. The error bars indicate the standard deviation of each model. The colored areas show the
distance between the minimum- and maximum values. The x-axis shows the number of parameters,
increasing with the number of blocks. The y-axis is the test error after 200 and 300 epochs for the
ResNets (a) and DenseNets (b), respectively.

nine additional test sets SQ = {JPEG(I, Q) : I ∈ Xtest} with quality Q ∈ {90, 80, ..., 10},
JPEG(I, Q) being the compression function for an input image I. For Q = 100, the original
image is returned (no compression); Q = 1 would yield maximal compression with images that are
barely recognizable (see Figure 5 in the Appendix for examples). As robustness metric, we report
the percentage of changed predictions (POCP), i.e., we compared the model’s predictions with full
quality to the predictions on SQ and computed the number of changed predictions divided by the
number of images (see Eq. 5 in the Appendix). Using this metric, we avoid offsets introduced by
models with lower test errors. We used the JPEG algorithm from the OpenCV (Bradski (2000))
library.

4 Results

The Cifar-10 test errors of each model are shown in Figure 2. Note that in all configurations, the
Min-Net has a lower mean test error than the corresponding baseline networks while using fewer
parameters.

Next, we analyse the robustness of the networks. Figure 3 shows the POCP (Equation 5) for the
quality levels Q = 90, 80, 70, 60. Compared to the ResNet and DenseNet, the Min-Nets are less
likely to change their output when presented with compressed images. However, even the more robust
Min-Nets remain sensitive to compression artifacts given that 8% of the predictions change with a
slightly altered test set (such as S90).

5 Discussion

We have presented a novel network architecture and have demonstrated its competitive performance.
We have designed experiments with state-of-the-art and popular deep networks and showed that we
could improve their performance by substituting original blocks in the network architecture with
Min-blocks that implement a minimum operation on pairs of feature maps. Note that by using a
simple design rule, any traditional network can easily be transformed into a Min-Net that will most
likely perform better. Also, note that we did not tune hyperparameters specific to the Min-Nets but
used the hyperparameters of the original networks; additional tuning may thus lead to even better
performance of the Min-Nets.
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(a) ResNet (b) DenseNet
Figure 3: POCP depending on JPEG quality: the x-axis shows the quality parameter Q for the JPEG
compression algorithm (which can vary from 100 to 1). The y-axis denotes, in relative terms, how
many predictions were different from the original predictions (with Q = 100) when using a more
compressed test set.

We believe that a bias that is appropriate for natural images leads to the improvements that we
have obtained. As argued in the Introduction, this bias allows the network to learn more efficient
representations based on model neurons that are end-stopped.

The pairwise minimum operations that we introduce allow for AND rather than OR combinations
of features and make the resulting neurons more selective than linear filters with only point-wise
non-linearities. The demonstrated increased robustness of the Min-Nets is most likely due to the fact
that Min-units are hyperselective. It has been argued before that hyperselectivity might be the key to
greater robustness (Paiton et al. (2020)).

In previous work, similar results have been obtained with Log-nets and FP-nets where logarithms and
feature products have been used instead of the minimum. This shows that the key to the improvements
demonstrated here is mainly the AND combination of filters pairs and less the way in which the
AND is implemented. Nevertheless, we are looking forward to more general and even more effective
network architectures that may emerge based on the principle of using the minimum activation in
different feature maps.
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A Appendix

A.1 Residual connections

If a stride of two is used (s = 2), average pooling with a kernel size of two and stride of two is
applied to T0. If d is smaller than dout, T0 is padded with (dout − d) all-zero feature maps. If d is
larger than dout, a linear recombination without ReLU and batch normalization computes a reduced
version of T0 with dout feature maps.

A.2 Data augmentation

During training, the images were flipped horizontally with a 50% chance. Furthermore, they were
padded with four pixels on each side and randomly cropped using a 32× 32 window. We normalized
each channel of an input image by subtracting the channel’s mean pixel and dividing by the standard
deviation, all derived from the training set.

A.3 Percentage of changed predictions

We computed the POCP depending on Q like this:

POCP(f,Q) =
1

|XC10|
∑

I∈XC10

1(f(I) 6= f(JPEG(I, Q))); (5)

1(S) returns a 1 if S is true, as 0 otherwise; f(I) is the model’s class prediction for the input image I.

A.4 Technical details for training

All experiments were conducted with Pytorch (BSD license) (Paszke et al. (2019)) version
"1.9.0+cu102", on a standard computer running on Linux using Nvidia RTX 2080 GPUs with
CUDA version 11.2. Training a DenseNet (L = 100, k = 12) took roughly 21 hours, training a
ResNet (N = 9) 3 hours. The code creating the ResNet was adapted from Idelbayev (2020) (BSD
2-Clause "Simplified" License) and from Han et al. (2017)1. We adapted the DenseNet code2 from
Pleiss et al. (2017) (MIT License). OpenCV uses the Apache 2 license. We published our code on
Github3

A.5 Additional results: Densenet

Table 1 shows additional results for the DenseNet models on the Cifar-10 classification task. When
regarding minimal errors over all epochs, i.e., the best result with early stopping, we obtained similar
results for the DenseNet (L = 100, k = 12) as reported in the original paper (4.51%): the minimum
error reached by the baseline DenseNet was 4.56% and 4.36% for the Min-Net.

A.6 Additional results: JPEG compression

Figure 4 shows the Cifar-10 test errors depending on the Q value. Note that these plots only provide
the results for Q = 100, 90, ..., 60, and only for the largest models of each experiment (ResNet:
N = 9, DenseNet: k = 12, L = 100). The results for Q = 100, 90, ..., 10 and for all models are
given in the Tables 2,3, 4, and 5. Table 2 shows the test error values for the DenseNet experiment and
Table 3 shows the POCP. The test error and POCP for the ResNet experiments are given in the Tables
4 and 5, respectively. An example image compressed with different Q-values is shown in Figure 5.
Note that the POCP of a specific Q∗ can be higher than the respective increase of the test error. For
example, ∆(Q∗) – i.e., the test error for Q∗ = 90 minus the original error – is lower than the POCP
for Q = 90 since the POCP measures any change in classification: apart from correct classifications
for Q = 100 being incorrect for Q∗, the POCP also counts classifications that are already incorrect
and are now classified as another false class. Furthermore, a few previously incorrect examples can
become correct and decrease ∆(Q).

1https://github.com/dyhan0920/PyramidNet-PyTorch
2https://github.com/gpleiss/efficient_densenet_pytorch
3https://github.com/pgruening/bio_inspired_min_nets_improve_the_performance_and_

robustness_of_deep_networks
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Model k # Parameters L After 300 epochs Min. over all epochs
mean std min max mean std min max

Min-Net 12 751786 100 4.55 0.14 4.39 4.64 4.51 0.13 4.36 4.59
DenseNet 12 769162 100 4.79 0.06 4.74 4.86 4.62 0.06 4.56 4.66
Min-Net 12 298564 58 5.67 0.07 5.62 5.75 5.51 0.07 5.46 5.59
DenseNet 12 314470 58 5.90 0.30 5.72 6.25 5.65 0.14 5.51 5.78
Min-Net 12 57040 22 9.22 0.17 9.03 9.33 8.78 0.10 8.72 8.89
DenseNet 12 71686 22 9.76 0.19 9.57 9.94 9.39 0.13 9.27 9.52

Table 1: Classification results for the DenseNet experiment.

Model L k Q=100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

DenseNet 22 12 9.8 15.4 20.0 24.0 27.6 30.8 34.6 39.5 47.8 64.6
DenseNet 58 12 5.9 10.9 15.7 20.0 24.3 27.3 31.3 36.4 45.9 63.0
DenseNet 100 12 4.8 9.9 14.6 19.1 22.8 25.9 30.1 35.2 44.5 62.6
Min-Net 22 12 9.2 14.9 19.5 23.2 26.4 29.5 32.5 37.5 44.9 60.3
Min-Net 58 12 5.7 10.4 15.0 19.0 22.6 25.4 28.6 34.0 43.1 62.5
Min-Net 100 12 4.6 8.8 13.6 17.2 20.9 23.8 27.6 33.1 42.5 61.4

Table 2: DenseNet: Mean test error on Cifar-10 for JPEG-compressed test sets SQ
.

Model L k Q=90% 80% 70% 60% 50% 40% 30% 20% 10%

DenseNet 22 12 12.1 17.6 21.9 25.8 29.3 33.4 38.3 46.8 64.2
DenseNet 58 12 9.2 14.7 19.3 23.5 26.4 30.5 35.7 45.3 62.7
DenseNet 100 12 8.1 13.5 18.2 21.9 25.1 29.3 34.8 44.1 62.6
Min-DenseNet 22 12 11.7 16.9 21.4 24.8 28.0 31.2 36.3 43.9 60.0
Min-DenseNet 58 12 8.3 13.7 17.8 21.6 24.6 27.9 33.5 42.5 62.4
Min-DenseNet 100 12 7.3 12.4 16.3 20.1 23.2 27.1 32.6 42.1 61.4

Table 3: DenseNet: Mean number of changed predictions on Cifar-10 for JPEG-compressed test sets
SQ

.

Model N 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

Min-Net 3 8.0 12.5 16.7 20.2 23.5 26.2 29.3 34.1 42.5 59.1
Min-Net 5 6.9 11.3 15.1 18.7 22.0 24.9 27.9 33.4 42.3 59.2
Min-Net 7 6.2 10.6 14.6 17.9 21.5 24.5 27.7 32.8 42.2 59.9
Min-Net 9 6.0 10.1 14.4 18.0 21.4 24.2 27.4 32.7 41.7 58.8
ResNet 3 8.3 13.2 17.4 21.0 24.5 27.6 31.1 36.0 44.1 59.8
ResNet 5 7.2 11.8 16.3 20.0 23.6 26.6 30.0 35.4 44.0 59.6
ResNet 7 6.8 11.4 15.9 19.2 22.9 26.3 29.7 35.0 43.7 60.1
ResNet 9 6.3 10.9 15.3 19.0 22.4 25.6 29.2 34.5 43.4 59.1

Table 4: ResNet: Mean test error on Cifar-10 for JPEG-compressed test sets SQ
.
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(a) ResNet (b) DenseNet
Figure 4: Cifar-10 test error depending on the compression quality.

Model N 90% 80% 70% 60% 50% 40% 30% 20% 10%

Min-Net 3 9.5 14.5 18.4 21.8 24.7 28.0 33.1 41.8 58.8
Min-Net 5 8.5 13.2 17.1 20.6 23.7 26.8 32.5 41.6 58.8
Min-Net 7 8.1 12.8 16.7 20.3 23.3 26.6 32.0 41.4 59.7
Min-Net 9 7.8 12.6 16.6 20.2 23.0 26.3 31.7 40.9 58.5
ResNet 3 10.1 15.1 19.3 22.9 26.2 29.9 34.8 43.3 59.3
ResNet 5 9.4 14.4 18.6 22.3 25.5 29.1 34.5 43.2 59.3
ResNet 7 8.9 14.0 17.9 21.8 25.1 28.8 34.2 43.1 59.8
ResNet 9 8.5 13.6 17.6 21.1 24.5 28.2 33.6 42.7 58.7

Table 5: ResNet: Mean number of changed predictions on Cifar-10 for JPEG-compressed test sets
SQ

.
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Figure 5: JPEG-compression example for different Q values.
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