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Abstract We show that a simple low-dimensional representation 
of movie patches, namely local spectral energy, can be used to 
predict where people will  look in dynamic natural scenes. We 
then  present  a  gaze-contingent  display  that  modifies  local 
spectral energy in real time.  This  modification of the saliency 
distribution  of  the  scene  leads  to  a  change  in  eye  movement 
statistics.  Our research aims at  the guidance of  gaze  with  the 
ultimate  goal  of  optimising  vision-based  communication 
systems. 

1 INTRODUCTION
The eye  movements  made by observers  on a visual  scene are 
tightly linked to their perception. A well-studied corollary of this 
fact is that experts employ different gaze patterns to solve visual 
tasks than novices, e.g. in driving a car, controlling air traffic, or 
scanning X-rays [6, 10].   

However,  gaze  direction  and  gaze  patterns  are  typically  not 
taken  into  account  in  today's  information  and  communication 
systems. With the advent of ever cheaper and more robust eye-
tracking  technology,  we  propose  that  gaze  patterns  should 
become an integral image attribute similar to the physical image 
attributes luminance and colour. To this end, gaze patterns need 
to  be  sensed  and  displayed.  For  the  former,  eye  trackers  are 
already commercially available; for the latter, we propose gaze-
contingent interactive displays that modify visual content in real 
time  to  guide  the  observer's  gaze.  Such  guidance  would 
ultimately allow novices to "see with the eyes of experts" and to 
optimise  vision-based communication  in general.  Of particular 
interest  for  human-computer  conversation  is  the  possibility  to 
combine gaze guidance with further modalities such as speech 
and emotions.
In this paper, we will  outline the strategy that we envisage to 
implement  gaze  guidance  and  some  initial  results  that  were 
obtained  with  a  prototype  gaze-contingent  interactive  display. 
We will start with a description of our work on modelling and 
predicting eye movements and attention. The question of what 
image  features  draw  fixations  has  a  long  tradition  in  vision 
science. A common approach is to derive biologically inspired
feature extraction algorithms, such as contrast or edge detectors, 
and to  compute  several  such  features  for  each  location of  an 
image or image sequence. From a combination of these feature 
maps,  a  so-called  saliency  map  finally  can  be  formed  that 
indicates  how salient  or  interesting any location is,  and those 
regions where saliency values are high are used to predict where 
fixations  will  occur  [3,  8].  Only recently,  attempts  have  been 
made  to  use  Machine  Learning  algorithms  to  automatically 
extract relevant features from large sets of eye movement data 
[9].  Following  this  approach,  we  trained  a  support  vector 
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machine with the spectral energy distribution of fixated and non-
fixated  image  regions  and  achieved  up  to  79%  prediction 
accuracy  (AUC score),  a  very  favourable  result  compared  to 
other published prediction algorithms.
We  then  used  these  results  to  design  a  gaze-contingent 
interactive  display  that  locally  modifies  spectral  energy  to 
change the saliency distribution across the visual scene. To guide 
the  observer's  gaze  to  a  specific  location,  the  saliency at  this 
desired  location  should  be  increased,  whereas  the  saliency  of 
possible  distractors  everywhere  else  should  be  reduced.  The 
difficult  problem here  is  to  find  the psychophysically  optimal 
transformation  that makes  image  regions more  or less  salient: 
reducing luminance, for example, might intuitively seem to be an 
effective reduction in saliency, but a dark spot in an otherwise 
normally-lit scene could attract attention in itself. Any low-level 
modification of natural scenes also needs to take into account the 
expectations of an observer: unnatural-looking regions might be 
both salient and disturbing. For example, it has been shown that 
gaze guidance is possible with  flashing red dots [1],  but such 
manipulation  cannot  be  embedded  well  in  natural  movies. 
Besides these perceptual issues, the technical implementation of 
such image processing in real  time and as a function of gaze 
direction also is a major challenge. In a first experiment with our 
prototype gaze-contingent display, we were indeed able to alter 
eye  movement  statistics;  however,  the  intended effect  of gaze 
guidance suffered from technical artefacts that will be discussed.

2 MODELLING OF EYE MOVEMENTS AND 
ATTENTION
We used an SR Research EyeLink II eye tracker running at 250 
Hz to record eye movement data from 54 subjects watching 18 
high-resolution videos of  natural  outdoor  scenes.  Trials  where 
more than 5% of gaze samples were invalid (typically, because 
the  subject  blinked  excessively)  were  discarded,  leaving  844 
trials for further analysis. Videos had a duration of about 20 s 
each, a spatial resolution of 1280 x 720 pixels, and were shown 
at 29.97 frames per second on a screen covering 48 x 27 degrees 
of visual angle, so that the maximum displayed frequency was 
13.4  cycles  per  degree.  Overall,  about  40,000  saccades  were 
extracted  from  the  raw  data  using  a  velocity-based  two-step 
procedure. The landing points of these saccades and their spatio-
temporal  neighbourhoods  represented  the  class  of  fixated 
regions;  for  the  class  of  non-fixated  regions  that  were  of 
relatively  low  saliency,  we  shuffled  the  movies  and  their 
corresponding  gaze  data,  so  that  the  non-fixated  regions  in 
movie A were picked from the saccade landing points in movie 
B and vice  versa.  This  standard approach might  lead to some 
overlap  in  the  classes  of  fixated  and non-fixated  regions,  but 
factors out any bias in the spatial distribution of objects in our 
movies and the tendency of human subjects to look at the centre 
of the screen rather than the periphery.
For each image region in the two classes, local spectral energy 
was  computed  based on a spatio-temporal  Laplacian pyramid. 



The  Laplacian  pyramid  [4]  is  an  efficient  bandpass 
representation for image sequences and can be computed from 
the Gaussian pyramid, which contains the original sequence and 
successively  smaller  versions  of  the  input.  These  smaller 
versions  are  created  by  reducing  resolution  in  each  spatio-
temporal dimension by a factor of two (i.e. every other pixel or 
frame is  thrown away).  Because the maximum frequency that 
can be represented in an image corresponds to its resolution, a 
lowpass filter has to be applied before this downsampling step; 
as a consequence, the smaller versions of an image sequence also 
contain only (the low-frequency) parts of its frequency spectrum 
(see Fig.  1, left).  Adjacent levels of the Gaussian pyramid are 
then brought back to the same resolution (by interpolating every 
other  pixel  and  frame  of  the  lower-resolution  level)  and 
subtracted from each other, so that the Laplacian pyramid finally 
consists of single bandpass frequency bands (see Fig. 1, right). 
Because  the  lower  frequency  bands  are  not  stored at  the  full 
resolution of the original image sequence, this representation can 
efficiently be utilised even for a high number of pyramid levels 
(a spatial pyramid in the limit  has only 1+1/4+1/16+...= ~1.33 
times as many pixels as the original image; because a temporal 
pyramid is downsampled in only one dimension, this factor is 
1+1/2+1/4+...= ~2).

Figure 1. The Laplacian pyramid (here, spatial dimension only): 
first, a Gaussian pyramid is created by successively filtering and 
downsampling  the  original  image  (images  left).  The  lower-
resolution versions only contain the low-frequency parts of the 
spectrum (graphs left). Subtracting adjacent levels yields single 
frequency bands (right).

To  obtain  local  spectral  energy,  the  average  squared  pixel 
intensity in the neighbourhood of each saccade landing point was 
computed on each level of a Laplacian pyramid with 5 spatial 
and 5 temporal levels, so that a single training sample was a 25-
dimensional  vector.  Theoretically,  we  could  have  used  those 
single  pixels  that  corresponded  to  the  saccade  landing  point 
directly;  but  because  of  the  spatio-temporal  imprecision  and 
noise  inherent  in  both  the  human  visual  system  and  the  eye 
tracking equipment, we averaged over a window with a size of 
about  5  degrees  of  visual  angle.  This  number  was  found  by 
variation of this parameter and  is in line with previous studies 
on  the  optimal  window  size  for  prediction  [9].  Although 
averaging energy instead of using all pixels in the window for a 
training  sample  reduces  the  information  available  to  the 
predictor, the simultaneous reduction in dimensionality actually 

improves  classification  results.  Then,  a  soft-margin  support 
vector  machine  was  trained  with  two  thirds  of  all  available 
samples  and  the  optimal  parameters  were  found  with  cross-
validation  (using  the  publicly  available  libsvm  package  [5]). 
Generalisation  performance  was  then  tested  on  the  remaining 
third  of  samples;  we  achieved  a  very  favourable  AUC (area 
under the curve) score of about 0.79.

3  GAZE-CONTINGENT  INTERACTIVE 
DISPLAY
Gaze-contingent displays change their content as a function of 
gaze  direction.  The  first  such  displays  used  very  simple 
modifications; for example, a moving mask that would display 
text only around the centre of fixation and completely blank out 
the  periphery  was  used  to  determine  the  perceptual  span  in 
reading [11]. Perry and Geisler introduced an algorithm based on 
a  spatial  Gaussian  multiresolution  pyramid  that  can  simulate 
arbitrary visual fields [12]. The Gaussian pyramid of an image 
sequence is computed in real time; each level stores the images 
with a different resolution and, therefore, a different maximum 
frequency.  By  interpolating  between  adjacent  levels  of  the 
pyramid during generation of the output image,  the maximum 
spatial  resolution  can  be  specified  for  each  pixel  in  retinal 
coordinates.  Böhme  et  al.  developed  a  similar  display  that 
operates in the temporal domain [2], so that moving objects in 
the  periphery  are  almost  erased,  whereas  the  stationary 
background stays intact. Indeed, this manipulation is not visible 
to an observer, but reduces the number of large saccades (into 
the periphery) [1]. We now extended this algorithm to be based 
on  a  Laplacian  pyramid,  which  gives  us  access   to   single 
frequency bands; instead of only specifying a cutoff frequency 
per  pixel,  local  multiplications  can  freely  alter  the  frequency 
response of the system and thus change local spectral energy.
Because  of  computational  constraints,  we  used  a  spatial 
Laplacian  pyramid  only.  This  has  two  severe  disadvantages. 
First,  the  temporal  dimension  is  particularly  important  in 
determining  what  image  regions  are  salient  (e.g.  peripheral 
motion is a strong attractor for attention). Second, a multiscale 
approach  inherently  allows  for  smooth  transitions  between 
modified and unmodified locations; using just one temporal level 
means that the onset of a modification happens abruptly from 
one frame to the next.
To  assess  the  effect  our  gaze-contingent  display  had  on  eye 
movement statistics, 12 subjects watched 6 movies (out of the 18 
movies  used  for  prediction,  see  above;  they  were  slightly 
downsampled to a resolution of 1024 x 576 pixels to meet real-
time  demands)  each.  From  the  eye  movement  recordings  on 
unmodified  videos  (see  above),  we  determined  the  20 
“candidate” locations per frame most likely to be fixated in the 
near future (we set this anticipated latency to 100 ms, roughly 
the  minimal  time  required  for  programming  a  saccade).  In 
principle,  our  prediction  algorithm  presented  above  could  be 
used  to  find  these  candidate  locations  as  well;  however,  for 
assessing  only  the  gaze-guidance  effect  of  our  display,  we 
decided to use the best predictor available (namely, where other 
people looked).  During each trial,  the movie  was decomposed 
into a spatial Laplacian pyramid with 5 levels in real time. After 
each saccade a subject made, local spectral energy was reduced 
at each candidate location that fell into three randomly chosen 
quadrants of the subject's  visual  field  (the remaining quadrant 
was  left  unmodified;  so  were  the  central  5  degrees  around 



fixation to prevent the subject from consciously perceiving any 
manipulation).  On  the  first  four  pyramid  levels,  energy  was 
reduced to 1.2 times the average energy of non-fixated locations, 
which corresponds to a mean reduction by a factor of 1.6 (see 
Fig. 5) -- the lowest level or DC component, which contains the 
mean luminance, was not changed to avoid visible artefacts. A 
window of 9 x 9 pixels was modified, corresponding to 3.4 x 3.4 
degrees  on the lowest  modified  level.  Then,  the  pyramid  was 
synthesized  in  less  than  10  ms  and  the  resulting  frame  was 
displayed on the screen (for an example, see Fig. 2-4). Including 
the latency of the eye tracker and that of the computer screen, the 
overall latency was about 20-30 ms from the end of a saccade to 
the  resulting  change  on  the  display.  Because  of  this  short 
latency,  saccadic  suppression  (the  suppression  of  visual  input 
around the time of a saccade, while  the whole visual world is 
moving  across  the  retina  at  high  speed)  should  reduce  the 
visibility of these changes to the subjects or even render them 
unnoticeable.

Figure 2.  Example  fixation  map  created from eye  movement 
recordings of 54 people. Non-gray regions indicate where people 
looked; this data was used to predict candidate locations.

Figure  3.  Example  stillshot  from  GCID  experiment.  Gaze 
position at intersection of lines; lines mark unmodified quadrant 
(markers  not  shown  during  actual  trials).  Note  the  reduced 
contrast at (e.g.) the road signs bottom right or in the centre of 
the roundabout -- cf. Fig. 4.

Figure  4.  Difference  of  original  movie  frame  and  modified 
version  as  shown  on  the  gaze-contingent  display.  Note  the 
correspondence with the fixation map (see Fig. 2).

4 RESULTS

Figure 5. Local spectral energy. Average energy is almost twice 
as high for attended as for non-attended locations.

As a baseline measure,  we performed the same experiment  as 
above,  but  instead  of  using  'live'  data  from real  subjects,  we 
replayed  the eye  movement  recordings  on unmodified  videos. 
Therefore, stimulation placement, timing, etc. were identical to 
our experiment data, but the stimulation could not possibly have 
had an effect. Ideally, the reduction of local spectral energy in 
the three modified quadrants should have made these quadrants 
less  salient,  leading  to  proportionally  more  fixations  in  the 
unmodified  quadrant.  But  this  was  not  the  case  (see  Fig.  6); 
however, subjects reported having seen an occasional flicker on 
the screen, and our data indicates that it was this flicker -- when 
the graphics update was too slow -- that actually had the opposite 
effect  and  attracted  fixations.  Nevertheless,  one  effect  of  our 
display was a reduction of overall saccade rate of up to 20% (see 
Fig. 7); a finding reflected by an increase in fixation durations 
(see Fig. 8).

Figure  6.  Rate  of  saccades  into  unmodified  quadrant.  In  the 
baseline  condition,  about  25%  of  all  saccades  fall  into  this 
quadrant; in trials with our gaze-contingent display, this rate is 
slightly lower (although the increase in saliency relative to the 
remaining  3  quadrants  should  have  increased  this  rate)  and 
shows a higher variance.



Figure  7. The  number  of  saccades  per  second  decreased 
significantly when local spectral energy was reduced at highly 
salient  points  (Wilcoxon test,  p<0.032).  Each point  represents 
one of the six movies shown on the gaze-contingent display.

Figure 8. Empirical cumulative distribution function of fixation 
durations.  Fixations  are  significantly  longer  on  the  gaze-
contingent display (Kolmogorov-Smirnov test, p<<0.01).

5 CONCLUSIONS AND OUTLOOK
We have shown that a low-dimensional representation of movie 
patches, namely local spectral energy, can be used successfully 
to predict where humans will fixate in a natural dynamic scene. 
This  result  is  useful  not  only  in  modelling  the  human  visual 
system, but should also have broader implications in the design 
of human-machine interaction. We furthermore showed that we 
are  now able  to  perform fairly  sophisticated  modifications  of 
dynamic scenes in real time and that such modifications can alter 
eye  movement  statistics.  Currently,  we  are  working  towards 
even  faster  image  processing  routines  implemented  in 
commodity graphics hardware [7]. This will allow us to achieve 
lower latencies and, therefore,  simultaneously reduce visibility 
of  the  modifications  and  create  some  headroom  for  more 
complex transformations.  We are also extending our approach 
into  the  temporal  dimension;  this  is  computationally  more 
complex,  but  also  promises  to  be  much  more  effective 
perceptually, to ultimately enable a gaze-guidance effect.
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