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ABSTRACT

Interdisciplinary research in human vision and electronic imaging has greatly contributed to the current state of
the art in imaging technologies. Image compression and image quality are prominent examples and the progress
made in these areas relies on a better understanding of what natural images are and how they are perceived by
the human visual system. A key research question has been: given the (statistical) properties of natural images,
what are the most efficient and perceptually relevant image representations, what are the most prominent and
descriptive features of images and videos?

We give an overview of how these topics have evolved over the 25 years of HVEI conferences and how they
have influenced the current state of the art. There are a number of striking parallels between human vision and
electronic imaging. The retina does lateral inhibition, one of the early coders was using a Laplacian pyramid;
primary visual cortical areas have orientation- and frequency-selective neurons, the current JPEG standard
defines similar wavelet transforms; the brain uses a sparse code, engineers are currently excited about sparse
coding and compressed sensing. Some of this has indeed happened at the HVEI conferences and we would like
to distill that.

Keywords: image coding, sparse coding, predictive coding, intrinsic dimension, nonlinear filters, visual percep-
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1. INTRODUCTION

Given the 25th anniversary of the HVEI conference, we here give an overview of contributions that the conference
has made to the topic of efficient image representations. Of course, we do this with a particular perspective and
theoretical background that is introduced in the next section.

We all know that, no matter how long we wait, a display with randomly selected colors will never look like
an image taken in the real world. In other words, if we treat images as vectors that represent points in a high-
dimensional space, this space of all possible images is more or less empty and the natural images all sit in a very
small subspace. Perceptual issues matter and thus the space of, for example, high-quality images is even smaller.
Although it would make sense to stick to these subspaces (many people would like to delete everything outside
the space of nice images), we have, even after 25 years of HVEI, rather few ideas of how to do that in a strict
sense. Efficient representations are one way of dealing with the problem: step by step we would like to reduce
the redundancies in images. Some redundancies are obvious and can easily be removed, e.g., by de-correlation;
others require trickier computations, but most redundancies are still hidden. So, we are looking forward to
another 25 years.
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2. THEORETICAL BACKGROUND

2.1 Linear filters

Fourier methods, linear filter banks, and wavelets have been used extensively to extract useful image representa-
tions and to construct models of visual representations. In terms of the notation that we would like to use here,
linear transforms are just a rotation of the coordinate frame:

~xLF = W~x (1)

where ~x ∈ <N is the vector that represents the image, or an image block, W is a rotation matrix, and ~xLF is
the filtered image, or image block.

2.2 Learned representations and sparse coding

As an important alternative, representations (that could be linear) can be learned based on a representative set
of sample data ~xi, i = 1, ..., p. For the learning procedure, optimization criteria are required. One useful strategy
is to maximize the efficiency of the representation, i.e., to represent the data as compactly as possible. A classical
approach for increasing the efficiency of the representation is to reduce the dimension of the data vector, i.e.,
we look for a mapping ~x ∈ <N 7−→ ~y ∈ <M , M < N. Possible criteria are (i) minimal loss of information
(generic criterion), or (ii) better pattern-recognition performance (task-specific criterion). For biological systems,
criteria such as a reduced neural activity can be important. Ideally, the vector ~y contains the features of the
data ~x that are the most relevant (for a more or less specific set of tasks). However, properties of the data vector
~y other than the reduced dimension may be of interest, and the challenge is to find generic criteria for data
representation that turn out to be useful for various tasks.

Principal component analysis (PCA) and whitening The PCA is defined as ~xPCA = UT~x, where
the matrix U is the matrix that diagonalizes the covariance matrix C = 〈~xi~xTi 〉. The PCA minimizes the
reconstruction error when the dimension of ~xPCA is reduced by projection (dropping the N −M components of
UT~x that correspond to the smallest eigenvalues of C). Moreover, the PCA maximizes the mutual information
between the data ~x and the representation ~y. Whitening is usually used after PCA to normalize the variances
to unity along all principal directions:

~xwht = S−1UT~x. (2)

The diagonal matrix S2 = UTCU contains the variances in the directions of the principal components and S
the standard deviations. In total, the PCA rotates the signal to the main axes and these are then scaled by S−1

such that the variance is equal in all main directions. After whitening the components of the signal ~xwht are
uncorrelated and have unit variances.

Independent Component Analysis (ICA) The ICA is defined by the transformation

~xICA = V~xwht (3)

where V is chosen such as to minimize the multi-information I(V~xwht). Alternative implementations aim at
maximizing the kurtosis or the negentropy of V~xwht. The intuition is that all linear transforms on the whitened
data will preserve the property of decorrelation. Out of all the decorrelating transforms, the ICA picks the
one which minimizes the multi-information (thus minimizes statistical dependency since the multi-information
is defined as the Kulback-Leibler divergence between the joint distribution and the product of its marginals) or
maximizes the kurtosis.
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Linear version of sparse coding A sparse representation is one where only few components of the data
vector are different from zero. To obtain a sparse representation we can proceed similar to the ICA

~xSC = W~x = V~xwht (4)

and determine W or V such as to maximize the number of zero components in ~xSC . Since the ICA is usually
computed by maximizing the kurtosis, ICA and SC yield similar results (the sparser the representation the higher
the kurtosis).

Sparse coding as introduced by Olshausen and Field21,22 The principle of sparse coding is implemented
as a minimization problem with the cost function E = −Epreserveinformation−λEsparseness, where the individual
energy terms are the mean reconstruction error Epreserveinformation = −||W−1~xSC − ~x||2 and a sparseness term
that favors small values for the components of ~xSC . The goal is to learn the representation ~xSC and the basis
functions, i.e., the rows of W−1 by solving the nested optimization problem:

min
W−1

(min
~xSC

E). (5)

Note that while the reconstructed signal W−1~xSC is obtained from the representation ~xSC by a linear transform
(data are represented as weighted sums of basis functions), the representation ~xSC is, in general, not a linear
transform of the data ~x. Rather, the representation ~xSC is obtained for every new data point ~x by minimization
of the criterion E. So, this is quite different from the previous strategies in case of the PCA and the ICA: the
available data set was there used to derive one (linear) transform, which could then be used to represent any new
data point. Now, the learning procedure is applied not only to some initial data set but to every new data point
that needs to be represented. Also note that the set of basis functions can be over-complete, i.e., one can have
more basis functions than dimensions of the input space. Moreover, the basis functions need not be orthogonal.

2.3 Intrinsic dimension and nonlinear filters

Let an image be modeled by a function f : R2 → R. Given an (open) region Ω, for all (u, v) ∈ Ω, either (a)
f(u, v) = constant; or (b) f(u, v) = g(au+ bv), for some g, a, b; or (c) f varies along all directions. The image f
is said to locally have intrinsic dimension 0, 1, or 2, respectively (i0D, i1D, i2D for short).

In terms of the initial problem definition, we now search for a ~y = F (~x) that is equal to zero if ~x, now defined
as the vector that contains all the pixel values f(u, v) in Ω, is i0D or i1D. ~y should be different from zero if ~x
is i2D. We call such a transformation an i2D transform or i2D operator.

Since it has been shown that images are fully determined by the i2D regions,2 we know that i2D transforms
can be made such that the difference between ~x and the reconstructed data G(~y) is small. The concept can easily
be extended to more dimensions, such that, in case of videos, the intrinsic dimension inD varies from n = 0, ..., 3.

2.4 A missing link

Why should a nonlinear i2D transform be better than the linear transformations discussed above? One can
easily show that linear transformations cannot be i2D transforms.3,4 Therefore any linear transform will fail to
create zero output coefficients for all i0D and i1D inputs although the coefficients could be zero without loss of
information. Differential geometry provides a nice framework for understanding why information is concentrated
at (curved) i2D regions of an image2–4 and a number of applications have confirmed this fact.5,6

Moreover, it has been shown that i0D and i1D regions are frequent in natural images.7 Therefore, an i2D
transform can produce, without loss of information, a higher degree of sparsification than a linear transform.
Recent results by Olshausen8 (see also this volume), and Labusch et al.9 show that sparse-coding algorithms
do indeed lead to nonlinear i2D operators, especially if the basis is allowed to be over-complete. However, the
authors of these papers hardly mention the i2D operators that result from learning sparse codes. This is most
likely due to the missing theoretical link between the geometric view (information and curvature) on one side
and the statistical view and learning theory on the other. Maybe the next 25 years will fix that.
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2.5 Gain control, Radial Gaussianisation (RG), and Divisive Normalization (DN)

Lyu and Simoncelli10 have shown that in case of natural images the pdf is often better modeled as elliptical than
as factorial (the latter is the ICA model) and have introduced RG as a method that can find representations with
independent components in case of elliptical symmetric densities (ESD), i.e., densities for which the points of ct.
probability are ellipsoids. Linear transforms cannot make the components of signals with ESD more independent
after whitening because p(V~xwht) = p(~xwht) and therefore I(V~xwht) = I(~xwht). In this case, RG, defined as

~xrg = g(||~xwht||)
~xwht

||~xwht||
(6)

where g(.) is chosen such that ~xrg is Gaussian, can be shown to increase statistical independence of band-pass
filtered image pixels significantly more than the ICA does. Moreover, it can be shown that DN is a good
approximation to RG and is related to cortical gain control.

3. OVERVIEW OF HVEI CONTRIBUTIONS

The HVEI conference has been open to controversial ideas and interdisciplinary approaches that may have been
inhibited in the classical vision and image engineering communities. We here give a selective overview of HVEI
contributions that are related to our topic. There will most likely be some overlap with related “theme papers”
but such overlap should hopefully glue things together.

3.1 Image quality

Historically, early signal processing work was mainly concerned with faithful transmission of images over poten-
tially noisy, error-introducing channels, but the practical importance of knowing where the good images are in
the space of natural images was quickly realized. However, it turned out that the classical definition of faithful
reproduction, which looks at pixel-wise differences, is only a very weak predictor of human judgement of image
quality.11 Some image transformations, such as a small translation, may be unnoticeable even (or especially)
if the entire image is affected, while others, such as compression artifacts of block-based coders, may be highly
noticeable. Therefore, image quality assessment methods attempt to capture the perceptual effect of image
transmission, compression, or transformation to another representation; this is the dual problem of deciding
what is the perceptually relevant information that needs to maintained in an efficient image representation.

While learned and sparse representations or the intrinsic dimension have not been used widely yet in the
context of image quality assessment, many related topics have been addressed at HVEI.

Specific models have been presented at HVEI that quantify compression artifacts introduced by specific
coders.12 For the more general class of arbitrary distortions, however, the typical approach is to first use a linear
bank of filters of different scales and orientations that resembles the early stages of human visual processing (e.g.
the cortex transform13) and to measure the errors introduced in each subband.14 Here, nonlinearities in the
metric proved to be essential to mimic human quality judgements.11

For natural images, the histograms of wavelet coefficients can be efficiently fitted with a two-parameter gen-
eralized Gaussian density (GGD) model.15 Because these histograms are sensitive to many types of distortions,
Wang and Simoncelli16 presented an efficient design to use an image as its own quality reference during po-
tentially noisy transmission. The (few) GGD parameters of the original image can be transmitted separately
through a protected, ancillary channel, and then serve as a reference to the GGD parameters of the transmitted
image.

Because of the subjective nature of image quality assessment, often lengthy and expensive experiments with
human observers are needed to evaluate new algorithms. In order to alleviate this need, Wang and Simoncelli17

proposed a new method to assess image quality metrics with fewer human judgements and based on existing
metrics. Starting from images with a known distortion level and two competing image metrics, the key idea was
to synthesize new images such that the response of one metric is varied while the second metric remains fixed,
i.e., to perform a search for those image space regions where the metrics diverge; human judgements then only
need to be made for these informative images.
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Further insight into human quality judgement revealed that certain image regions are perceptually more
important than others. Moorthy and Bovik18 showed that weighing image quality metrics with the saliency of
the underlying image region improved metric performance.

Two common practical applications that are trying to improve image quality are superresolution and de-
noising. However, one issue with learning on large training sets of “good” patches is that it quickly becomes
intractable to store all possible image patches in a high-dimensional space. Therefore, vector quantization
techniques are often employed to reduce the number of samples. Li and Adelson31 described a more efficient
approach that gives a nested partition of the learning space and represents the mapping from one image to
another parametrically as a function of partition bin.

3.2 Perceptual relevance and learned representations

Attneave and Barlow’s redundancy reduction hypothesis postulates that the goal of the computations of the
early stages of visual processing is to provide statistical independence. As such, the independent components
of natural images give us a set of filters optimized for such statistical independence: the ICA coefficients are
the least redundant that are achievable with linear transformations. However, linearity turns out to be a strong
constraint and it is not clear what the real gain is from reduction of higher-order dependencies using a linear
model.

In order to empirically test the perceptual significance of different coding bases, Bethge et al.28 developed
an efficient psychophysical procedure where subjects were asked to predict missing pixels or the missing ICA or
DCT basis for natural image patches. Perhaps surprisingly, missing ICA coefficients were significantly better
predictable than DCT coefficients, i.e., the ICA basis exhibited higher perceptual dependencies than the DCT
basis despite its lower statistical dependencies.

The problem of unsupervised learning of an invariant representation can be split into two subtasks: dimension
reduction and a unified representation of invariant structure and equivariant appearance. Bethge et al.30 argued
that the popular temporal stability (slowness) principle only tackles the first task but does not provide a unique
basis for representation, and they learned rotation-invariant steerable bases in two-dimensional subspaces rather
than one-dimensional eigenspaces instead.

3.3 Sparse coding

In 1996 Olshausen and Field published two papers at HVEI20,21 before their highly influential Nature paper.22

The first paper20 relates to earlier work on efficient coding that was analyzing the statistics of natural images.
Here, the focus is on the 1/f fall-off of the amplitude spectra, which is related to the sparseness of structure in
images, as opposed to self-similarity. Moreover, the main properties of cortical neurons (localization, frequency
selectivity, and orientation) are related to the principle of sparse coding: the steeper the fall-off of the amplitude
spectrum, the fewer the number of active neurons tuned to high frequencies.

The second paper21 focused on the learning of sparse representations and proposed to describe images with
a sparse set of learned basis functions drawn from an overcomplete dictionary. In a generative framework,
images are modeled as linear superposition of some basis learned from natural images under the constraint of
maximizing the sparseness of the representation. The learned bases are localized, oriented bandpass functions,
and thus resemble the receptive fields of cortical cells.

A later paper,23 presented at the 2007 HVEI Special Session on Natural-Image Statistics,23,24,26,28,30,34,38

extended the principle of sparse coding to the coding of motion signals. Now bilinear, generative image models
are considered, since previous sparse codes, based on linear superposition only, cannot optimally encode objects
that move or change due to other sources of variation. The idea is that, similar to the visual coding in “what”
and “where” streams, the representations of object shape can be separated from object transformations and
learned independently. In more general terms, representations are now learned in different subspaces.

Despite the great success of sparse-coding principles, initially there was some skepticism, especially in the
engineering communities, because the utility of the sparse representations has been mainly demonstrated by
pointing at the resemblance with cortical visual processing. Meanwhile, the technical literature has brought a
number of extensions and applications of sparse coding (see, for example, the IEEE Transactions on Selected
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Topics in Signal Processing1). However, to our knowledge, the first application of sparse coding to a technical
problem has been presented at HVEI.24 Currently, supervised machine-learning techniques, such as the SVM, are
well understood and performance gains are hard to obtain by optimizing decision making. Instead, performance
varies more with the features that are used to represent the data and good features are often found by heuristics
and extensive feature selection. Given that sparse coding delivers optimal features for natural images, the same
coding principle should provide good features for other particular data sets. This idea has been applied to
the highly competitive MNIST benchmark of hand-written digit recognition. The sparse features have nicely
captured the characteristics of the data and, in combination with a maximum rule and a SVM, have led to
state-of-the art recognition performance. In fact, the algorithm performed best among all methods that do not
make use of additional specific knowledge about the data base.24 Meanwhile, deep-learning networks are the
champions on MNIST and they are also based on extensive, unsupervised learning of (often sparse) features that
are specific to the particular data set.

3.4 Gain control

Gain control has not been a hot topic at HVEI, but it has been shown that inclusion of Divisive Normalization
(DN) can better predict human recognition performance, in this case the detection of nodules in radiographs.25

Within the 2007 special session on image statistics, however, Lyu and Simoncelli26 presented an invertible DN
transform with applications to local contrast enhancement and compression. A few years earlier, Valerio and
Navarro27 already showed that an invertible DN stage can remove higher-order statistical dependencies beyond
what is possible with linear filters. Both the linear wavelet decomposition stage and the nonlinear DN stage
reduced the mutual information by a factor of six each. Two further HVEI papers deal with DN in a different
context35,38 and are discussed in Section 3.5.

3.5 Intrinsic dimension and nonlinear filters

The first paper on intrinsic dimension, and the limits of linear filters in dealing with it, appeared at HVEI.4 This
comprehensive paper has a broad scope and treats quite a number of relevant topics, such as (a) the concept of
intrinsic dimension and (b) the limits of linear filters, (c) the related differential-geometry framework, (d) related
biological phenomena such as end-stopping and bug detectors, (e) the generalized i2D detector equation based
on ΣΠ structures and (f) the compensation equation, (g) the activity distribution of i2D detectors over oriented
filters, (h) i2D-detectors as AND operations on oriented filters, and (i) the topological invariance of integrated
i2D activities.

In a tour de force (with 32 pages and 93 citations, where else could it have been published at that time?) an
invited HVEI paper29 extends the framework of the original paper4 and brings together many different aspects
of previous and later work. It starts by showing the limits of the traditional approaches to predictive coding
and then develops a comprehensive research program to determine (a) the structure of the multivariate pdf
underlying natural scenes, (b) nonlinear transforms to exploit this statistical structure, and (c) to what extent
biological systems actually apply such transforms. Sparse coding, inD operators, gain control and their potential
to deal with (b) are discussed. Moreover, higher-order statistics of natural images are analyzed with polyspectra.

In a later, again quite comprehensive, HVEI paper,32 the authors further expand on many of the original
ideas.4 The focus is on the ΣΠ structures, the compensation equation, the AND operations on oriented filters,
and the extension of these concepts to a theory of i2D selectivity based on nonlinear Volterra-Wiener systems.33

Possible combinations of oriented filters and the resulting tuning properties of the i2D operators are analyzed in
detail. Furthermore, the i2D operators are related to higher-order statistical dependencies and the polyspectra
of natural images.

Since the 1990 HVEI paper,4 features that are based on the distribution of activity over directional channels,
e.g., HOG and SIFT, have become quite popular. A later HVEI paper34 extends work on Geometric Texton
Theory which describes image structure as histograms over a visual feature vocabulary defined geometrically.
The paper aims at defining basic image features by partitioning the filter response space of six Gaussian derivative
filters.

Intrinsic dimension, i2D detectors, and related features have been confined to nonlinear operations on oriented
filters, and thus to cortical structures, until a further HVEI paper35 showed that simple lateral inhibition, and
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thus retinal structures, lead to i2D selectivity when implemented in a deep or in a recurrent network with simple
nonlinearities (ON/OFF rectification). A detailed retinal model was presented, which, a few years later, has
been used to model the rather complex topological sensitivity of the bug detector in the frog’s eye and human
topological sensitivity attributed to early processing.36 One important message was that cortical end-stopping
could, in theory, stem from retinal processing. This is an interesting result, also since further evidence for
nonlinear, i2D-specific processing has been found by using classification images in a vernier acuity task.37

The computational power of such linear-non-linear (LNL) structures has been further analyzed about ten
years later38 and it has been shown how LNL networks can reduce the statistical dependencies in natural images.
The idea is to learn the linear part of the LNL sandwich, e.g., by PCA for decorrelation, then apply a simple
nonlinearity that would introduce new correlations (since the nonlinearity can map higher-order dependencies
to second-order dependencies), which can then be removed in the next linear stage. As in the early paper,35

subtractive inhibition is extended to divisive inhibition and related to gain control and DN (see Sections 2.5 and
3.4). The LNL ideas have been meanwhile confirmed by the success of deep-learning strategies, where a number
of layers are learned by unsupervised methods (often leading to sparse representations) and only the final layer is
trained for making decisions.39 However, a unified theoretical framework of LNL sandwiches and their relation
to efficient representations, intrinsic dimension, sparse coding, and deep learning is still missing - see Section 2.4.
Note, however, that the simple HVEI 1998 INROG (Iterated Nonlinear Ratio of Gaussians)35 had it all: deep
structure with increasingly sparse i2D features and divisive normalization.

4. CONCLUSIONS

We have seen that, from a geometric perspective, the goal of efficient representation is to find the tiny sub-
manifolds in which the natural images, or a particular set of images, lie. The statistical view is that one obtains
more efficient representations the more redundancies are removed. From a practical perspective, a representation
is efficient if it helps to solve a particular problem. Often, perceptual issues matter.

Sparse coding has been one of the major developments in this area and has convincingly shown how biologically-
inspired research can have a major impact on the mathematical and technical sciences. In the beginning, people
were telling us that sparse coding might be good for the brain because it saves sugar, but why should it be
good for signal processing? Well, now they know. Other nonlinear extensions such as Gaussianization are also
becoming popular in signal processing.

The concept of intrinsic dimension has similar origins and is related to sparse coding, as we have seen. People
have used corner detectors before and have spent more bits on features that activate more than just one orientation
channel, without knowing that such i2D features are unique.2 More explicit use of the framework has been made
recently, for example, by Vig et al.,5 who showed that a predictor based on i3D features outperformed more
complex, state-of-the-art saliency models. The inD saliency model was also useful for human activity recognition,
which is still a very challenging real-world problem. Performance of several state-of-the-art action recognition
algorithms was significantly improved by a preprocessing step that restricted action recognition to sparse saliency
video regions only.6

There are many conferences that involve image representations. So, what makes HVEI special? We would
like to mention only two aspects. First, HVEI has always been open to new ideas. Today, many conferences
are proud of their high rejection rates, but this, in the end, may lead to insider events, which often do not
last for 25 years. Second, while interdisciplinarity now is often used as a buzzword only, HVEI has been truly
interdisciplinary from the beginning. If, as an imaging engineer, you are not really interested in visual perception,
you can talk about SNR but not about image quality and lossy compression. Moreover, some of the innovative
approaches to image representation, such as most of the ones reviewed here, came out of interdisciplinary studies
of the visual system.
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