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Abstract

In this paper, we will present an overview of our work that is aimed at
integrating gaze into visual communication systems by measuring and
guiding eye movements [1]. This requires investigating andmodelling
how eye movements are determined by the visual input, modelling what
is relevant to the user, and new technological developmentsfor better
eye tracking and fast gaze-contingent graphics. A number ofchallenges
remain, some of which may be solved by machine-learning techniques,
e.g. predicting eye movements and inferring a person’s intent.

1 Background

Vision is the dominant perceptual channel through which we interact with information and
communication systems, but one major limitation of our visual communication capabilities
is that we can attend to only a very limited number of featuresand events at any one time
(e.g., [2]). This fact has severe consequences for visual communication, because what is
effectively communicated depends to a large degree on thosemechanisms in the brain that
deploy our attentional resources and determine where we direct our eye movements, i.e. our
gaze.

Therefore, future information and communication systems should use gaze guidance to
help the users deploy their limited attentional resources more effectively. Gaze guidance
here means that the user follows a prescribed pattern with their gaze, thus taking in infor-
mation in a specific, potentially more efficient way.

When dealing with the problem of guiding a user’s gaze, we faceseveral challenges. In
this paper, we will give an overview of the issues that we havebegun to address so far, but
there remain a number of open problems.
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The first challenge is that we need to analyse in more detail how humans watch dynamic
scenes. The majority of previous research on eye movements has dealt with static scenes
only, mainly because of the technical problems inherent in recording eye movements on
movies. However, we believe that it is more practicable to determine what drives eye move-
ments in dynamic scenes. Bottom-up features, that is features that are directly computable
from an image sequence such as brightness, colour, or motion, should have a greater influ-
ence on directing gaze here than in static scenes. Accordingly, attempts have recently been
made at modelling what low-level features determine eye movements in moving scenes as
well [3]. Based on these findings, we have been able, at least to some extent, to predict
where observers will direct their gaze from a number of previously attended locations [4].

A further requirement is a quality function that estimates how well-suited an observer’s
gaze pattern is for a given image sequence. There are basically two approaches to obtain
an optimal gaze pattern. It is well known that experts, for example experienced car drivers,
employ viewing strategies different from those of novices.Thus, the gaze pattern of an
expert could be recorded and “replayed” to the user. The moregeneric approach uses an
image-processing algorithm that could identify the most informative regions in a scene.
Of course, we also need a model of both the task at hand and the observer’s intentions to
decide which information might be relevant to the observer.

Finally, the eye movements actually need to be guided to follow the intended gaze pattern.
In a strict sense, this will be impossible to achieve, as an observer might consciously choose
to only focus on one specific aspect of a scene. Nevertheless,we believe that for most
purposes, it will suffice to significantly increase the likelihood that certain locations will
be fixated, while suppressing other potential saccade targets. Indeed, we have developed a
number of spatio-temporal transformations that, as we wereable to show, change the eye
movements of observers, although the guidance still needs to become more specific.

When all these challenges have been met, we furthermore not only want to change the
observer’s eye movements, but also achieve a change in behaviour, i.e. an improvement
in actual task performance. In the next section, we will givean overview of potential
applications.

2 Applications

An important potential application of gaze-guidance systems is augmented vision.
Augmented-vision systems can be designed to integrate human vision and computer vi-
sion. For example, in a car, the driver’s attention can be directed towards a pedestrian who
has been detected by sensors looking out of the car.

A further application is the use in training systems. It is known that experts, for example
experienced pilots, scan their environment in a way that substantially differs from how
inexperienced viewers would. We believe that by recording the gaze pattern of experts and
applying it to novices, we can evoke a sub-conscious learning effect.

Finally, current technical visual communication systems are based on the physical proper-
ties of images and cannot improve the communication processas such, because they do not
address the question of what message is conveyed by an image or a video. Future com-
munication systems’ images and movies can be defined not onlyby brightness and colour,
but will also be augmented with a recommendation of where to look, of how to view the
images. For this to succeed, such systems will also have to take into account the user’s
intentions.



3 The machine-learning perspective

The human visual system is highly complex. This complexity is increased even further
when we extend our view to include the higher cognitive functions that also play a role in
controlling the direction of gaze, such as alertness, emotional state, or intent. Therefore,
we believe that it will be impossible to distill a set of fixed parameters that will allow gaze
guidance to work in all situations, for all users. Rather, webelieve that the gaze-guidance
display will have to continuously adapt to the user and the task at hand.

In the gaze-guidance display, what is displayed is a function of the user’s gaze, while at
the same time the display influences the user’s gaze. In this closed loop, there exists a
multitude of parameters that need to be adjusted in an on-line fashion. Different users may
have different physiological characteristics, such as saccadic latency, or different cognitive
strategies, attentional states, or expectations. Lastly,the search space of spatio-temporal
transformations that might possibly be used to guide gaze istoo vast to be explored system-
atically. We have implemented some basic transformations (see section 4), but fine-tuning
will have to be done in an unsupervised, continuously evolving manner.

The following sections will outline some of the issues we have addressed so far with
machine-learning techniques and other methods.

3.1 Analysis of eye movements

We have investigated the variability of eye movements on dynamic natural scenes [5]. To
this end, we collected a large data set of gaze samples from 54subjects watching a variety of
short video clips (20 s duration each). For each movie frame,clusters of gaze samples were
extracted by an unsupervised machine-learning algorithm.First, a fixation map was created
by a superposition of Gaussians centered at each gaze sample. From the resulting map, up
to n = 20 maxima were extracted by iteratively applying a lateral inhibition scheme. Then,
clusters were formed using a simple distance threshold. Results show that there exist “hot
spots” which contain a high number of fixation locations. On average, 5-15 clusters (2-5%
of the viewing area) account for 60% of all fixations (see Fig.1 for an example).

3.2 Eye movement predictions

The model we use to predict where an observer is going to look is composed of two distinct
parts. This separation is motivated by the two fundamental types of eye movements that
are relevant to our purposes. First, saccades are ballistichigh-velocity eye movements that
serve to move the fovea from one fixation location to another;during a saccade, most of the
visual input is suppressed so that, for example, we do not perceive the blur induced by the
motion of the visual scenery across the retina. We define the task of saccade prediction as
predicting the target of the saccade, not the complete saccade trajectory, because the latter
is irrelevant for our purposes. The second type of eye movements comprises all movements
that are made between saccades. These movements can be further classified into a variety
of types, but for the present purpose, they share the common characteristic that velocity is
relatively low. To model such intersaccadic eye movements,we use a supervised-learning
technique that, from a history of previous gaze samples, predicts the gaze position in the
next time step.

For the prediction of saccade targets, one ideally would be able to predict a single location
that has a high probability of being the next saccade target.To achieve this, however, a
complete understanding of the higher decision processes involved in saccadic programming
would be required. For example, an observer might choose to fixate one part of a scene over
another for purely semantic reasons. Therefore, we restrict ourselves to predicting only a
certain number of locations that are likely to be fixated as the next saccade target. We have
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Figure 1: Rate of fixations that fall into the firstn extracted clusters, for one example
movie. These rates were computed on a per-frame basis and averaged across the whole
movie.

attempted to use machine learning techniques to predict which of the candidate locations
will be chosen, but with only limited results so far.

To extract candidate locations for saccade targets from a video, we use a saliency map that
assigns a certain degree of saliency to every location in every frame of the video sequence.
Various techniques exist for computing saliency maps, mostof which are intended to model
the processes in the human visual system that generate potential saccade targets [3].

The saliency map used here is based on the spatio-temporal curvature of the image se-
quence. The curvature is computed here using the determinant of the structure tensor,
which is defined as the locally averaged outer product of the(x, y, t) intensity gradient. To
avoid all candidate locations being extracted from only a single small high-curvature region
in an image, we extract locations by iteratively applying a lateral inhibition algorithm, so
that locations with a high saliency close to a local maximum become suppressed.

Fig. 2 compares the performance of our predictor with that ofa predictor that uses an
empirical saliency map, which is derived from the recorded eye movement data as described
in section 3.1: Clusters with a high density of fixations are assigned a high saliency. This
empirical saliency map gives an upper bound of what we can expect to achieve with a
purely bottom-up approach, without modelling the user’s top-down influences.

The results show that, currently, the performance of our predictor is about halfway between
the results one would obtain by guessing locations at randomand that of the ideal predictor
based on the empirical saliency map. For a detailed discussion of our predictor, see [4].

4 Current state of the art

The final goal of our gaze guidance system is to direct the user’s attention to a specific
part of a scene without the user noticing this guidance. Apart from our work on modelling
which image features attract gaze, we have therefore also conducted experiments with sev-
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Figure 2: Error distributions for different predictors. The error is the distance of the
recorded saccade target to the closest ofL = 10 predicted candidate locations.

eral different spatio-temporal transformations designedto alter eye movement characteris-
tics. These transformations were based on observations made with synthetic stimuli, which
are commonly used in experiments that investigate attentional effects. The first set of trans-
formations was motivated by the well-known fact that suddenobject onsets in the visual
periphery can attract attention. We chose to briefly superimpose small bright red dots on the
movie. In about 50% of trials, saccades were initiated towards the location of the flashed
red dot. Because the typical saccadic latency of about 200 msexceeds the presentation
time of the dot, which was set to 120 ms, the red dot was alreadyswitched off by the time
the saccade was finished, so that in about 65% of cases, this stimulation remained invisi-
ble. Similar results were obtained in an experiment where the red dot was replaced by a
looming stimulus. Nevertheless, the exact parameters for an optimal guidance effect, such
as size, contrast, duration, or the timing with regard to previous saccades, still need to be
determined, ideally by an automated learning process.

For a second, more complex set of transformations, we have developed a gaze-contingent
display that can in real time change the spatio-temporal content of an image sequence as a
function of where the observer is looking [6], based on earlier work that manipulated only
spatial resolution [7]. For example, we can selectively blur high temporal frequencies in
the visual periphery, which are known to evoke saccades. Because of the limited percep-
tual capabilities of the human visual system in the periphery, this blur remains unnoticed.
Nonetheless, we were able to show that such peripheral temporal blur suppresses saccades
towards the periphery. Next, we plan to specifically change the spatio-temporal content
only at certain locations in an image.

5 Conclusion

We have here described the efforts we have made to not only infer and predict human
behaviour (eye movements) but also change it such as to improve human performance.
Preliminary results indicate that it should be possible to guide the gaze of a person [8].
A number of problems that need to be solved can be addressed bymachine-learning tech-
niques. The ultimate goal would be to find the optimal way to display information such as to
minimize the error between the actual and the desired performance of a person performing
certain actions in a particular environment, e.g. to avoid traffic accidents, or the difference
between the information that is intended to be received and the one that is actually received,
e.g. by a person watching a movie or a news programme.
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