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Abstract

In this paper, we will present an overview of our work thatimed at
integrating gaze into visual communication systems by onéag and
guiding eye movements [1]. This requires investigating aratlelling
how eye movements are determined by the visual input, maodeithat
is relevant to the user, and new technological developmfentbetter
eye tracking and fast gaze-contingent graphics. A numbehallenges
remain, some of which may be solved by machine-learningnigcies,
e.g. predicting eye movements and inferring a person’siinte

1 Background

Vision is the dominant perceptual channel through whichnteract with information and
communication systems, but one major limitation of our &lstommunication capabilities
is that we can attend to only a very limited number of featams events at any one time
(e.g., [2]). This fact has severe consequences for visuahumication, because what is
effectively communicated depends to a large degree on thesbanisms in the brain that
deploy our attentional resources and determine where wetditur eye movements, i.e. our
gaze.

Therefore, future information and communication systetmsull use gaze guidance to
help the users deploy their limited attentional resourcegeneffectively. Gaze guidance
here means that the user follows a prescribed pattern wéih glaze, thus taking in infor-

mation in a specific, potentially more efficient way.

When dealing with the problem of guiding a user’s gaze, we fsseral challenges. In
this paper, we will give an overview of the issues that we Hsagun to address so far, but
there remain a number of open problems.
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The first challenge is that we need to analyse in more detailthomans watch dynamic

scenes. The majority of previous research on eye movemastddalt with static scenes
only, mainly because of the technical problems inherenecording eye movements on
movies. However, we believe that it is more practicable teiheine what drives eye move-
ments in dynamic scenes. Bottom-up features, that is festhiat are directly computable
from an image sequence such as brightness, colour, or mstionld have a greater influ-
ence on directing gaze here than in static scenes. Accdydattempts have recently been
made at modelling what low-level features determine eyeammnts in moving scenes as
well [3]. Based on these findings, we have been able, at leastirhe extent, to predict

where observers will direct their gaze from a number of presiy attended locations [4].

A further requirement is a quality function that estimatesviwell-suited an observer's
gaze pattern is for a given image sequence. There are bpdigalapproaches to obtain
an optimal gaze pattern. It is well known that experts, faregle experienced car drivers,
employ viewing strategies different from those of novic8$us, the gaze pattern of an
expert could be recorded and “replayed” to the user. The meneric approach uses an
image-processing algorithm that could identify the mo$brimative regions in a scene.
Of course, we also need a model of both the task at hand and#sever’s intentions to

decide which information might be relevant to the observer.

Finally, the eye movements actually need to be guided todolhe intended gaze pattern.
In a strict sense, this will be impossible to achieve, as aenler might consciously choose
to only focus on one specific aspect of a scene. Neverthaelesselieve that for most
purposes, it will suffice to significantly increase the likelod that certain locations will
be fixated, while suppressing other potential saccadettaryeleed, we have developed a
number of spatio-temporal transformations that, as we able to show, change the eye
movements of observers, although the guidance still neeblsdome more specific.

When all these challenges have been met, we furthermore mptwamt to change the
observer's eye movements, but also achieve a change inibehawve. an improvement
in actual task performance. In the next section, we will giveoverview of potential
applications.

2 Applications

An important potential application of gaze-guidance systeis augmented vision.
Augmented-vision systems can be designed to integrate thwsean and computer vi-
sion. For example, in a car, the driver’s attention can beotid towards a pedestrian who
has been detected by sensors looking out of the car.

A further application is the use in training systems. It i®km that experts, for example
experienced pilots, scan their environment in a way thastsuitially differs from how
inexperienced viewers would. We believe that by recordireggaze pattern of experts and
applying it to novices, we can evoke a sub-conscious legrafifect.

Finally, current technical visual communication systemestzased on the physical proper-
ties of images and cannot improve the communication praagsach, because they do not
address the question of what message is conveyed by an imageideo. Future com-
munication systems’ images and movies can be defined nobgrityightness and colour,
but will also be augmented with a recommendation of wher@dl,| of how to view the
images. For this to succeed, such systems will also havekéoitéo account the user’s
intentions.



3 The machine-learning perspective

The human visual system is highly complex. This complexstynicreased even further
when we extend our view to include the higher cognitive fiore that also play a role in

controlling the direction of gaze, such as alertness, amatistate, or intent. Therefore,
we believe that it will be impossible to distill a set of fixedrpmeters that will allow gaze

guidance to work in all situations, for all users. Rather,bgéeve that the gaze-guidance
display will have to continuously adapt to the user and tek & hand.

In the gaze-guidance display, what is displayed is a funabibthe user’'s gaze, while at
the same time the display influences the user's gaze. In kbéed loop, there exists a
multitude of parameters that need to be adjusted in an enfdishion. Different users may
have different physiological characteristics, such asadic latency, or different cognitive
strategies, attentional states, or expectations. Lab#ysearch space of spatio-temporal
transformations that might possibly be used to guide gazmigast to be explored system-
atically. We have implemented some basic transformatises ¢ection 4), but fine-tuning
will have to be done in an unsupervised, continuously emglvhanner.

The following sections will outline some of the issues we énaddressed so far with
machine-learning techniques and other methods.

3.1 Analysis of eye movements

We have investigated the variability of eye movements oradyio natural scenes [5]. To
this end, we collected a large data set of gaze samples frautidcts watching a variety of
short video clips (20 s duration each). For each movie fratosters of gaze samples were
extracted by an unsupervised machine-learning algoriffirat, a fixation map was created
by a superposition of Gaussians centered at each gaze sammie the resulting map, up
ton = 20 maxima were extracted by iteratively applying a lateralbition scheme. Then,
clusters were formed using a simple distance thresholdul®eshow that there exist “hot
spots” which contain a high number of fixation locations. ®@erage, 5-15 clusters (2-5%
of the viewing area) account for 60% of all fixations (see Bifpr an example).

3.2 Eye movement predictions

The model we use to predict where an observer is going to bo&mposed of two distinct
parts. This separation is motivated by the two fundamegtsg of eye movements that
are relevant to our purposes. First, saccades are baligtievelocity eye movements that
serve to move the fovea from one fixation location to anotthering a saccade, most of the
visual input is suppressed so that, for example, we do naepar the blur induced by the
motion of the visual scenery across the retina. We defineattledf saccade prediction as
predicting the target of the saccade, not the complete dadcajectory, because the latter
is irrelevant for our purposes. The second type of eye momso®mprises all movements
that are made between saccades. These movements can ke élaisified into a variety
of types, but for the present purpose, they share the comimmacteristic that velocity is
relatively low. To model such intersaccadic eye movememsiise a supervised-learning
technique that, from a history of previous gaze samplegligtethe gaze position in the
next time step.

For the prediction of saccade targets, one ideally woulddteta predict a single location
that has a high probability of being the next saccade targetachieve this, however, a
complete understanding of the higher decision processelvéd in saccadic programming
would be required. For example, an observer might choosgatefone part of a scene over
another for purely semantic reasons. Therefore, we resuirselves to predicting only a
certain number of locations that are likely to be fixated astéxt saccade target. We have
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Figure 1: Rate of fixations that fall into the first extracted clusters, for one example
movie. These rates were computed on a per-frame basis anagadeacross the whole
movie.

attempted to use machine learning techniques to prediathwdfithe candidate locations
will be chosen, but with only limited results so far.

To extract candidate locations for saccade targets frordeoyiwe use a saliency map that
assigns a certain degree of saliency to every location irydw@me of the video sequence.
Various techniques exist for computing saliency maps, mioshich are intended to model
the processes in the human visual system that generatdipbsatcade targets [3].

The saliency map used here is based on the spatio-tempaorxatare of the image se-
guence. The curvature is computed here using the detertniigdhe structure tensor,
which is defined as the locally averaged outer product ofthe, t) intensity gradient. To

avoid all candidate locations being extracted from only\nglei small high-curvature region
in an image, we extract locations by iteratively applyinggetal inhibition algorithm, so

that locations with a high saliency close to a local maximwodme suppressed.

Fig. 2 compares the performance of our predictor with thaa g@iredictor that uses an
empirical saliency map, which is derived from the recordggiraovement data as described
in section 3.1: Clusters with a high density of fixations asigned a high saliency. This
empirical saliency map gives an upper bound of what we caecxjp achieve with a
purely bottom-up approach, without modelling the usefsdown influences.

The results show that, currently, the performance of oulipter is about halfway between
the results one would obtain by guessing locations at raretuhthat of the ideal predictor
based on the empirical saliency map. For a detailed dismusdiour predictor, see [4].

4 Current state of the art

The final goal of our gaze guidance system is to direct the'suattention to a specific
part of a scene without the user noticing this guidance. #jpam our work on modelling
which image features attract gaze, we have therefore atstucted experiments with sev-
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Figure 2: Error distributions for different predictors. &lerror is the distance of the
recorded saccade target to the closedt ef 10 predicted candidate locations.

eral different spatio-temporal transformations desigioeglter eye movement characteris-
tics. These transformations were based on observations wigtdsynthetic stimuli, which
are commonly used in experiments that investigate attealtieffects. The first set of trans-
formations was motivated by the well-known fact that suddbject onsets in the visual
periphery can attract attention. We chose to briefly supswga small bright red dots on the
movie. In about 50% of trials, saccades were initiated tdane location of the flashed
red dot. Because the typical saccadic latency of about 20@xtseds the presentation
time of the dot, which was set to 120 ms, the red dot was alreaitghed off by the time
the saccade was finished, so that in about 65% of cases, ithidation remained invisi-
ble. Similar results were obtained in an experiment wheeerétd dot was replaced by a
looming stimulus. Nevertheless, the exact parametersnfapéimal guidance effect, such
as size, contrast, duration, or the timing with regard twiptes saccades, still need to be
determined, ideally by an automated learning process.

For a second, more complex set of transformations, we haxedafeed a gaze-contingent
display that can in real time change the spatio-temporaecof an image sequence as a
function of where the observer is looking [6], based on eadiork that manipulated only
spatial resolution [7]. For example, we can selectively lligh temporal frequencies in
the visual periphery, which are known to evoke saccadesauecof the limited percep-
tual capabilities of the human visual system in the periphéis blur remains unnoticed.
Nonetheless, we were able to show that such peripheral tetigar suppresses saccades
towards the periphery. Next, we plan to specifically chargedpatio-temporal content
only at certain locations in an image.

5 Conclusion

We have here described the efforts we have made to not ordy arfd predict human
behaviour (eye movements) but also change it such as to wagroman performance.
Preliminary results indicate that it should be possible ualg the gaze of a person [8].
A number of problems that need to be solved can be addressaddlyine-learning tech-
niques. The ultimate goal would be to find the optimal way &pliiy information such as to
minimize the error between the actual and the desired pedoce of a person performing
certain actions in a particular environment, e.g. to aviffit accidents, or the difference
between the information that is intended to be received lamdme that is actually received,
e.g. by a person watching a movie or a news programme.
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