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Abstract

In this paper we present a method for eliminating overtraining
during learning on small and noisy data sets. The key idea is to
reduce the complexity of the neural network by increasing the sto-
chasticity of the information transmission from the input layer to
the hidden-layer. The architecture of the network is a stochastic
multilayer perceptron the hidden layer of which behaves like a
Pott-Spin. The stochasticity is increased by penalizing the mutual
information between the input and its internal representation in the
hidden layer. Theoretical and empirical studies validate the useful-
ness of this novel approach to the problem of overtraining.

1.0 Introduction

Two principal complications appear when a neural network is trained for extracting
the underlying structure in the data of a real world problem. Firstly, the data is noisy,
and secondly, there is usually only a finite amount of training patterns. These two
properties of the training data set make it difficult for a neural network to learn only
the useful structure and ignore the particularities of each training data, e.g., the
noise. Leamning particularities like noise leads to overtraining and bad generalization
capabilities. Overtraining can be avoided by employing regularization techniques. In
learning with neural networks this is usually done by controlling the complexity of
the network based on penalty terms (Hinton 1986; Weigend et al., 1991). These pen-
alty terms reduce the effective number of parameters, which, however, still causes a
number of problems (Deco et al, 1993; Nowlan and Hinton, 1991).

The present work introduces an alternative approach which regulates the complexity
of the network not by reducing the effective number of parameters but by increasing
the stochasticity of the data representation. Nowlan and Hinton use a similar but dif-
ferent approach. They insert noise on each weight of the network and control the
amount of noise in order to regularize the model (Nowlan and Hinton, 1991). In the
present work we use a stochastic network and control the stochasticity of the net-
work by reducing the mutual information between the input and its internal repre-
sentation. The motivation of this approach is the fact that most of the information
describes the noise and should not be transmitted from the input to the hidden layer.

2.0 The Neural Network Architecture

The first layer is just to represent the input data &, with & denoting pattern a of
dimension ». The second layer is a layer of m probal:nllsnc Boolean hidden units 5;;
i.e., each hidden unit can have the discrete output value 1 with probability P, and
the discrete output value 0 with probability (1-P). We choose P, such that the hid-
den layer represents a Pott spin, i.e.,
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(Peterson and Soederberg, 1989). The output layer is given by a set of T neurons with
linear activation functions, The mean output values of the network are then given by
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The mean output values 07 are used to establish a continuous input-output mapping
£7— 07 . In order to learn this input-output mapping, we train the stochastic network
such that the squared error between the desired outputs and the mean output values 0°
is minimized.

To reduce the complexity of the network we increase the stochasticity in the internal
representation of the input patterns. This is achieved by reducing the amount of infor-
mation conveyed from the input layer to the hidden layer, i.e., by reducing the mutual
information between the input and the internal representation. Shannon defined the
mutual information as the amount of information transmitted in a stochastic channel,
In our case the stochastic channel lies between the input layer and the hidden layer of
our network and is defined by the Pott probability function (2.1). The mutual informa-
tion M between input layer and hidden layer is given by

M=Yp(a) P‘.'IOgr il . (2.3)
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We add the mutual information M as penalty term to the quadratic cost function,
obtaining
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with Aas a Lagrange multiplier and ¥¢ as the desired outputs. The network learns the
training data, and at the same time the penalty term avoids the excessive transmission
of information, i.e., information which might describe the noise. Note that by mini-
mizing the mutual information we are increasing the stochasticity of the network. The
gradient descent learning rule which corresponds to the quadratic cost function (2.4)
can easily be derived. After some algebra we obtain
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with n as the learning step size.



3.0 Simulations

In this section we present the result we obtained by applying our model to a synthetic
data set. For demonstrating the performance of our approach we choose a common
benchmark from the statistic community. The benchmark, which was introduced by
Friedman (1991), is a function of ten variables and is given by
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This function has a nonlinear additive dependence on the first two variables, a linear
dependence on the next three, and is independent of the last five variables (pure
noise). Random values within the unit hypercube were chosen for the ten variables
x;. Then the corresponding response values were calculated according to

Y, =flz)+v, ;  L<tsN, (3.2)

with v randomly generated from a standard normal. The signal to noise ratio is 3.28
so that the true underlying function accounts for 91% of the variance of the response.
Two data sets, one for training and one for testing, were generated using equation
(3.1) and (3.2), with 100 and 300 data points, respectively. The network architecture
consisted of 10 inputs, 15 hidden units and one output. The learning step size was n
= 0.01, and the Lagrange multiplier had a value of & = 1.

Without penalty term the neural network learns the noise and the spurious depen-
dence on the last five variables, which leads to overtraining and a very bad generali-
zation. Figure 1 shows the evolution of leaming with and without the mutual
information regularizer. Without the mutual information regularizer the typical over-
training occurs. After adding the mutual information regularizer to the cost function
the overtraining disappears and the error on the test set remains asymptotically con-
stant. This indicates that the deterioration of the generalization due to the learning of
noise (real or semantic) is now avoided by limiting the amount of information trans-
mitted from the input layer to hidden layer.

Tablel shows the average relative variance (arv) calculated on the test set after train-
ing with and without mutal information penalty term. We see that the mutual infor-
mation penalty term leads to a significant reduction of the generalization error.

4.0 Discussion

In the neural network architecture two regularization effects are incorporated: First,
the mutual information penalty term stops excessive decorrelation between the hid-
den units, which usually takes place in multilayer perceptrons trained with backprop-
agation learning rules. Backpropagation activates all the resources of the network for
learning the training set, which leads to a strong decorrelation between the hidden
units. However, by decorrelating the hidden units also the noise is leamnt. The mutual
information penalty term acts as an entropy that tries to uniform the activations in the
hidden layer, i.e., tries to stop decorrelation. The second regularization effect is pro-
vided by the stochasticity of the network. An increase of the stochasticity of the net-
work leads to a reduction of its complexity. The stochasticity is regulated by
regulating the transmission of entropy between the input and the hidden layer
through the Lagrange multiplier in the cost function.
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TABLE 1.

Model arv (test set)
BP-Pott-Net 0.36
BP-Pott-Net with mut. inf. 0.28
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