Neurocomputing 147 (2015) 174-184

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

NEUROCOMPUTING

NEUROCOMPUTING
LETTERS

Self-organizing maps for hand and full body tracking

@ CrossMark

Foti Coleca®“*, Andreea State *°, Sascha Klement ¢, Erhardt Barth ¢, Thomas Martinetz ®

2 Institute for Neuro- and Bioinformatics, University of Liibeck, Ratzeburger Allee 160, 23538 Liibeck, Germany'
P University “POLITEHNICA” of Bucuresti, Splaiul Independengei 313, 060042 Bucuresti, Romania®

¢ gestigon GmbH, Maria-Goeppert Strafe 9a, 23562 Liibeck, Germany’

ARTICLE INFO ABSTRACT

Article history:

Received 10 April 2013
Received in revised form

27 October 2013

Accepted 31 October 2013
Available online 20 June 2014

Keywords:

Body tracking

Hand skeleton tracking
Gestures
Self-organizing maps
Kinect

TOF cameras

Touch-free gesture technology opens new avenues for human-machine interaction. We show how self-
organizing maps (SOM) can be used for hand and full body tracking. We use a range camera for data
acquisition and apply a SOM-learning process for each frame in order to capture the pose. In a next step
we introduce an extension of the SOM to 1D and 2D segments for an improved representation and
skeleton tracking of body and hand. The proposed SOM based algorithms are very efficient and robust,
and produce good tracking results. Their efficiency allows to implement these algorithms on embedded
systems, which we demonstrate on an ARM-based embedded platform.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The challenge of human hand/body tracking and pose estimation
has gained much attention during the last years, mainly driven by
the mainstream interest toward building usable gestural interfaces
for consumer applications. This was seen with the introduction of
gaming consoles that can track a user's hand gestures (Nintendo Wii)
or body (Microsoft Kinect), which showed that gesture interfaces
can be used to create rich interactive experiences. Hand tracking
alone can be used in a wide variety of applications and represents a
milestone in human-machine interaction. A major catalyst was the
introduction of new technologies and devices designed for 3D image
acquisition. Depth cameras provide a more favorable framework for
tracking algorithms, simplifying the task of three-dimensional model
fitting, giving algorithms that use them an edge over 2D image
processing techniques.

Nevertheless, these are both difficult problems, especially
estimating the hand pose: the hand itself is a complex object,
having an extremely large state space due to its 27 degrees of

* Corresponding author at: Institute for Neuro- and Bioinformatics, University of
Liibeck, Ratzeburger Allee 160, 23538 Liibeck, Germany.

E-mail addresses: coleca@inb.uni-luebeck.de (F. Coleca),
state@inb.uni-luebeck.de (A. State), sascha.klement@gestigon.de (S. Klement),
barth@inb.uni-luebeck.de (E. Barth), martinetz@inb.uni-luebeck.de (T. Martinetz).

! http://www.inb.uni-luebeck.de.

2 http://www.upb.ro.

3 http://www.gestigon.de.

http://dx.doi.org/10.1016/j.neucom.2013.10.041
0925-2312/© 2014 Elsevier B.V. All rights reserved.

freedom [1]. Because of this complexity, its projection in images
often involves self-occlusions which, coupled with the chromatic
uniformity of the skin, makes segmentation and feature detection
very difficult. With speeds reaching up to 5ms~! for translation
and 300°s ! for wrist rotation [2], consecutive frames of a moving
hand can have very little in common (especially with a slow
camera frame rate), making it a difficult object to track. Adding to
these difficulties, the algorithms have to cope with various back-
grounds and lighting conditions.

3D cameras can alleviate some of the difficulties described
above, having multiple advantages over standard color image
processing. A critical step of any pose estimation algorithm is
object segmentation. By having access to the depth map of the
scene, objects can be segmented accurately based on their shape
and distance to the camera, regardless of texture, skin color or
background clutter. With active 3D technologies (such as time-of-
flight or structured light), there is even no need for a uniform or
consistent scene illumination. This is a very useful feature for real-
world applications, where consumer devices are being used by a
variety of people in a variety of environments. Our work focuses
on building a hand/body pose estimation and tracking algorithm
for such a 3D camera, that is both accurate and has low com-
putational costs.

In this article we present an extension of the hand pose
estimation method proposed in [3], as well as a practical imple-
mentation of the algorithm. It is all based on the original work
introduced in [4], a novel approach to pose estimation by the use
of self-organizing maps (SOM) [5] to fit a topology of the human

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.10.041
http://dx.doi.org/10.1016/j.neucom.2013.10.041
http://dx.doi.org/10.1016/j.neucom.2013.10.041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.10.041&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.10.041&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.10.041&domain=pdf
mailto:coleca@inb.uni-luebeck.de
mailto:state@inb.uni-luebeck.de
mailto:sascha.klement@gestigon.de
mailto:barth@inb.uni-luebeck.de
mailto:martinetz@inb.uni-luebeck.de
http://www.inb.uni-luebeck.de
http://www.upb.ro
http://www.gestigon.de
http://dx.doi.org/10.1016/j.neucom.2013.10.041

E Coleca et al. / Neurocomputing 147 (2015) 174-184 175

upper body inside a 3D point cloud. We show that this topology
can be successfully extended to a full body as well as a human
hand. A further extension of the algorithm is presented, in which
the original SOM is extended to include not only nodes but also
the segments and planes between the nodes of the topology.
This has the advantage of requiring less nodes than the original
topology, offering a more realistic representation of the human
hand and being more stable overall.

The algorithms are of a low enough computational cost that
they can be implemented on an embedded platform and used to
track subjects in real time. We will show an implementation of
both the hand/body SOM and the segment-plane extension for the
hand on an OMAP-4430 powered Pandaboard, using time-of-flight
(PMD camboard) or structured light (Microsoft Kinect) cameras as
an input device for 3D data. Our algorithm is able to track the user
at the native framerate of the camera.

2. Related work

The most commonly used methods to gather accurate data for
skeleton tracking are marker-based motion capture systems in the
case of the whole-body skeleton or by the use of a “data glove” for
hand pose estimation [6]. These methods are cumbersome and can
be used only in controlled environments. Thus, marker-less pose
estimation is a heavily researched area in image processing —
recent surveys cite dozens of papers [2] on hand pose estimation
and several hundred [7] on human motion capture and analysis.

For example, the authors of [8] use kinematic models and build
a hand state model, which consists of a set of lines and points
generated by the projection of the hand model to the image plane.
Hand pose estimation based on features derived from projections
of the hand and its shadow is presented in [9]. The method
requires controlled background and lighting and is susceptible to
occlusion. In [10] and [11], the authors use a feature extraction
approach based on Curvature Scale Space to achieve translation,
scale and rotation invariant recognition of hand postures. Again,
the method is tested in a controlled environment, as it requires an
accurate segmentation of the hand contour.

The authors of [12] introduce a machine learning architecture
for matching image features to 3D hand example poses, which
requires to solve an optimization problem based on Bayes' rule.
Another approach is to estimate the hand pose with a database of
synthetic hand images. For instance, in [13] an indexed image
database is used to retrieve the closest hand match, with an
adapted chamfer distance and line matching algorithm. In [14], the
authors implement a cascade of increasingly complex classifiers to
determine the hand pose from synthetic training data. In order to
better handle occlusions, particle filters can be used. In [15], the
authors apply a meta-descent algorithm to minimize the distance
between a predicted position and the observed position, while
particle filters predict new sample positions and help the optimi-
zation algorithm to recover from local minima. As shown in [16],
the combined usage of intensity images and range information
provides a good framework for body tracking.

Regarding performance, most algorithms surveyed by Erol et al.
[2] stay below 30 frames per second (which we regard as being real-
time), with only one exception [17]. Other solutions leverage the
computing power of the GPU in order to achieve high frame rates
[18-20]. Most existing approaches are aimed at high-performance
desktop machines.

3. The SOM tracking algorithm

The node-based SOM tracking algorithm (which we will refer
from now on as the Standard SOM Algorithm) starts with the

initialization of its network weights, followed by the iteration of
two steps: the competition and the update of the weights. At every
iteration, a sample point from the dataset is randomly chosen.
First, during the competition phase, a winner node (i.e. the weight
with the minimum Euclidean distance to the sample point) is
computed.

Given a network with n neurons and a sample point x € R3, we
determine the winner node i as follows:

f:arg{min||x—wi||2}, i=1,...,n)
1

with w; e R® being the weight of node i. Next, the update phase
aims at decreasing the distance between the winner-node weight
and the sample point, by an amount given by the learning rate e(t).
First, let us define the learning rate function as

_) €f t/tmax
e(t) =¢€; (E) , (2)

where ¢; is the initial learning rate, €ris the final learning rate, t is
the current iteration, and t,,, is the maximum number of itera-
tions performed on the network. Then, the weight w; is updated at
step t according to

W;(t+1) = w;(6) + ()X —W; (D). 3

The standard SOM algorithm then also applies a neighborhood
update, in the sense that not only the winner-node weight is
updated, but also the weights of the neighbor-nodes (in general
with a smaller learning rate). In our case we updated only the
direct topological neighbors of the winner node according to (3),
but with a learning rate of é(t) = e(t)/2.

These steps are repeated for hundreds or thousands of itera-
tions. This makes the skeleton graph fit to the point cloud and stay
within its confines.

4. Topology expansion

First, we expand the 44-node upper body topology presented
in [4] (Fig. 1a) to two topologies, one representing the whole body
(Fig. 1b), and the other representing the human hand (Fig. 1c).
The models were chosen so they mimic the anatomical landmarks
of their real-world counterparts - limbs and joints for the body
and phalanges and interphalangeal joints for the hand. The rigid
bodies (torso and palm) are modeled as a mesh. Both produce
good qualitative results in our implementation. The end results
achieved with the standard SOM for the hand and body are shown
in Figs. 2 and 3, showcasing the method's robustness.

It can be seen that the hand tracker is able to cope with missing
data (Fig. 2b,c as white areas on the palm), the skeleton's topology
remaining stable, the fingers being retracted in the palm. This is
considered to be correct behavior, as the fingers will be reported as
“bent” to a subsequent gesture recognition algorithm.

For the full-body tracker, the topology is robust enough to
perform a good fitting over the subject's body, even when there is
occlusion occurring. This is shown in Fig. 3b-d: it can be seen that
when the user crosses his arms in front of him the skeleton retains
its geometry afterwards, even if one of the arms occludes the
other. This is true also for the rest of the topology nodes, such as
the torso. Fig. 3a shows how the skeleton tracks the body shape in
3D, following the user's leg even though it is not in the same plane
as the body.

Such configurations would be very hard to track using just a
2D image, particularly because of the juxtaposition of the hands
and torso. This issue is resolved by using a 3D camera, which can
differentiate between surfaces of various depths.

176 F Coleca et al. / Neurocomputing 147 (2015) 174-184

IW

i

Fig. 1. SOM topologies: (a) The upper body topology proposed in [4]; (b) and (c) expanded topologies for the whole body and the hand; and (d) the proposed extended SOM

hand topology for segments and planes.

Fig. 3. The SOM skeleton results for various body poses.

This approach is robust enough for most poses, but does not
guarantee that the topology will resemble the actual pose. We
provide the example of a subject that brings his arms close to his
body as to create a continuous region in 3D space, then extending
them to his sides. Sometimes it happens that the extremities of the
topology continue to be attracted by the large amount of points in
the torso and subsequently remain in that area. This results in
a topology following the arm's shape up to the last node, which,
instead of being in the region of the subject’s palm, will be inside
his torso, connected by a very long edge.

Generally, the problem fixes itself after some time, but to speed
recovery, we introduce an update rule that limits the length of the

edges that connect the nodes, effectively limiting cases like the
one described. At every update step the distance d(w;,w;,)
between the current node w; and a specific neighbor w;, referred
to as an “anchor”, is calculated If it exceeds a certain threshold 6,
we set

(W; _wf'a)
[lw; —ws;, Il2

w; =w;,+0- 4)

This rule ensures a maximum distance @ between the current
node w; and the anchor wy;,. This will prevent very large distances
to occur between nodes. The anchor is selected for each node as

E Coleca et al. /| Neurocomputing 147 (2015) 174-184 177

the one of the node's neighbors that is closest to the center of the
topology.

Such a correction works well for most cases, but sometimes
structural deficiencies of the topology of the standard SOM occur.
Taking simple nodes (zero-dimensional objects) for representing
extended three-dimensional objects has intrinsic deficits. When
trying to fit the topology inside the point cloud, its behavior is not
always consistent to that of the object it is tracking. Sometimes
nodes which are responsible for the arm are closer to data points
of the torso than torso nodes, thus resulting in an unstable
topology. This is more apparent in the case of the hand, where
the fingers are very close and can touch and occlude each other
during normal hand movements.

In the next section, we propose a possible solution, modifying the
topology so that not only the nodes will participate in the competi-
tion and update phase, but also the segments (one-dimensional
objects) between the nodes and planes (two-dimensional objects)
defined by them. This results in a much better representation of the
object that we want to track and also provides us with the means
to apply further corrections or constraints on an anatomical and
anthropometric basis. We present this extension only for the human
hand, as it is influenced to a greater degree by the problem
described above, but it can be applied to the body skeleton as well.

5. The extended SOM

Our proposed algorithm extends the competition and the
update step to 1D and 2D network segments. The 1D-segments
are the lines between pairs of connected nodes, and the
2D-segments are the triangles determined by triples of connected
nodes. 1D-segments allow for a more accurate representation of
the fingers, and the 2D-segments model the palm of the hand. By
segment updates we aim at minimizing the average distance
between network segments and points from the dataset (point
cloud of the hand provided by the 3D-camera). We now have not
only elements of dimension zero (nodes) like in the standard case
described in the last section, but also elements of dimension one
and two for representing the data distribution. Since the new
segments and planes approximate the data over a larger area, we
can reduce the topology to a simpler one. The fingers will have
two segments instead of three (the thumb one instead of two),
and the mesh that modeled the palm can be replaced by three
triangles. The new topology can be seen in Fig. 1d.

This approach is motivated by the fact that a hand-like
topology involves a difficult separation between the nodes corre-
sponding to different fingers. A node that belongs to one finger can
easily be attracted by another finger, given the topological close-
ness. This may lead to an erroneous tracking of the hand and
destroy the topological relations. With the 1D and 2D segments
we can represent fingers and parts of the palm more accurately
and expect the self-organizing maps to be less prone to this type
of errors.

Wi O

-
p oW

5.1. The extended SOM algorithm

The competition phase in our extended SOM algorithm deter-
mines whether a single node or a 1D-segment or a 2D-segment is
closest to the randomly chosen sample point x. Depending on this
result, the update phase will either perform a classical node
update as shown in Eq. (3) or a segment update.

The distance to a 1D-segment [w;; w;] (see Fig. 4a) is deter-
mined via the projection point p of x onto the given segment. Let
us define s; = w;—w; and s;; = w; —w;. Then, we may write p as

P=w;+7;sji, 0<nm; <1 (5)
and
P=wW;+ns; 0<nm; <1 (6)

with #;4+#1; = 1. Given the unit vectors $;; and $j, the coefficients
nj; and #;; are given by

_(X_Wi)Téji
AT sl @
_(X*Wj)Tgij
P syl ®

The squared distance ||d;j]|?> of X to the 1D-segment [w;; w;] is
simply

Id;l1> = Ix—plI.)

The 1D-segment (w;; Wi that is closest to x is determined by

(f,f):arg{min\ld,-j\\}, iL,j=1,...,n. (10)
ij
Evidently, the above equation applies only to pairs of connected
nodes (i,).

In the same way the distance to a 2D-segment (see Fig. 4b) can
be determined. With s; = w;—w; and s;; = W, —w; we may write
p as

P=W;+1;Sji+1Ski» 0<1j, Mu<1, ni+n<1. (11
Similarly,
P = W; +17;iSij +1],Skj» 0< N Mg < 1, Nij+1 < 1 (12)
and
P =W+ Sic+MuSik: 0<my. Mup <1, my+n <1 (13)
The coefficients 7;; and 7, are given by

o X — W) §ji — (= W) $1)(81851) (14)

g Isji I (1—($8j0)°)

X — W) §p — (X —wW)T$:)(S1 8

nki:(1) ki ((1)]l)(ki]l). (.15)

~T ~
I8 11— (858)%)
Since there are only two degrees of freedom, these two coefficients

determine also the other four coefficients. From simple geo-
metrical considerations it can be shown that ny =ny, 7y =

b

Fig. 4. (a) The projection p of sample point x onto 1D-segment [w;; w;]. (b) The projection p of sample point x onto 2D-segment [w;; W;; Wy].

178 E Coleca et al. / Neurocomputing 147 (2015) 174-184

Mg =M A 1+ iy ~+ 1+ M+ 1k + 111 = 2, Which allows to calcu-
late them. The squared distance [|d;||? of x to the 2D-segment
(triangle) determined by [wy;wj;w,] is again simply [dyl|> =
Ix—plI2.

After having determined whether one of the nodes, a 1D-segment,
or a 2D-segment is closest to the randomly chosen sample point, the
update procedure takes place. The simplest situation is illustrated in
Fig. 53, when a single node is closest and has to be updated. This is
done according to the standard SOM algorithm. In case a segment has
to be updated, the nodes [w;;w;] which determine the segment
have to be moved such that the distance Ild; |l is reduced. We derive
the respective movement by gradient-descent minimization on the
squared segment distance. For node j we obtain

%%5]‘: _%aiwj(x—p)T(x—p)
2 xp
:Ww—p)
= sg\f,';s;(X—p)Hlﬁg:i(X—P)
=1;(X—p) (10

since s;; is perpendicular to Xx—p and aszi/awj gives the identity
matrix. op’ /ow; denotes the matrix
T
(al) — %P 17y
W)y ow,
Given the above result with the symmetry in i and j, the two
displacements applied to the winner 1D-segment nodes are

Aw; = e(t);;(x—p) (18)

The movement of the two nodes is orthogonal to the line segment
and illustrated in Fig. 5b.

In case a 2D-segment is closest, like in Fig. 5¢, three nodes have
to be updated. Gradient descent analog to above yields

1ad,‘2jk 1 0 T
*jawj = *ETWJ_(X*P) x-p)
_op’
—mj(X—P)
a
X
.
AWt + 1)
w;(t)

~O(W; +17;Sji + ki)

(X —
ow; (X—Pp)
_ M 1 9sj
= aszji(x -pP)+ Wjimj(x -p)
=1;;(X=Pp). (20)

Again, using the symmetries in i, j and k, the three displacements
applied to the winner 2D-segment nodes are

Aw; = e(tyr;;(X—Pp) = €(t)1];;(X—P) @n
Aw; = e(t)r;;(X—P) = €(0)17;;, (X~ P) (22
Aw; = e()n;(X—P) = €(O)7];;(X—P). (23)

this time orthogonal to the triangle.

A short discussion is required concerning the segment updates.
Since the displacements orthogonal to the line or triangle are
not infinitesimally small but of finite size, with each update the
respective line or triangle will be slightly enlarged. With many
update steps, the network might increase over the borders of the
data space. Several solutions to this problem are possible. The
most canonical one is to add a “spring-like” term, which has to be
weighted such that an appropriate shortening of the distances of
the updated nodes takes place with each update step. That is, for
each pair (w;, wj) of nodes that are updated, the distance between
them is shortened according to

AWI‘ =05 (Wj —W;j) (24)

AWj = (35(W,' — Wj) (25)

with Js as the spring constant. The optimal magnitude of the
spring constant depends on the topology as well as the number of
update steps. We have chosen &; = 10~ °, with good results and a
stable topology for 5000 iteration steps.

Another solution to the problem is to constrain the segments of
the topology to constant lengths. The lengths are first calculated
after the first iteration, as the topology changed from its default
state to one which better approximates the anthropometric
features of the tracked hand. The distances are then used to
constrain neighboring nodes after an update, so that the topology
does not shrink or expand. As the hand dimensions effectively
remain the same in 3D space, these distances can be used regard-
less of hand movements.

The second solution was used for the embedded implementa-
tion which will be presented in Section 6. Good results were
achieved, especially in the case of hand poses with fingers held

¢

Wit +1)
Ewi<t)

w;(t)

Fig. 5. (a) Weight w; is displaced towards the data point x along the direction given by vector x—w;. (b) Weights w; and w; are displaced towards the data point x along
directions parallel to the vector formed by x and its projection p. (c) Weights w;, w; and wy, are displaced towards the data point x along directions parallel to the vector

formed by x and its projection p. The closer p is to a node, the larger its update.

E Coleca et al. /| Neurocomputing 147 (2015) 174-184 179

Fig. 6. Starting from a frame captured with the Kinect, we extract the hand based on the closest object assumption. We remove the points corresponding to the forearm and
obtain the segmented hand and the 3D point cloud used for the tracker's learning stage.

Fig. 7. The extended SOM tracker converges to the open palm topology, for both left and right hands.

close together: as the topology segments remain constant, the
fingers are kept straight and do not bend or shrink, as they did
with the standard SOM algorithm implementation.

5.2. Results and evaluation

Our tracking algorithm uses a Kinect device (Fig. 9b) for 3D
data acquisition. The points corresponding to the hand are
extracted with a threshold segmentation performed on the given
depth frame, based on the assumption that the hand is the closest
object to the camera. The removal of forearm points is performed
based on morphological erosion, followed by detection of the
center of the palm, using the distance transform. This yields the
point cloud our algorithm works on (Fig. 6).

In the beginning of the tracking procedure we first have to
initialize the network. This is done by translating the open-hand
topology to the center of the hand point cloud. The user also has to
present an open hand that is pointing upward. In its default state,
the topology size is that of an average hand, but it adapts to the
user's hand quickly, after the first few frames. This way, the match
does not have to be precise, and the SOM will conform to the hand
even if the fingers are not held completely separated or if the hand
is not completely straight. The extended SOM algorithm is applied
to each individual frame, each time with 5000 training steps
(a training step consists of a random choice of a data point,
followed by a competition and update step), with the following
frames using the previous position of the SOM topology as a
starting point.

In each new frame, we perform a training during which the
network receives as input the data points from the given hand
point cloud. Fig. 7 shows how the hand network has converged
into the point cloud of a given frame, for the left and right hand
respectively. As desired, the network represents the given hand
topology by minimizing the mean squared distance between the
data points and the network with its 1D and 2D segments.

Fig. 8 shows the results obtained with the extended SOM
algorithm on a recorded dataset of a number of gestures — open
palm, four extended fingers (index, middle, ring, little) and three
extended fingers (thumb, index, middle). For a qualitative evalua-
tion of the algorithm we have extracted four frames — the series of

pictures in the left column — showing the convergence of the
topology. We have then assessed the quantitative performance
of the algorithm as the error between the fingertip nodes of
the topology and manually labeled fingertips on the dataset.
We show this in the right column, as the root mean square error
in centimeters over time.

6. Embedded implementation

As mobile platforms shrink in size, gestural interfaces will start
to become a viable alternative to touch-based interaction — the
user can only do so much with a limited amount of touchscreen
real estate, before his fingers start to get in the way. Although
hands-free gesture control is not a new technology, it has seen
little use in mobile computing. Almost every commercial software
framework on the market today is aimed at desktop PCs, due to
the computing power required by the algorithms they use.

Commercially, there are a number of solutions for desktop PCs,
such as the Omek Grasp and Beckon,” the SoftKinetic iisu SDK> and
the Microsoft Kinect for Windows,® which work with existing 3D
cameras and provide a framework for body tracking and gesture
recognition.

Probably the most widely known body tracking solution is the
Microsoft Kinect for Xbox360. It employs machine learning algo-
rithms to estimate the user's body posture [21], which is then used
as input for interactive games on the console.

Regarding hand pose estimation, a recent collaboration between
Intel, Creative and SoftKinetic released the Creative Interactive
Gesture Camera Developer Kit.” It is a near-range time-of-flight
camera that allows tracking of the user's hand up to 1 m. While it
does not fully model the hand in 3 dimensions, it does provide
the extended fingertips’ position and a few anatomical landmarks
(palm, elbow).

4 http://www.omekinteractive.com/solutions/.

5 http://www.softkinetic.com/en-us/solutions/iisusdk.aspx.
5 http://www.microsoft.com/en-us/kinectforwindows/.

7 http://www.click.intel.com/intelsdk/.

http://www.omekinteractive.com/solutions/
http://www.softkinetic.com/en-us/solutions/iisusdk.aspx
http://www.microsoft.com/en-us/kinectforwindows/
http://www.click.intel.com/intelsdk/

180 F Coleca et al. / Neurocomputing 147 (2015) 174-184

a b

Thumb —&—Index

—— Middle --x%- Ring --+- Little

1.4

1.2

1.0

RMSE [cm]

0.0
1 6 11 16 21 26 31
Frame index
Thumb —e—Index —e— Middle --<- Ring - -+ - Little
1.4
A
1.2 .
_ 10
5
— 0.8
w
g
2 0.6
0.4
0.2
0.0
1 6 11 16 21 26 31
Frame index
e f
Thumb —&—Index —&— Middle --%- Ring --+- Little
1.4
1.2
_ 10
€
L
w
(%)
=
o
So—-- X
sem -
‘
1 6 11 16 21 26 31

Frame index

Fig. 8. Qualitative (left column) and quantitative (right column) assessment of the extended SOM topology on various hand poses: open hand (a,b); four extended fingers (c,d);

and three extended fingers (e,f).

6.1. Hardware

The hardware that is used in our implementation of the above
algorithms consists of two main parts: the ARM development platform
and the 3D camera, which provides input data for the algorithm. The
resulting images are displayed on a standard computer monitor.

As an embedded platform suitable for mobile computing we
have chosen the PandaBoard ES (Fig. 9a), which is the next iteration
of the popular Pandaboard platform. It is powered by a Texas
Instruments OMAP4460 system-on-chip (SoC). The processor itself
is used in a number of mobile devices available on the market such

as the Samsung Galaxy Nexus. The board features a 1.2 GHz dual-
core Cortex-A9 ARM CPU, a PowerVR SGX 540 graphics processing
unit, 1 GB DDR2 SDRAM, two USB 2.0 ports, Ethernet connection
and various other peripherals.

The operating system of choice is Linux. We are using a Linaro
distribution, which is built and optimized for the ARM architecture
implemented in OMAP4460, with the standard toolchain installed.

3D cameras have historically been either too expensive or of
too low quality to provide an accurate representation of the
surrounding environment. This changed when Microsoft unveiled
in 2010 the Kinect, a peripheral device for the Xbox360 gaming

E Coleca et al. /| Neurocomputing 147 (2015) 174-184 181

Fig. 9. (a): The embedded platform used

Fig. 10. Depth stream comparison: Microsoft Kinect (left) and PMD CamBoard Micro (right).

console. The Kinect is able to provide reliable 3D data of up to
15m at the same time with (horizontally offset) RGB data.
Although the native resolution of the device is 640 by 480 pixels,
its spatial resolution is about 4 times lower, varying with depth
and object geometry [22]. A comparable time-of-flight (TOF) 3D
camera at that time was available at a price 20 times higher than
Microsoft's device. We have chosen the Kinect as the main camera
in this implementation, together with a multi-platform commu-
nity developed driver, as there are no official drivers for the Linux
operating system used on the PandaBoard. Depth is provided with
11 bits of precision, although beyond 4 m the accuracy lowers
significantly. The minimum distance is 40 cm, at which point the
reflected light starts saturating the infrared camera. Although
detail varies with distance and object geometry [22]|, we have
found that there is enough resolution in the depth map provided
by the Kinect between 40 and 100 cm so that the fingers are
separated, and the hand can be recognized.

The second device used is a time-of-flight camera, the PMD
CamBoard. It can output a depth stream at a resolution of 207 x
204 pixels and 30 fps. Due to the small form factor of the camera
(85 x 35 x 40 mm) and subsequent size of the LEDs, the distance is
limited, accurate readings being made from 20 cm up to 150 cm.
The driver for the camera can provide a flag image for each frame,

in which invalid or low signal pixels are marked and can be used to
filter the depth map so that only valid data will be used.

A comparison between the two cameras is shown in (Fig. 10). On
the left, the Kinect provides a large but blotchy-looking image. The
black areas are shadows, objects that do not reflect infrared well, or
areas where the depth computation algorithm failed to produce
results. On the right, the PMD CamBoard provides a small and
blurred image. At large depths the signal is too weak to be captured
back by the sensor, which produces large amounts of noise. There is
minimal shadowing due to the LED lights, which are placed closer to
the sensor compared to the Kinect. An image artifact of the PMD
camera is the thickening of close objects due to the light saturating
the sensor. In order to overcome this, the integration time can
be adjusted so that the sensor captures less light, but as a direct
consequence the maximum distance is reduced.

6.2. Implementation description

In contrast to other algorithms, which use only depth maps
(usually as a pre-processing step for easier background segmenta-
tion) [2], the SOM approach needs the actual 3D point cloud,
which contains the coordinates in space of every pixel in the
image, not just the distance from the camera. While this is done

182 F Coleca et al. / Neurocomputing 147 (2015) 174-184

automatically by the driver of the PMD CamBoard, the Kinect only
provides the depth map. As the intrinsic camera properties (field
of view, focal length, pixel size) are known, one can calculate the
3D positions of the points in the 2D depth map.

Because the method requires only the points in 3D space
that belong to the subject, they must be separated from the
environment background. This is achieved by clipping the points
outside a bounding box for the body, and choosing the closest
object to the camera that is bigger than a threshold size in the case
of the hand. We have used the expanded SOM topology for the
body and hand and also the extended SOM model that has been
described in the previous section.

In order to be able to run this algorithm in real-time (30 fps or
more) on the embedded system, a number of optimizations have
been made. We aimed to access memory as little as possible, to
prevent the large overhead penalty, and keep most data in the
cache. The PandaBoard also features a single-instruction-multiple-
data (SIMD) pipeline that can significantly speedup computations.
Repetitive operations on large data can be significantly accelerated
using the NEON engine. By filling up the pipeline, data can be
effectively processed in parallel, giving a performance boost to the
algorithm. For non-critical data, in order not to incur the perfor-
mance penalty of floating point computations, we are using fixed-
point arithmetic.

One notable feature of the algorithm with regards to perfor-
mance is that its complexity does not depend on the input data.
Indeed, regardless of the size of the image or the point cloud, the
algorithm will only process as many points as there are iterations.
For example, in the case of the standard SOM algorithm, if a
topology is updated for 5000 iterations, it will not matter if the
hand point cloud has 500 or 50,000 points, there will always be
only 5000 points that will be randomly chosen from the cloud for
the competition/update phase. This means that for the smaller
point cloud there will be points chosen multiple times, and for the
larger one there will be points that are not chosen at all, but since

the algorithm is stochastic in nature, the points will be chosen
uniformly and the topology will be able to fit to the point cloud.

The performance of the standard SOM algorithm is thus related
only to the parameters of the learning process: the number of
iterations, the number of nodes in the topology and the maximum
number of neighbors that a node can have (e.g. 4, in the case of the
44-node topology shown in Fig. 1¢). This is a useful feature to have
as the performance (i) will not depend on the input data and
(ii) can be throttled to a required computational load for lower-
power systems. Computationally, the algorithm makes use only
of simple operations, like addition and subtraction. The use of
a square root operation is also not required as the distance is only
used in comparisons.

In the case of the extended SOM, the computational load is
increased, as distances are calculated in a more complex way for
segments and planes and require the use of more complex
operations like division and square root. Nevertheless, the overall
complexity does not depend on the input data as well and
can be adjusted by changing the learning parameters to suit the
application.

Of course, the complexity of supporting algorithms has to be
considered, too, which might depend on the input data size, such
as the segmentation algorithm used to get the hand point cloud
prior to the SOM.

6.3. Results

After implementing the standard SOM for the whole-body and
the human-hand skeleton, we have obtained the results shown in
Figs. 2 and 3. After all the optimizations described in the previous
section have been implemented, we have been able to success-
fully reach our target of real-time performance, at 30 frames
per second.

The results for the extended SOM can be seen in Figs. 11 and 12.
To solve the problem of expanding segments we have used the

2117

Fig. 11. The extended SOM results for various hand poses.

a b

biddd

Fig. 12. The extended SOM results for difficult hand poses.

F Coleca et al. / Neurocomputing 147 (2015) 174-184 183

segment length constraint approach, as described in Section 5.1,
with good results. Although the competition and update phases
are more complex than those of the standard SOM, the algorithm
still runs in real time with the same number of iterations, as
the new topology has less than half the nodes of the old one
(16 vs. 37). In Fig. 11 we show five hand poses taken directly from
the real-time video on the embedded platform. The qualitative
performance is similar with the one of the node-only SOM
implementation. The topology converges correctly on the straigh-
tened as well as the bent fingers.

In Fig. 12, the corresponding poses in which the straight fingers
are held together are shown. The fingers remain in the correct
places and do not scatter — the new segment-plane updates solve
the problem of the previous SOM implementation that appeared
when data points were too close to each other and the nodes from
one finger wandered into the space of other fingers. This allows for
a more robust representation of the hand gestures, as melded
fingers (that could come from out-of-plane hand rotations or hand
which are too far away for the cameras to distinguish between
fingers) are no longer a problem.

7. Conclusion

In this paper, we have presented a self-organizing map algorithm
that can be used to track the full body and hand skeleton, in real time.
The algorithm is able to produce a robust estimate of the human body
and hand pose, at comparatively low computational cost.

We also proposed an extension to the standard SOM algorithm
in which we represent the data cloud not only with the nodes of
the network but also with the line segments and planes between
the nodes. This approach allows an improved representation and
tracking of the hand pose due to its anatomical fidelity compared
to the standard SOM topology. The tracker can be further
improved by adding anatomical and anthropometric constraints
to the hand model, such as limiting the size of the palm or the
degree of movement of the fingers and finger joints.

The computational efficiency of the method makes it ideal for
implementation on a low-powered system such as an embedded
platform. We have implemented both the standard and the
extended SOM algorithm, with good qualitative results, as well
as real-time performance on a Pandaboard ES system. Our algo-
rithm could be used in embedded devices, which need low-power,
low-complexity solutions to enable gesture technologies - grant-
ing extended interaction capabilities to current and future mobile
interfaces. Natural user interfaces can be used to enhance the
usability of devices ranging from the current mobile devices to the
next generation head-mounted displays.

From the testing done with the Microsoft Kinect and PMD
CamBoard we concluded that the method is robust and can adapt
to any 3D data that is being supplied, as long as it is accurate
enough, meaning that the proposed algorithm is able to work with
a wide range of cameras, possibly the ones that will be used in the
next generation of gesture-enabled mobile computing interfaces.
Another benefit is that the self-organizing map approach can
easily be extended to any deformable object that needs to be
tracked by simply changing the network topology. This presents a
definite advantage over methods that use machine learning to
recognize the objects, as the self-organizing map algorithm need
not be trained in advance.

Acknowledgments

This research is supported by the German Ministry of Education
and Research (BMBF) under grant number 011S10049B, the EXIST

program of the German Ministry of Economics and Technology
(BMWi), and by the Graduate School for Computing in Medicine
and Life Sciences funded by Germany's Excellence Initiative
[DFG GSC 235/1]. A. State would like to thank for the support by
The German Academic Exchange Service Programme “Ostpart-
nerschaften”, the University of Liibeck and The Sectoral Opera-
tional Programme Human Resources Development 2007-2013 of
the Romanian Ministry of Labor, Family and Social Protection
through the Financial Agreement POSDRU/86/1.2/S/61756.

References

[1] G. ElKoura, K. Singh, Handrix: animating the human hand, in: SCA, 2003,

pp. 110-119.

A. Erol, G. Bebis, M. Nicolescu, R.D. Boyle, X. Twombly, Vision-based hand pose

estimation: a review, Comput. Vis. Image Underst. 108 (1-2) (2007) 52-73, http:

//dx.doi.org/10.1016/j.cviu.2006.10.012, ISSN 1077-3142. URL <¢http://www.science

direct.com/science/article/pii/S1077314206002281), Special Issue on Vision for

Human-Computer Interaction.

A. State, F. Coleca, E. Barth, T. Martinetz, Hand tracking with an extended self-

organizing mabp, in: P.A. Estvez, J.C. Prncipe, P. Zegers (Eds.), Advances in Self-

Organizing Maps, Advances in Intelligent Systems and Computing, vol. 198,

Springer, Berlin, Heidelberg, 2013, pp. 115-124, http://dx.doi.org/10.1007/

978-3-642-35230-0_12, ISBN 978-3-642-35229-4 (http://dx.doi.org/10.1007/

978-3-642-35230-0_12).

M. Haker, M. Bohme, T. Martinetz, E. Barth, Self-organizing maps for pose

estimation with a time-of-flight camera, in: Proceedings of the DAGM Workshop

on Dynamic 3D Imaging, Lecture Notes in Computer Science, vol. 5742, 2009,

pp. 142-153. ¢(http://www.springerlink.com/content/006305183070t383/).

[5] T. Kohonen, Self-organizing maps, in: Springer Series in Information Sciences,
1995.

[6] E. Foxlin, Motion tracking requirements and technologies, in: Handbook of
Virtual Environments: Design, Implementation, and Applications, Lawrence
Erlbaum Associates, 2002, pp. 163-210.

[7] T.B. Moeslund, A. Hilton, V. Kriiger, A survey of advances in vision-based
human motion capture and analysis, Comput. Vis. Image Underst. 104 (2-3)
(2006) 90-126.

[8] J. Regh, T. Kanade, Visual tracking of high DOF articulated structures: an
application to human hand tracking, in: J.-O. Eklundh (Ed.), Proceedings of 3rd
European Conference on Computer Vision, Springer-Verlag, 1994, pp. 35-46.

[9] J. Segen, S. Kumar, Shadow gestures: 3D hand pose estimation using a single
camera, in: Proceedings of Conference on Computer Vision and Pattern
Recognition, 1999.

[10] C.-C. Chang, Adaptive multiple sets of {CSS} features for hand posture
recognition, Neurocomputing 69 (16-18) (2006) 2017-2025.

[11] C.-C. Chang, C.-Y. Liu, W.-K. Tai, Feature alignment approach for hand posture
recognition based on curvature scale space, Neurocomputing 71 (10-12)
(2008) 1947-1953.

[12] R. Rosales, V. Athitsos, S. Sclaroff, 3D hand pose reconstruction using
specialized mappings, in: Proceedings of International Conference on Com-
puter Vision, vol. 1, 2001, pp. 378-385.

[13] V. Athitsos, S. Sclaroff, Estimating 3D hand pose from a cluttered image, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2003.

[14] B. Stenger, A. Thayananthan, PH.S. Torr, R. Cipolla, Hand pose estimation using
hierarchical detection, in: Proceedings of International Workshop Human-
Computer Interaction, 2004, pp. 105-116.

[15] M. Bray, E. Koller-Meier, L.V. Gool, Smart particle filtering for 3D hand tracking,
in: Sixth IEEE International Conference on Automatic Face and Gesture
Recognition, [EEE Computer Society, Los Alamitos, CA, USA, 2004, p. 675.

[16] M. Haker, M. Bohme, T. Martinetz, E. Barth, Deictic gestures with a time-of-
flight camera, in: Gesture in Embodied Communication and Human-Compu-
ter Interaction - International Gesture Workshop, 2009.

[17] N. Shimada, K. Kimura, Y. Shirai, Real-time 3D hand posture estimation based
on 2D appearance retrieval using monocular camera, in: Proceedings of IEEE
ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures
in Real-Time Systems, 2001. ISSN 1530-1044, pp. 23-30. http://dx.doi.org/10.
1109/RATFG.2001.938906, 2001.

[18] M. Bayazit, A. Couture-Beil, G. Mori, Real-time motion-based gesture recogni-
tion using the GPU, in: Proceedings of the IAPR Conference on Machine Vision
Applications, 2009, pp. 9-12.

[19] T. Bierz, A. Ebert, J. Meyer, GPU accelerated gesture detection for real time
interaction, in: Visualization of Large and Unstructured Data Sets'07, 2007,
pp. 64-75.

[20] 1. Oikonomidis, N. Kyriazis, A.A. Argyros, Efficient model-based 3D tracking of
hand articulations using kinect, in: British Machine Vision Conference, vol. 2,
Dundee, UK, 2011.

[21] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,
A. Blake, Real-time human pose recognition in parts from single depth images,
in: Computer Vision and Pattern Recognition, 2011, URL (http://research.
microsoft.com/apps/pubs/default.aspx?id=145347).

[2

3

[4

http://dx.doi.org/10.1016/j.cviu.2006.10.012
http://dx.doi.org/10.1016/j.cviu.2006.10.012
http://dx.doi.org/10.1016/j.cviu.2006.10.012
http://dx.doi.org/10.1016/j.cviu.2006.10.012
http://www.sciencedirect.com/science/article/pii/S1077314206002281
http://www.sciencedirect.com/science/article/pii/S1077314206002281
http://dx.doi.org/10.1007/978-3-642-35230-0_12
http://dx.doi.org/10.1007/978-3-642-35230-0_12
http://dx.doi.org/10.1007/978-3-642-35230-0_12
http://dx.doi.org/10.1007/978-3-642-35230-0_12
http://dx.doi.org/10.1007/978-3-642-35230-0_12
http://dx.doi.org/10.1007/978-3-642-35230-0_12
http://www.springerlink.com/content/006305183070t383/
http://refhub.elsevier.com/S0925-2312(14)00705-X/sbref7
http://refhub.elsevier.com/S0925-2312(14)00705-X/sbref7
http://refhub.elsevier.com/S0925-2312(14)00705-X/sbref7
http://refhub.elsevier.com/S0925-2312(14)00705-X/sbref10
http://refhub.elsevier.com/S0925-2312(14)00705-X/sbref10
http://refhub.elsevier.com/S0925-2312(14)00705-X/sbref11
http://refhub.elsevier.com/S0925-2312(14)00705-X/sbref11
http://refhub.elsevier.com/S0925-2312(14)00705-X/sbref11
dx.doi.org/10.1109/RATFG.2001.938906
dx.doi.org/10.1109/RATFG.2001.938906
http://research.microsoft.com/apps/pubs/default.aspx?id=145347
http://research.microsoft.com/apps/pubs/default.aspx?id=145347

184 F Coleca et al. /| Neurocomputing 147 (2015) 174-184

[22] M. Andersen, T. Jensen, P. Lisouski, A. Mortensen, M. Hansen, T. Gregersen,
P. Ahrendt, Kinect Depth Sensor Evaluation for Computer Vision Applica-
tions - Technical Report ECE-TR-6, Department of Engineering Electrical and
Computer Engineering, Aarhus University, Denmark, 2012.

Foti Coleca earned his master's degree in 2011 from
Politehnica University of Bucharest, specializing in
digital image processing. He is currently a Ph.D. student
at the Institute for Neuro- and Bioinformatics and
collaborating with the Neurosurgery department of
the University of Lubeck and the tech startup gestigon
GmbH. His current research focuses on gesture recog-
nition with 3D sensors and medical applications of
gestural interfaces.

Andreea State gained a master in digital imaging and
bioinformatics from University “Politehnica” of Buchar-
est in 2012. She completed her dissertation thesis on
the topic of hand tracking using Self-Organizing Maps
as a collaboration between the University of Liibeck
and University “Politehnica” of Bucharest. Her main
interests are image processing, machine learning and
neural networks.

Sascha Klement holds a master in computer science
with focus on neuroinformatics, machine learning and
image processing. Since 2006, as a research associate
at the Institute for Neuro- and Bioinformatics at the
University of Liibeck and as a project leader at the
Pattern Recognition Company GmbH, he has managed
and carried out numerous research and development
projects in the area of industrial automation and image
processing, pattern recognition, time-of-flight technol-
ogy and human machine interfaces. Since 2011, as a
managing director and CTO of gestigon, Sascha Klement
is responsible for the technical roadmap, algorithm
design and software architecture.

Erhardt Barth received the Ph.D. degree in electrical
and communications engineering from the Technical
University of Munich, Munich, Germany. He is a Pro-
fessor at the Institute for Neuro- and Bioinformatics,
University of Liibeck, Liibeck, Germany, where he leads
the research on human and machine vision. He has
conducted research at the Universities of Melbourne
and Munich, the Institute for Advanced Study in Berlin,
and the NASA Vision Science and Technology Group in
California. Dr. Barth is an associate editor of the IEEE
Transactions on Image Processing.

Thomas Martinetz is full professor of computer science
and director of the Institute for Neuro- and Bioinfor-
matics. He studied physics at the TU Miinchen and
obtained his doctoral degree in Biophysics at the
Beckman Institute for Advanced Science and Technol-
ogy of the University of Illinois at Urbana-Champaign.
From 1991 to 1996 he led the project Neural Networks
for automation control at the Corporate Research
Laboratories of the Siemens AG in Munich. From 1996
to 1999 he was Professor for Neural Computation at the
Ruhr-University of Bochum and head of the Center for
Neuroinformatics.

	Self-organizing maps for hand and full body tracking
	Introduction
	Related work
	The SOM tracking algorithm
	Topology expansion
	The extended SOM
	The extended SOM algorithm
	Results and evaluation

	Embedded implementation
	Hardware
	Implementation description
	Results

	Conclusion
	Acknowledgments
	References

