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Abstract. Computers and other electronic devices shrink and the need
for a human interface remains. This generates a tremendous interest in
alternative interfaces such as touch-less gesture interfaces, which can
create a large, generic interface with a small piece of hardware. However,
the acceptance of novel interfaces is hard to predict and may challenge
the required computer-vision algorithms in terms of robustness, latency,
precision, and the complexity of the problems involved.

In this article, we provide an overview of current gesture interfaces that
are based on depth sensors. The focus is on the algorithms and systems
that operate in the near range and can recognize hand gestures of increas-
ing complexity, from simple wipes to the tracking of a full hand-skeleton.

1 Introduction

In this chapter we focus on gestural interfaces, specifically close-range applica-
tions using a depth camera.

Gesture interfaces are different from the input devices currently in use, and for
them to be successful, they must be designed from the ground up, with natural
human interaction in mind. For this purpose, we first present a gesture taxonomy.

In Section 2 we show how depth cameras affected the field of gesture in-
teraction and algorithmic approaches to hand pose estimation. We then guide
the reader through the state of the art. Thereby, related hardware issues are
presented only briefly, the focus being the algorithmic approaches. While the
main discussion is about solutions which use depth sensors, we also give a brief
overview of methods that are using 2D cameras.

The next section is dedicated to identifying remaining challenges, from hard-
ware shortcomings to environment and ergonomic limitations, also proposing
solutions to some of these limitations.

Section 4 follows recent developments in hardware, commercial solutions, as
well as our own work in the field. We first give an overview on pose estimation
using self-organizing maps and then present a few recent extensions.

Finally, Section 5 provides some example applications of gestural interfaces,
showing the wide variety of fields that can benefit from this technology.
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Fig. 1. Hand and arm movement types, as shown in [1]. Communicative gestures are
the main focus of touch-less gestural interfaces.

1.1 Gesture Taxonomies

Humans use gestures in everyday life to communicate and interact with the
environment. It is not obvious what gestures are and how they can be used to
build a better interface. As a brief introduction to the topic, we summarize, in
Fig. 1, the hand and arm movement taxonomy:

Unintentional movements are movements unrelated to, and not serving a
meaningful communication purpose. These are dependent entirely on the con-
text of the situation, as the same gesture that can be used to communicate
something in a certain situationmight be completely unintentional in another.

Gestures are hand and arm movements done with the specific intention of
communication. Gestures specifically made during verbal communication be-
tween humans are known as gesticulations. They are first separated by their
physicality, as manipulative and communicative gestures.

Manipulative gestures are used to physically act upon objects in an environ-
ment, anddepend on the type of actionbeing done on the objects themselves. In
the context of human-computer interaction, these are found in interfaceswhere
a direct physical contact is required to use them (e.g. touch-based interfaces).

Communicative gestures have a communicational purpose and are used to-
gether with, or instead of, natural speech. Communicative gestures are the
focus of touch-less gestural interfaces. Depending on the situation, any part
of the body can be used to generate them. They can bring a richer means of
interaction, at the cost of being harder to detect and classify.

Acts relate directly to the intended interpretation, are transparent, and can be
understood without prior learning. They can either be mimetic imitating
actions or objects or deictic, pointing gestures, which are further split into
specific, generic, and metonymic (when pointing at an object to signify some
entity related to it). Deictic gestures are useful in simple interfaces, as point-
ing is a natural way of communicating intention. Example applications are
controlling a slideshow [2] or even robots [3].

Symbols are motion short-hand that cannot be used without prior learning.
They can vary greatly between cultures and are deeply rooted in the human
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interpersonal communication. Symbols are useful for gesture interfaces as
humans are adept at learning novel ones, which can be created specifically
to control said interface. The two categories of symbols are referential and
modalizing. The former refer to iconic gestures linked directly to meanings
(e.g. the thumbs-up gesture, rubbing fingers and thumb together to symbolize
money), while the latter are used to change the meaning (mode) of commu-
nication, (eg. shrugging shoulders to indicate uncertainty, which would not
be apparent if one would only read a transcript of the conversation).

2 State of the Art

2.1 Time-of-Flight Sensors and Alternative Hardware

Time-of-flight (ToF) sensors have led to the first compact 3D cameras that could
deliver depth maps at video rate [4]. Early work with 3D cameras was based on
either the Swissranger cameras [5,6,7,8,9,10], the PMD sensors [11,12] or the
Canesta cameras [13], which were all using the same principle of light modula-
tion and phase measurement. Alternatively, some authors were using the 3DV
Zcam [14], which used pulses, and was one of the early compact 3D devices,
but was not widely available. With the introduction of the low-cost Microsoft
Kinect, the field has expanded quickly [15,16,17,18,19,20,21,22]. Limitations of
ToF cameras and open issues are discussed in Section 3.1 as well as in Chapters
1 and 2 of this book.

With stereo-based approaches it is difficult to obtain a dense range map.
This issue is hard to overcome because stereo disparities can only be estimated
at those locations which have a distinct image structure, and it is known that
such image patches are rare in natural images [23]. A further limitation is size,
because miniaturization is limited by the need to have a sufficient baseline.
We have performed extensive tests with different stereo cameras and different
illumination settings, and have always obtained range maps that cannot properly
resolve the fingers of a hand.

3D cameras that use structured light also require a baseline and two optical
systems, for the camera and the projector. Moreover, insensitivity to ambient
light is more difficult to achieve. Limitations are discussed in Section 3.1.

2.2 Algorithmic Approaches

Gesture interfaces can range from simple motion detection to complex, pose-
driven gesture recognition. In this section, we will focus on hand-pose estimation
for gesture recognition. Although there exist a variety of methods to capture the
pose of the hand, most can be categorized using combinations of the following
dichotomies (Fig. 2):

Partial methods estimate the locations of specific features of the hand. These
include approaches from simple geometry and motion parameter extraction
of the hand image such as blob tracking and averaging (hand center) to
fingertip detection and tracking.
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Fig. 2. Pose estimation dichotomies

Full DOF (degree-of-freedom) methods attempt to extract all the kinematic
parameters of the hand pose such as fingertips, joint positions, hand orien-
tation, finger angles etc. This is usually done with a full hand skeleton, via
a model-based approach.

Appearance-based approaches try to infer gestures directly from the appear-
ance of the hand. These methods are used frequently with 2D cameras, as
they are based on a series of 2D views of the 3D object.

Model-based methods estimate the hand position and the specific angles of the
joints using a model or skeleton. The model can vary greatly in complexity,
from using simple geometric primitives to model a hand skeleton, to accurate
computer renderings of hand meshes. Usually these methods attempt to
recover the full degree of freedom of the hand.

Tracking approaches use the previous discovered parameters of the hand pose
to predict the new ones. This approach is used extensively in methods that
need to search over a large state space for the parameters which best match
the current hand configuration (i.e. model-based approaches). Using prior
information, the search can be restricted only to the most probable hand
configurations.

Detection methods disregard temporal information and attempt a single-shot
pose estimation. This is sometimes preferred, as the hand and fingers are
capable of rapid motion, making time coherence assumptions useless [24].

Methods are often combined to balance their strengths and weaknesses. For
example if only tracking is used the tracker may drift away, and when only
detection is used, the hand pose can be unstable.

Hand pose estimation is a particularly difficult problem, which poses a number
of challenges:

Size : compared to the human body (also used in gesture interfaces), the hand
is significantly smaller, with, complex articulated fingers, which are easily
affected by segmentation errors [20].

High dimensionality : human hand models used for pose estimation usually
have around 26 degrees of freedom [24], the state space being very large.
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Skin : The hand is chromatically uniform, which poses a problem for finger
detection using color, especially in complex poses. The skin color is also
heavily dependent on scene illumination, if skin segmentation is used for
hand detection.

Severe self-occlusions : Due to the complexity of the hand, fingers often oc-
clude each other while gesturing. Trying to bypass this problem by forcing
the user into non-self-occluding poses (such as an keeping the hand paral-
lel to the interface) makes for an unnatural interface experience and should
therefore be avoided.

Performance : Real-world interfaces need short response times in order to be
usable. With the ever-increasing computing power available and the intro-
duction of 3D cameras, which simplify tasks like scene segmentation, real-
time performance is no longer an unattainable goal.

2.2.1 Using 2D Cameras
The progress made in the early day of gesture interfaces and the limitations of
the early approaches are comprehensively reviewed in [1]. The authors conclude
that “Although the current progress is encouraging, further theoretical as well as
computational advances are needed before gestures can be widely used for HCI”
(Human-Computer Interaction). The review emphasizes the popular distinction
between model-based and appearance-based approaches and separates between
volumetric and skeletal hand models. Regarding applications, a distinction is
made between manipulative and communicative gestures. We may conclude that
many of the conceptual issues had been clarified early but still, we had to wait for
many years until a more mature sensing technology and a few new algorithmic
ideas have brought the field much closer to real applications.

Due to limitations of the computing hardware and the lack of depth sen-
sors, early approaches often relied on detecting the hands using a color skin
model [25]. Only a few approaches have been developed into systems that would
work reliably under a variety of conditions, as for instance [25]. Here, 2D-color-
blobs associated with the hands and the head are tracked based on a Maximum
A Posteriori Probability approach. In [26] hidden Markov models (HMM) were
used for the recognition of 18 different Tai Chi gestures. Different features ex-
tracted from a stereo-camera system that could track the head and the hands
were evaluated; typical recognition rates were around 90 percent correct. Using
more than two RGB cameras can enhance the performance of 2D-camera based
hand-pose estimation. This approach is used in [27] with no less than 8 cameras,
which allows for the pose capture of two strongly interacting hands and an ad-
ditional object. These methods usually aggravate the problem of computational
overload, which can be then dealt with by using GPUs instead of CPUs [28].

2.2.2 Using 3D Cameras
The approach for body-skeleton tracking developed by Shotton et al. [29] was
extended to the hand pose in [15]. The authors claim real-time performance but
do not show hand poses for real-life data. Another popular approach is to detect
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fingertips and use the positions directly as input to the gesture interface [11,30].
In one of the first approaches that used depth data for hand pose estimation [31],
the authors employed an active, structured-light stereo system to detect the fin-
gertips with a combination of skin segmentation and 3D principal curvature
analysis. The detected fingertips and hand position and orientation were sub-
sequently used for a coarse model of the hand, achieving real-time detection of
static or dynamic gestures. A model-based approach is used also in [32], where
the hand direction is first coarsely estimated using principal component analysis
(PCA), after which a model fitting is able to estimate 7 degrees of freedom of
the hand.

When moving from RGB cameras to 3D cameras, the issue of choosing appro-
priate representations or features had to be readdressed [4,5,14,33]. Even when
using standard methods such as the PCA on 3D data, the interpretation of the
main axes may differ in 3D [14].

Segmenting objects by their distance from the camera is often a better way of
recognizing the hand compared to color segmentation, for example, by assuming
it to be the closest object to the camera [34], especially in cases where multiple
people are in the frame or there is a partial hand-face occlusion [35]. Still, some
approaches [35,36] use skin color for hand detection, mainly for enhancing depth-
based segmentation. While the authors of [35] do not report a significant increase
in performance, there are certain situations where a combination of skin and
depth for hand segmentation may be useful, for instance the former example
would be enhanced by assuming the hand to be the closest skin colored object,
which would exclude other objects close to the camera, such as a keyboard. It
would also provide a better hand segmentation for users that wear long-sleeved
shirts and salvage cases where depth segmentation is prone to errors, such as the
hand being too close to another object.

When using ToF sensors, quite a few authors have stressed the importance of
fusing the 2D and 3D data (the intensity and the range maps) [5,7,8,9,10,37,38].
In [38], for example, the recognition rates for a set of simple arm gestures were be-
tween 78% and 88% correct when using only the 3D data, while with the fused 3D
and 2D data the rates improved the rates to between 90% and 95%. The authors
of [38], also argue for representations of gestures as a sequence of discrete primitives
as opposed to recognizing gestures through a trajectory based approach. Their ap-
proach is further developed in [10] by including optical flow for better motion esti-
mation. Another approach is [21], which uses twoKinects and twoRGB cameras to
capture a wider 3D scene, which improves the robustness of hand tracking, while
the high definition web cams determine the hand pose. As well as fusing data from
depth and RGB images, the authors of [36] use angular data from an inertial mea-
surement unit to normalize and orient the hand upwards for pose estimation.

Hand pose estimation for sign language recognition is also a very active field.
The authors of [39] use a combination of three letter classifiers to detect words
from sequences of hand gestures. As a novel feature, the letter classifiers are
improved by updating the training samples when a word is detected with high
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confidence. For an extended overview of sign language recognition systems we
direct the reader to Chapter 4.2 of this book.

The bag of visual-and-depth-words approach is used in [40] in conjunction
with a concatenated Viewpoint Feature Histogram (VFH) and Camera Roll
Histogram (CRH) feature vector. Spatio-temporal pyramids are used to fuse
geometrical and temporal information. With the addition of late fusion of the
RGB (Histogram of Oriented Gradients, Histogram of Optical Flow) and depth
(VFH-CRH) descriptors, the mean Levenshtein distance between the recognized
sequence of gestures and the ground truth is improved from 0.30 to 0.26.

The authors of [17] achieve a 87% hand gesture recognition accuracy with
a multi-step approach, finding hand-sized blobs, performing scale and rotation
normalization, then extracting four feature descriptors and classifying gestures
using an action graph as an alternative to HMMs. In [18], a 26 DOF hand model
is matched to the hand pose using particle swarm optimization. The GPU is
then used to accelerate the implementation to near real-time frame rates (15Hz).
Model-based pose detection is also used in [19]: a one-shot pose estimation is done
using a hand pose database consisting of 20 prototype models (poses) rendered
from 86 different viewpoints. The images from the database are compared to the
actual segmented hand pose by means of a weighted depth matching and chamfer
distance similarity measure. In tests, the authors discovered that anthropometric
features varied greatly between users’ hands and that the real-world 3D data
could not be aligned perfectly to the generated poses. They obtain a recognition
rate of 76% for a 1–64 pixels error between the winner pose and the real-world
3D pose. The authors of [20] achieve a recognition rate of 90% and a runtime
of 0.5 s per pose, with a method based on Earth-Mover’s distance. This method
is also robust to finger-melding poses, when two fingers are close enough, or
partially occluding each other, to be considered to be part of the same blob.
Alternative approaches use the full-body tracking of the OpenNI framework to
help in hand detection [21] or provide a basis for full-body gesture detection [22].

Only few approaches deal with the simultaneous tracking of body and
hands [41,42]. While in [41] the authors have shown how gesture recognition
can be improved by tracking both the body and the hands, the only reference to
simultaneous and real-time extraction of hand and body skeletons we are aware
of is [42].

3 Main Remaining Challenges

3.1 Shortcomings of Current 3D Cameras

ToF Sensors

Low resolution is common in ToF cameras compared to regular RGB ones.
While the resolution is sufficient for tracking two hands at a particular dis-
tance, the flexible tracking of hands at various distance ranges would require
higher resolution. Alternatively, in such cases, the interface might be reduced
only to simple gesture recognition via blob tracking, as the fingers might not
be clear enough.
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(a) (b)

Fig. 3. (a) Frame from a near-range ToF camera (PMD CamBoard Micro): note the
large amount of noise in the background and near the edges of objects. (b) Motion
artifacts: the moving hand (right) has thinner fingers than the static hand (left).

Working range is limited by the range ambiguities inherent to the ToF princi-
ple and also by the illumination they use. This is not necessarily an issue for
near-range gestural interfaces, although they tend to have more noise due to
the lower level of active illumination (Fig. 3a).

Motion artifacts may lead to erroneous values at the borders of the measured
objects. This issue is more prominent for hand gestures, as panning the hand
can lead to loss of data around the fingers, effectively making them thinner
and therefore harder to track (Fig. 3b).

Systematic distance errors, multiple reflections and flying pixels may
also affect ToF-based gesture interfaces. We refer to [4] and Chapters 1, 2
where various solutions to these problems are discussed.

Structured Light Sensors (PrimeSense Technology)

Low resolution may not be apparent as the device has an output resolution of
640x480. From measurements on the Microsoft Kinect (Fig. 4b), the spatial
localization of an edge is approximately 2 pixels off in either direction per-
pendicular to the edge, which indicates that the effective lateral resolution
of the sensor is about 4 times lower in x and y directions.

Working range is limited by design, as the sensor was built to work best at
medium range and indoors. At close range (less than 40cm) the sensor fails
to produce any data (Fig. 4a). Although there are devices that improve close
range output (“near mode” for the Kinect for Windows and the PrimeSense
Carmine short range sensor), they are still limited to around 40cm.

Missing data occurs maily due to the baseline between the sensor and the
illuminating laser, resulting in shadows around the outside of object borders.
Data can also be missing in regions where the diffraction pattern has hot
spots (more obvious at close range). Also, where the sensor does not have
enough information from the pattern to make a depth measurement, small
patches of missing data can occur (Fig. 4a).
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Fig. 4. (a) Kinect sensor artifacts: missing data (black) due to shadowing and near
range (right hand) and hot spots (left hand). (b) Vertical (top) and horizontal (bot-
tom) edge fidelity denote reduced lateral resolution. The graphs represent the position
deviation of the edges of a rectangular object placed at 100 cm from the Kinect sen-
sor. The deviation is calculated by counting erroneous pixels that correspond to the
background inside the object boundary and vice-versa over a strip of the edge. Similar
results have been found by [43].

Environment Limitations
One must also consider the limitations of cameras that require active lighting
before using them in environments with substantial infrared light. Typical sce-
narios are outdoors in full sun, in cars near the dashboard, or in rooms that use
high powered incandescent lighting. A different set of limitations is created by
scenarios which require the cameras to be behind a transparent cover, such as
digital signage or window-shopping entertainment: while the sensors themselves
are not affected by a transparent surface, reflexions from the active lighting can
cause sensor saturation with loss of information in those regions.

3.2 Latency and Real-Time Performance

Although approaches like the ones to be presented in Section 4 can run in real
time on rather modest hardware, future requirements will aim at further reducing
cost and size. The complexity of hardware and algorithms must be therefore
further reduced.

For most applications, a tight coupling between the hands and the application
is essential. Current solutions all provide a more or less squashy and wobbly
interaction due to both the latencies of the sensor readout and of the middleware.
In addition to reduced latencies, more realistic and predictive models are needed.

Moreover, since the hand can move very fast, with speeds of up to 5ms−1

for translation and 300◦s−1 for wrist rotation [24], higher framerates may be
required.
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3.3 User Interaction

Unintentional movements are a big challenge for gesture recognition when
interacting with touch-less interfaces. In contrast to touch-enabled interfaces,
where physical contact with the controlling surface indicates the user’s intent
to begin a gestural command, touch-less interfaces must decide when and where
the user actually wants to interact with them. Possible solutions to this problem
are:

Active area defines a region which limits the interface to a bounding rectangle
(2D) or box (3D) in which the user can use gesture control to interact with the
interface. Some type of feedback is needed so that the user can know when he is
inside the active area.

Modal interfaces become active when a “clutch” action is performed by the
user. This can be anything from giving a vocal command or using a very obvious
and unique gesture such as waving, opening the hand to show all five fingers
or making a gesture with his other hand. After this action is performed, the
interface is active, and the user can interact with it by performing other gestures.
Deactivating the interface can be done automatically, e.g. after the user finishes
the current gesture, after a preset idle time, or by moving the hand outside the
active area of the interface (in conjunction with the previous strategy).

Dwell time is usually implemented for emulating virtual buttons: in order to
interact with the interface, the user must perform a gesture for a certain amount
of time. For example, to press a button, the user must point to it, and then
keep his hand inside the button perimeter for a preset time. This is usually
done in conjunction with visual or auditory feedback (a timer, change of color
or short sound) to announce to the user that if he keeps doing the gesture the
corresponding action will be performed.

Preset idle pose is a variation of the modal interface: instead of switching to
the active state after the specific gesture has been performed, here the interface
is in a neutral state while a certain gesture is performed, becoming active when
the gesture is changed. This is implemented usually to force users in a particular
pose to better suit the application purpose. For example, if accuracy is needed
for a particular interface, the user could be forced to keep his thumb and index
fingers in an “L” shape, with the rest of the fingers being curled. The application
can then track the index finger as a cursor and use the thumb moving towards the
hand as an indication of interface activation, with the benefit of stability while
gesturing (the index finger does not move much when adducting the thumb).

Multi-modal interaction presents the user with other forms of input that can be
used to gain attention of the gesture recognition system: a vocal command, head
and gaze tracking, or even pushing a button (where extreme robustness is required,
for instance in medical applications) can be used to activate the interface.

Ergonomic limitations can become an issue with touch-less interfaces that force
the user in unnatural poses. Humans prefer having their hands supported by the
work surface, while the work is done with wrist and elbow movements. In the case
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of interacting with interfaces by the means of pointing gestures, fatigue and sore-
ness quickly set in if the hand is held in an unsupported position for too long.

Possible solutions to this problem include not being limited to hand-only or
pointing gestures for interface control, or requiring the use of hand gestures only
for a short time. Cubic-foot applications should not have this issue, as users can
support their elbows on the desktop or their body. The main takeaway from this
limitation is that interfaces should be designed from the ground up, with human
biomechanics in mind.

3.4 Novel Gesture Interfaces and Standards

There is a growing agreement that touch-less gesture interfaces should not be
designed as computer-mouse replacements. Instead, the whole interface needs to
be re-designed in order to enable the potential of such novel interfaces. In order to
be accepted, these novel interfaces must be standardized in the sense that similar
actions should be triggered by similar gestures across different applications.

3.5 Multi-modal Interfaces

Examples of alternatives to gesture interfaces are speech recognition and gaze
tracking. All these modalities have their strengths and weaknesses and one future
challenge will be to fuse them. For example, gaze is much faster for pointing
but can hardly produce any semantics, which could be done by speech and/or
gestures. The recognition of emotions and the integration of wearable sensors
could be further extensions.

4 Selected Recent Developments

4.1 3D Cameras

Currently ToF cameras are becoming much smaller and also cheaper. The Cre-
ative Interactive Gesture Camera Developer Kit, for example, costs US$150,
while solutions based on PrimeSense technology are more expensive (US$200
and US$250 for the PrimeSense Carmine sensor and Microsoft Kinect for Win-
dows sensor respectively). Similarly, ToF modules for automotive and consumer
applications are expected to be targeted at prices well below US$100. The pace at
which ToF cameras have been shrinking is impressive and it certainly facilitates
the development of near-range gesture interfaces.

Light-field cameras are another interesting option since they neither require
a baseline nor active illumination. We have tested Raytrix1 light field cameras
with the algorithms presented in the next section and found that they provide
more robust hand-skeleton tracking than standard stereo systems.

1 www.raytrix.de

www.raytrix.de
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Fig. 5. Various ToF cameras, from left to right: PMD CamCube, PMD CamBoard
Micro, PMD CamBoard Nano, and the most recent PMD CamBoard Pico. Other
manufacturers have completed a similar miniaturization process (e.g. SoftKinetic).

4.2 Commercial Solutions

There are a number of commercial solutions for desktop PCs which provide a
framework for body tracking and gesture recognition, such as the Omek Beckon2,
the SoftKinetic iisu SDK3 and the Microsoft Kinect for Windows4.

Probably the most widely known body tracking solution is the Microsoft Kinect
for Xbox360. It employs machine learning algorithms to estimate the user’s body
posture [29], which is then used as input for interactive games on the console.
However, extensions to hand gestures have only been recently introduced for the
Kinect for Windows, but hand skeleton tracking is still not available.

Regarding hand gesture recognition, a recent collaboration between Intel, Cre-
ative and SoftKinetic released the Creative Interactive Gesture Camera Devel-
oper Kit5. It is a near-range time-of-flight camera that allows tracking of the
user’s hand up to one meter. While the accompanying software solution does
not fully model the hand in 3 dimensions, it does provide the extended finger-
tips’ position and various anatomical landmarks (palm, elbow).

The Leap Motion6 device promises to allow full 3D tracking of the user’s
fingers, provided they keep their hands over the device’s field of view. The device
itself is a small box that needs to be placed on the user’s desktop and facing
upward. At the time of this writing, the device has not been released yet. Finally,
there have been some attempts to use mobile devices to track the user’s hand
or face and respond to simple gestures.

Another solution for hand and finger detection is provided by Metrilus7. Their
algorithms include finger tracking, pointing, swipes, and direction evaluation.

For full hand skeleton tracking, 3Gear Systems8 proposes a desktop solution
which involves a PrimeSense9 Carmine short range sensor mounted above the

2 www.omekinteractive.com
3 www.softkinetic.com
4 www.microsoft.com/en-us/kinectforwindows
5 www.click.intel.com/intelsdk/
6 www.leapmotion.com
7 http://www.metrilus.de/
8 www.threegear.com
9 www.primesense.com

www.omekinteractive.com
www.softkinetic.com
www.microsoft.com/en-us/kinectforwindows
www.click.intel.com/intelsdk/
www.leapmotion.com
http://www.metrilus.de/
www.threegear.com
www.primesense.com
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user’s desk. The system provides hand pose estimation and gesture recognition
with the added step of first calibrating the model with the user’s hands.

Omek Interactive’s Grasp solution promises full hand skeleton tracking, al-
though it is not currently available for review.

An alternative solution for hand skeleton tracking, which is of low complexity
and requires no calibration, has been developed by gestigon10, and it is based
on the approach presented in the next section.

4.3 Hand and Body Tracking Using Self Organizing Maps

In this section we will present some of our own recent developments, showing how
self-organizing maps (SOM) can be used for hand and full body tracking. We
use a range camera for data acquisition and apply a SOM-learning process for
each frame in order to capture the pose. While the standard SOM algorithm [6]
and some extensions [44] have been proposed before, we will introduce further
constraints and a performance analysis on an embedded system. Details on the
embedded system implementation are given in [45].

4.3.1 The SOM Tracking Algorithm
SOMs are a well-established method for topology-preserving data transforma-
tions and have been used for gesture recognition based on 2D appearance mod-
els, for which the SOM can help to find the low-dimensional space of hand-pose
transformations [46]. Similarly, in [47] SOMs are used as an intermediate stage to
cluster hand trajectories before feeding them into an HMM for gesture recogni-
tion. These uses of SOMs, however, are completely different from our approach,
which we will describe next.

The node-based SOM tracking algorithm proposed by [6,42] (which we will
refer from now on as the Standard SOM Algorithm) takes a different approach,
by modeling the hand as a SOM topology. The process starts with the initial-
ization of the network weights in the shape of the hand topology (Fig. 6c) in the
center of the hand point cloud, followed by the iteration of two steps: the com-
petition and the update of the weights. At every iteration, a sample point from
the dataset is randomly chosen. First, during the competition phase, a winner
node (i.e. the weight with the minimum Euclidean distance to the sample point)
is computed.

Next, the update phase aims at decreasing the distance between the two points
by moving the winner-node weight towards the sample point by a fraction ε of the
distance between them. The standard SOM algorithm then also applies a neigh-
borhood update, in the sense that not only the winner-node weight is updated,
but also the weights of the neighbor-nodes, with a smaller learning rate.

These steps are repeated for hundreds or thousands of iterations. This makes
the skeleton graph fit to the point cloud and stay within its confines.

10 www.gestigon.com

www.gestigon.com
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4.3.2 Topology Expansion
We expand the 44-node upper body topology presented in [6,42] (Fig. 6a) to two
topologies, one representing the whole body (Fig. 6b), and the other representing
the human hand (Fig. 6c). The models were chosen so they mimic the anatomical
landmarks of their real-world counterparts — limbs and joints for the body and
phalanges and interphalangeal joints for the hand. The rigid bodies (torso and
palm) are modeled as a mesh. Both produce good qualitative results in our
implementation.

(a) (b) (c) (d)

Fig. 6. SOM topologies: (a) The upper body topology proposed in [6]; (b), (c) Ex-
panded topologies for the whole body and the hand; (d) The extended SOM hand
topology for segments and planes

4.3.3 The Extended SOM
Our proposed algorithm extends the competition and the update step to 1D
and 2D network segments. The 1D-segments are the lines between pairs of con-
nected nodes, and the 2D-segments are the triangles determined by triples of
connected nodes. 1D-segments allow to represent the fingers more accurately,
and the 2D-segments model the palm of the hand. We now have not only ele-
ments of dimension zero (nodes) like in the standard case described in the last
section, but also elements of dimension one and two for representing the data
distribution. The new topology can be seen in Fig. 6d.

This approach is motivated by the fact that a hand-like topology involves
a difficult separation between the nodes corresponding to different fingers. A
node that belongs to one finger can easily be attracted by another finger, given
the topological closeness. This may lead to an erroneous tracking of the hand
and destroy the topological relations. With these 1D and 2D segments we can
represent fingers and parts of the palm more accurately and expect the self-
organizing maps to be less prone to this type of errors.

4.3.4 Performance Analysis
Because the algorithms have low computational complexity, they can be imple-
mented on low power devices, such as embedded systems. We implemented both
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the standard SOM algorithm and the extended version on a PandaBoard ES,
which is the next iteration of the popular Pandaboard platform. It is powered
by a Texas Instruments OMAP4460 system-on-chip (SoC), which is used in a
number of mobile devices available on the market such as the Samsung Galaxy
Nexus. The board features a 1.2GHz dual-core Cortex-A9 ARM CPU, a Pow-
erVR SGX 540 graphics processing unit, 1GB DDR2 SDRAM, two USB 2.0
ports, Ethernet connection and various other peripherals.

After implementing the standard SOM for the hand and whole-body skeleton,
we have obtained the results shown in Figure 7. We have been able to successfully
reach our target of real-time performance, at 30 frames per second (FPS).

(a) (b) (c) (d) (e)

Fig. 7. The Standard SOM Algorithm results for various hand poses [45]

It can be seen that the hand tracker is able to cope with missing data (Fig. 7b,c
as white areas on the palm), the skeleton’s topology remaining stable, the fingers
being retracted in the palm. This is considered to be correct behavior, as the
fingers will be reported as “bent” to a subsequent gesture recognition algorithm.

The results for the extended SOM for hand tracking can be seen below. Al-
though the competition and update phases are more complex than those of the
standard SOM, the algorithm still runs in real time (30FPS) with the same
number of iterations, as the new topology has less than half the nodes of the
old one (16 vs. 37). In figure 8 we show five hand poses taken directly from the
real-time video on the embedded platform. The qualitative performance is sim-
ilar to the one of the node-only SOM implementation. The topology converges
correctly on the straightened as well as the bent fingers.

In figures 8d and e, hand poses in which the fingers are held together are
shown. The fingers remain in the correct places and do not retract into the
palm — the new segment-plane updates solve the problem of the previous SOM
implementation that appeared when data points were too close to each other
and the nodes from one finger wandered into the space of other fingers. This
allows for a more robust representation of the hand gestures, as melded fingers
(that could come from out-of-plane hand rotations or hands which are too far
away for the camera to distinguish between fingers) are no longer a problem.

The computational efficiency of the method makes it ideal for implementations
on a low-powered systems such as embedded devices. The algorithm could be
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(a) (b) (c) (d) (e)

Fig. 8. The extended SOM results for various hand poses

used in such devices, which need low-power, low-complexity solutions to enable
gesture technologies — granting extended interaction capabilities to current and
future mobile interfaces. Natural user interfaces can be used to enhance the us-
ability of devices ranging from the current mobile devices to the next generation
head-mounted displays.

From the testing done with the Microsoft Kinect and PMD CamBoard we
concluded that our method is robust and can adapt to any 3D data that is
being supplied, as long as it is accurate enough, meaning that the proposed
algorithm is able to work with a wide range of cameras. Another benefit is that
the self-organizing map approach can easily be applied to any deformable object
that needs to be tracked by simply changing the network topology (e.g. torso,
full body, pets etc.). This presents a definite advantage over methods that use
machine learning to recognize objects, as the self-organizing map algorithm need
not be trained in advance.

However, the SOM approach has its limitations: it requires hand segmentation
and adequate initialization. Also, since only a topology is being defined, it is not
obvious how geometrical constraints can be applied.

5 Example Applications

5.1 Consumer

Cubic Foot applications have been pioneered by Intel in an attempt to make
ultrabooks more interesting. The idea is to use the 3D volume spanned by the
opened notebook for gesture-based interaction (i.e. the “cubic foot”). Cur-
rently, the hand gestures are all based on fingertips, not a full hand skeleton.
However, this initiative has contributed to the ongoing miniaturization of
ToF cameras and it seems that ToF sensors may win the race for the small-
est sensor for gesture interfaces, although some promising alternatives such
as the Leap Motion device exist.

Gaming applications have always been big adopters of alternative input inter-
faces. One of the first commercial touch-less controllers designed for games
was the Sony EyeToy, a QVGA resolution webcam that could be used in
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low-light environments. Released in 2003, it leveraged the PlayStation 2
powerful video processor to let users interact with games using their whole
body as the input device. Other gesture interfaces followed: the Nintendo
Wii console along with the Wii Remote as a motion sensing device in 2006,
EyeToy’s successor, the PlayStation Eye and its accompanying motion sens-
ing controller, the PlayStation Move in 2010, and soon after, the Microsoft
Kinect for XBOX360, a definitive boost to gesture control interfaces.

Mobile and Embedded Control is another range of applications that could
benefit from gesture control. Almost every commercial gesture control frame-
work on the market today is aimed at desktop PCs, due to the computing
power required by the algorithms they use. As mobile platforms shrink in
size, gestural interfaces will start to become a viable alternative to touch-
based interaction [45]. Gesture control could be a potent interface with which
the user could control device parameters of mobile applications or other per-
sonal devices such as cameras. Being able to control appliances such as TVs
from a distance without the need for a remote control is starting to become
a feature in the new range of consumer devices, although only for high-end
models, due to the limitations described above.

5.2 Automotive

Automotive suppliers aim at (i) replacing the growing number of buttons and
joysticks in the car by a generic virtual interface and (ii) creating new forms of
interaction. This will, however, be a gradual development starting with simple
gestures that control harmless functions. Due to the extreme variations in am-
bient light and high demands on reliability and robustness, this application field
has its own challenges.

5.3 Medical

The prototypical medical application is that of using gestures during surgery
to access medical records or to control equipment in a sterile environment. The
obvious benefit is the lack of physical contact between the operator and the
device. Moreover, surgeons prefer not having to put down their tools in order to
be able to press buttons or touchscreens. We refer to Chapter 4.1 for a review
of such applications.

5.4 Digital Signage

As gesture control is a highly user-interactive experience, gesture driven signage
will certainly see emergence in the future, with some companies specializing in
gesture marketing (e.g. GestureTek 11 and ZiiCON 12). Possible applications in
this area include virtual tours, information kiosks, gaming, art installations, even

11 www.gesturetek.com
12 www.ziicon.com

www.gesturetek.com
www.ziicon.com
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interactive window-shopping which could, for instance, take the user’s clothing
dimensions automatically or target marketing based on one’s actions. Because
the system is tracking the user at all times for gesture input, features such as
customizing an ad for the tracked person could be used to grab attention and
increase the impact of the signage.

5.5 Sign Language

This is an application that many consider to be obvious and useful [15,16].
From our own experience and extensive discussions with German associations,
however, the interpretation of hand gestures is not sufficient for communication
because facial expressions are essential for those who ”speak” and read sign
language. While the extraction of a hand skeleton can provide a good basis for
sign recognition, the problem of recognizing facial expressions has to be solved
in addition. For an overview of gestural language recognition please refer to
Chapter 4.2 of this book.

6 Summary

Gesture interfaces promise to change the way we interact with devices. To fully
exploit this potential, however, one needs to rethink the human-machine interface
and adapt it to the new technological opportunities. An essential component of
such gesture interfaces is hand pose estimation which, as shown in Section 2.2,
remains a challenging problem although a number of promising approaches and
commercial solutions exist.

One approach to alleviate some of these issues is using a depth sensor. This
increases robustness to lighting conditions and gives the possibility of discrim-
inating objects based on their depth, making segmentation a more straightfor-
ward process. Depth sensors have led to considerable progress in the field and are
now becoming small and low-cost devices, which, however, still need to overcome
certain limitations that we have underlined in Section 3.1.

A further limiting factor is the complexity of the algorithms needed to estimate
the many degrees of freedom that a gesturing hand can have. This is particularly
true for approaches that operate with a full geometrical model of the hand. As
an alternative, approaches that only define the topology have lower complexity
but may sometimes fail to precisely extract the correct pose and may therefore
require additional constraints.

Currently, although commercial solutions exist, they are limited to specific
use-cases, such as desktop or cubic foot interaction. We have also presented our
own work in the field, which is based on self-organizing maps for hand pose
estimation. The method has the benefit of tracking and estimating the hand
skeleton in a single stage, with significant performance gains.

Finally, we have presented several commercial application domains in which
gesture control can be used in order to build a better interface. As gestures
are often used in human communication, is seems natural to extend them to
human-machine interaction for more intuitive interfaces.
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6. Haker, M., Böhme, M., Martinetz, T., Barth, E.: Self-organizing maps for pose
estimation with a time-of-flight camera. In: Kolb, A., Koch, R. (eds.) Dyn3D 2009.
LNCS, vol. 5742, pp. 142–153. Springer, Heidelberg (2009)
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