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Abstract. Genome-wide association (GWA) studies provide large amounts
of high-dimensional data. GWA studies aim to identify variables, i.e., sin-
gle nucleotide polymorphisms (SNP) that increase the risk for a given
phenotype and have been successful in identifying susceptibility loci for
several complex diseases. A remaining challenge is however to predict
the individual risk based on the genetic pattern. Counting the number of
unfavorable alleles is a standard approach to estimate the risk of a disease.
However this approach limits the risk prediction by only allowing for
a subset of predefined SNPs. Recent studies that apply SVM-learning
have been successful in improving the risk prediction for Type I and II
diabetes. However, a drawback of the SVM is the poor interpretability of
the classifier. The aim is thus to classify based on only a small number of
SNPs in order to also allow for a genetic interpretability of the resulting
classifier. In this work we propose an algorithm that can do exactly this.
We use an approximation method for sparse linear regression problems
that has been recently proposed and can be applied to large data sets
in order to search for the best sparse risk predicting pattern among the
complete set of SNPs.

1 Introduction

There are three general aims of genome-wide association (GWA) studies: iden-
tifying genetic loci or patterns associated with common complex multifactorial
diseases; understanding the complex genetic mechanisms underlying the dis-
ease; and predicting the individual risk of the disease based on the genetic
patterns. In the past decade, GWA studies have been successfully employed to
identify genetic loci (SNPs) associated to common complex diseases such as
diabetes [13], myocardial infarction [11, 4], and Crohn’s disease [10]. However,
so far these findings have only limited impact on risk assessment and clinical
treatment [6, 5]. A reason for the lack of feasible risk prediction by means of
genetic variants can be explained by the fact that a disease effect may only come
about through the interaction of multiple loci. Studies that focus on single locus
effects alone are thus not likely to reveal the more complex genetic mechanisms
underlying multifactorial traits [13, 12, 7]. To understand the underlying genet-
ics of a disease, it might be feasible to identify sparse patterns that influence the
risk. Such patterns can be helpful not only to assess the risk, but also to detect



possible genetic interactions. However, it is not straightforward to identify
multiple SNPs that together increase the risk. Testing all possible combinations
is not possible due to the typically enormous amount of SNPs in a GWA study.

The standard method for computing a genotype score (GS) that is used in
order to predict the individual risk, is to count the number of unfavorable alleles
(those associated to the disease) [3, 2, 1]. However, the drawback of this approach
is rather obvious: if we only account for SNPs that are directly associated to the
disease we will not allow for interactions between SNPs without an association.
Validated susceptibility loci only explain a small proportion of the genetic risk
and thus by only accounting for these it is not likely to gain a significant increase
in risk prediction [6, 13]. Thus, a major improvement in risk prediction can only
be achieved by training a multivariate classifier taking all SNPs into account.
Since we expect the SNPs to have different influence on the risk, we need to
apply weights to the SNPs in the classifier which again is not straightforward.

A classical tool for classification accounting for all features is the support
vector machine (SVM) [15, 16]. The advantage of the SVM is that it is applicable
to very large datasets and has already been applied successfully on GWA
data [13, 17, 18]. However, the disadvantage of the SVM when it comes to GWA
data is that the learned classifier is based on all SNPs, which makes it difficult
to interpret the resulting classifier in a biological context. Thus, since we aim to
classify based only on a small number of SNPs, we need to apply an appropriate
SNP selection in advance and train the SVM only on these. A standard approach
is to select the SNPs based on single significance values (p-values). However,
this leads to the same issues as described for the GS approach except that a
weighting of the SNPs is done by the SVM. Thus, if we aim to predict the risk
of an individual as well as understanding the complex genetic mechanisms
underlying the disease, the SVM might not be the appropriate choice.

In this work, we propose a novel method for GWA analysis that searches for
a sparse risk predictor on the complete data. Predicting the phenotype from the
genotype is approached in the framework of sparse linear regression, i.e., our
method determines a set of weights that generate the phenotype as a sparse
linear combination of the genotype.

2 Data & Methods

2.1 Data

We simulated case/control datasets using the PLINK software [8, 9] with the
simuLaTE option. We simulated a dataset of 5000 cases and 5000 controls. 100
SNPs of a total of 10100 SNPs where associated to the disease phenotype. Com-
mon complex diseases have typically low effect size [6], hence we simulated
the effect size i.e. odds ratio (OR) of 1.3 and 1.6 for heterozygous and a mul-
tiplicative risk of 2.6 and 3.2 respectively for the homozygous. As previously
described most of the identified genetic variants have only limited impact on
risk assessment and clinical treatment. This missing heritability might be caused



by the fact that the main contribution result from variants with low minor allele
frequency (MAF) and such variants are difficult to detect [6]. Thus, we simu-
lated datasets with MAFs ranging from 0.05 to 0.1 and 0.1 to 0.2. Varying the
described parameters we gain a total of 4 different datasets as shown in Table
2.1.

MAF,ijn MAFyax OR

dataset type 1 0.05 01 1.3

dataset type 2 0.1 02 1.3
dataset type 3 0.05 0.1 1.6
dataset type 4 0.1 02 1.6

Table 1. Simulated datasets obtained with the PLINK software.

We obtain a genotype matrix G with G = (g, .., g.)",g € R? where L is the
number of individuals (10000) and d the number of SNPs (10100). Furthermore,
we have phenotype labels p = (p1,..,pr), p € RE, p; € {—1,1}. For the cases
pi = 1 holds whereas for the controls we have p; = —1. We divided the dataset
into two sets of equal size, one set for training and the other one for testing.

2.2 Genotype Score

A genotype score (GS) is calculated on the basis of the number of risk alleles
(those associated with the disease phenotype) that are carried by each individual
for a predefined subset of SNPs S. The subset S is selected according to their p-
values estimated with the Chi-square statistics. The number of selected SNPs, i.e.
|S| = k, is varied from 1 to 20. For the genotype data G;; € {0,1,2} holds. The
encoding is performed such that G;; corresponds to the number of risk alleles
that are carried by individual i at SNP location j. The homozygous genotype
for the risk allele is coded with 2, heterozygous with 1 and homozygous for
the non risk allele with 0. Hence, the GS for an individual i of the test set is
computed by

Rl' = Z Gij . (1)

jes

2.3 Support Vector Machine

A support vector machine (SVM) determines the hyperplane that separates
two given classes with maximum margin [19]. It has been applied to a broad
range of classification problems and is among the methods that are used as
benchmark in many cases. In order to measure the classification performance
that is obtained using the set of SNPs S ( selected as for the GS approach), we
train a Gaussian-kernel SVM on the genotype data of the selected SNPs of the



training set. The hyper-parameters, i.e., kernel width and softness of the margin
are adjusted by 10-fold cross-validation on the training set.

2.4 Sparse Linear Regression

In contrast to the GS and SVM approaches, in the sparse linear regression (SLR)
approach the set of selected SNPs is not obtained from the p-values of the chi-
square statistics but the selection of a predefined number of SNPs is performed
automatically by the method. We consider the following optimization problem

Wgp = argn}AiIn lp — Gw|| subject to||wljp =k. (2)

We are looking for a weight vector w that approximates the phenotype vector
p as a linear combination of the SNPs G where the number of non-zero entries
of the weight vector is equal to k. It has been shown that (2) is a NP-hard
combinatorial problem. A number of approximation methods such as Opti-
mized Orthogonal Matching Pursuit (OOMP) [20] or Basis Pursuit [21] have
been proposed that provide close to optimal solutions in benign cases [22].
The bag of pursuits method (BOP) can also be applied to this optimization
problem. It is derived from the OOMP and performs a tree-like search that
employs a set of optimized orthogonal matching pursuits [14]. The larger the
number of pursuits used in the search is, the closer BOP approximates wgsp. In
this work the number of pursuits was set to 100. In contrast to BP, it does not
lead to a quadratic optimization problem which might become computational
very demanding since nowadays very large genotype data is available (~ 10*
individuals, ~ 10° SNPs). Let wgop be the approximation of wgp that has been
determined using the BOP method on the training data. The decision value of
a given test individual g; is obtained as d; = wgopgi. Again, the number of
selected SNPs, i.e., k, is varied from 1 to 20.

3 Results

We trained and tested the GS, SVM, and SLR with varying numbers of selected
SNPs. We evaluated the performance of the three algorithms by means of the
receiver operator characteristic (ROC) obtained on the test set. The area under
this curve (AUC) is a commonly used approach to evaluate the performance of
a binary classifier. We generated a total of 5 random datasets for each choice
of the simulation parameters, i.e., odds ratio (OR) and minor allele frequency
(MAF) as described in section 2.1. Then, for a varying number of selected SNPs,
ie, k =1,...,20, we evaluated the classification performance of the three
approaches by means of their mean AUC for each of the data types respectively.

 ||w]|o is the number of non-zeros in w
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Fig.1. OR 1.3, left: MAF 0.05-0.1, right: MAF 0.1-0.2

3.1 Dataset 1 and 2: Odds Ratio 1.3

We first compared the three algorithms on datasets with an OR of 1.3. In order
to explore the effects of a higher OR on the performance of the algorithms, we
then tested the three approaches on datasets with an OR of 1.6.

MAF: 0.05-0.1: As shown in Figure 1(left) the SLR approach clearly outperforms
the traditional genotype score and the SVM for small numbers of selected SNPs.
The performance of all three approaches improves with increasing numbers
of selected SNPs and is almost the same for large numbers of selected SNPs.
The performance of the GS and the SVM is very similar due to the selection
of the SNPs based on the p-values that is performed for these methods. The
SVM only marginally improves the performance for larger numbers of SNPs
compared to the GS approach. In particular for small numbers of selected SNPs
almost the same performance as for the GS is obtained.

MATF: o.1-0.2: Figure 1(right) shows the performance of the methods on datasets
with a MAF between 0.1 and 0.2. The results are qualitatively the same. However,
if the number of selected SNPs is very large, the SVM and GS achieve better
results than the SLR method.

3.2 Dataset 3 and 4: Odds Ratio 1.6

The performance of all three approaches on datasets with an OR of 1.6 improves
compared to datasets having an OR of 1.3. This is not surprising since a higher
OR implies that each single significant SNP is a stronger classifier.



MAF: o0.05-0.1: As for the results that were obtained from datasets with an
OR of 1.3, the performance of the SLR method is best for small amounts of
SNPs (see Figure 2,left). However, in contrast to the previous results, the GS
and SVM approaches close up to the SLR and even become slightly better for
larger numbers of SNPs.

MAF:0.1-0.2: Compared to the results on the dataset with a MAF of 0.05 -0.1,
the performance only improves marginally as shown in Figure 2(right). In
contrast to the results that were obtained on datasets with an OR of 1.3 the SLR
method is not beaten by the two other approaches but rather equally good for
large numbers of SNPs.
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Fig.2. OR 1.6, left: MAF 0.05-0.1, right: MAF o0.1-0.2

4 Conclusion

The aim of GWA studies is not only to perform risk predictions based on
the genetic patterns but also to identify a small set of susceptibility loci in
order to understand the genetic mechanisms underlying the disease. The set of
susceptibility loci should be as small as possible in order to enable an analysis
of the biological mechanisms that correspond to the loci that have been selected.
The standard genotype score (GS) that counts the number of unfavorable alleles
limits the risk prediction to be based only on SNPs associated to the disease,
i.e., that are significant according to their p-value. Since we do not expect that
a small number of SNPs that have been selected according to their p-values



can explain more than a small proportion of the genetic risk this approach is
not sufficient. The risk prediction can be greatly improved by employing more
powerful methods such as SVM-learning. However, for better interpretability of
the classifier to understand the genetic mechanisms of the disease, we want to
classify using only a small number of SNPs. Therefore, we again have to select
SNPs on the basis of prior knowledge. In this work we ranked the SNPs by the
p-values and trained the SVM on the best ranked SNPs which is a standard
approach in GWA data analysis but often leads to weak performance if the
number of selected SNPs is small.

In this paper, we approached the selection problem in the framework of
sparse linear regression (SLR). The advantage of the SLR approach is that it
does not need any a priori assumptions and thus does not have any limitations
due to a preselection step. We applied the bag of pursuits method to the SLR
problem which is possible even on huge data sets. We compared the three
methods GS, SVM and SLR on GWA data that has been simulated using the
PLINK software. If the set of selected SNPs is small, the SLR approach clearly
outperforms SVM and classical GS approaches. Even though the performance
of the other methods comes close to the performance of SLR if the number of
SNPs is large enough, the presented results suggest that SLR should be the
method of choice, in particular if the aim is not only to assess the risk of a
disease but also to better understand the genetic mechanisms underlying the
disease.
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