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1. Introduction

The manipulation of functions defined on the surface of the sphere and the integration
of partial differential equations (PDE) on the sphere are important in areas such as
weather forecasting and climate modelling [Bo01, Section 18.7].

Spherical harmonics are popular as a basis set for these applications because they
have a number of useful properties. In particular, the band-limited functions that are
obtained through a so-called “triangular truncation” of the spherical harmonic expansion
exhibit the property of “uniform resolution”; broadly speaking, this means that the level
of resolution is the same all over the sphere [JA97]. This is an important property for the
integration of PDE, for example, since it eliminates the “pole problem” [Bo01, Section
18.10]. This term refers to the fact that the greater density of the grid points near the
poles will give rise to instabilities if a time step that is appropriate for the grid spacing
at the equator is chosen. Performing a triangular truncation in each time step is one of
the countermeasures that can be used to avoid these instabilities.

Thus, one of the subproblems of integrating PDE on the sphere is projecting a
function onto the space of band-limited functions. This operation is referred to as the
“spherical filter” [JA97]. The computational cost of the spherical filter is quite high if
implemented in a straightforward way — O(N 3) for O(N 2) grid points. In this work,
we will derive a fast algorithm that cuts the complexity to O(N 2 logN). We will also
show how the fast spherical filter can be used to derive a fast wavelet decomposition
algorithm.

Since the spherical filter is quite a costly operation, significant effort has been ex-
pended on speeding it up. Jakob-Chien and Alpert [JA97] present an O(N 2 logN)
algorithm that is based on Fast Multipole Methods (FMM) (see, for example, [DGR96])
to evaluate the sums that occur in the spherical filter. This work was extended by Yarvin
and Rokhlin [YaRo98], who derive a generalised FMM and apply it to the spherical filter.
Swarztrauber and Spotz [SwSp00] also present optimisations to the spherical filter but
take a slightly different approach. They do not improve on the O(N 3) complexity of the
straightforward filter algorithm but reduce the hidden constant while at the same time
reducing the memory requirement from O(N 3) to O(N 2). They argue that, for the grid
resolutions currently in practical use, an efficient O(N 3) algorithm is at least as fast as
the existing O(N 2 logN) algorithms, which tend to have a fairly large hidden constant.
This point is debatable; in the numerical experiments we performed, our algorithm broke
even with the standard O(N 3) algorithm for N = 64. The more efficient Swarztrauber-
Spotz algorithm was not tested, but it would seem that O(N 2 logN) algorithms are
beginning to rival even efficient O(N 3) schemes.

The algorithm we will present is based on the ideas from [JA97]. However, we wish to
avoid using the Fast Multipole Methods employed there because we feel they are rather
technical and difficult to implement. Instead, we will use a fast summation algorithm
developed recently by Potts and Steidl [PoSt02] that is based on the Nonequispaced
Fast Fourier Transform (NFFT) [PST00]. We believe that this algorithm is conceptually
simpler and easier to implement. An additional advantage of our approach is that the
NFFT builds on the standard (equispaced) Fast Fourier Transform, for which highly
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optimised libraries are available.
The asymptotic complexity of the NFFT summation algorithm depends on the dis-

tribution of the nodes at which the sum is to be computed. We will show that, for the
Legendre nodes used in the spherical filter, the summation algorithm has a complexity of
O(N logN), giving a total complexity for the spherical filter algorithm of O(N 2 logN).

The structure of this work is as follows. Section 2 presents some basic definitions,
including the spherical harmonics. Section 3 introduces the concept of band-limited
functions, defines the spherical filter and wavelet decomposition and shows how these
can be computed using a forward and an inverse discrete spherical Fourier transform.
This section also discusses how the two transforms can be combined in a way that
allows fast summation algorithms to be employed. Section 4 presents the fast NFFT
summation algorithm from [PoSt02]. Section 5 summarises the complete spherical filter
algorithm and provides a complexity estimate. Section 6 discusses an implementation
of the algorithm and presents the results of some numerical experiments performed on
it. Finally, Section 7 summarises the results that have been obtained.
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2. Definitions

In this section, we present several functions and definitions that will be needed later on.

Definition 2.1 The normalised Legendre polynomials are defined as

Pk(x) ´
1

2kk!

dk

dxk
(x2 − 1)k (x ∈ [−1, 1]; k ∈ N0).

Definition 2.2 The normalised associated Legendre functions are defined as

P n
k (x) ´

√
(

k +
1

2

)
(k − n)!
(k + n)!

(1− x2)
n
2
dn

dxn
Pk(x) (x ∈ [−1, 1];n, k ∈ N0, k ≥ n).

(2.1)
For k < n, we define P n

k (x) ´ 0. The P n
k satisfy the three-term recurrence

xP n
k = αnkP

n
k−1 + αnk+1P

n
k+1 (2.2)

with

αnk ´

(
(k − n)(k + n)

(2k − 1)(2k + 1)

) 1
2

for k ≥ n and αnk ´ 0 otherwise [SwSp00, equation A.3.1]. The P n
k are normalised so as

to satisfy the orthogonality relation

∫ 1

−1

P n
k (x)P

n
l (x)dx = δk,l (n ∈ N0; k, l = n, n+ 1, . . .).

Remark 2.3 To evaluate the P n
k , the recurrence (2.2) is used. As a starting point, we

use P n
n−1(x) = 0 and

P n
n (x) =

1

2n n!

[
2n+ 1

2
(2n)!

]1/2

(1− x2)n/2.

For large n, care must be taken in evaluating the constant c ´ 1
2n n!

[
2n+1

2
(2n)!

]1/2
.

If the subexpressions 2n, n! and (2n)! are evaluated directly, the floating-point number
range will be exceeded at some point.

Because of this, we use the following strategy: We start by setting c ´
(

2n+1
2

)1/2
.

Then we repeatedly do the following: If c > 1, we multiply in one of the factors from
the denominator (i.e. one of the factors from 1

2n
or 1

n!
). If c < 1, we multiply in one of

the factors from the numerator (i.e. one of the factors from [(2n)!]1/2). We continue in
this way until all of the factors from either the numerator of the denominator have been
used up, then multiply the remaining factors in. ¤
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Figure 2.1: Coordinate system on the sphere.

Throughout this work, we will be dealing with functions that are defined on the unit
sphere S ´ {x ∈ R3 | ‖x‖2 = 1}. In particular, we will be focusing on the space L2(S)
of square-integrable functions on the sphere. We will describe points on the unit sphere
by their latitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π) (see Figure 2.1), which are more
convenient for our purposes than the Cartesian coordinates x1, x2, x3.

Definition 2.4 The spherical harmonics are functions on the unit sphere defined as

Y n
k (θ, ϕ) ´ P

|n|
k (cos θ) einϕ,

where θ ∈ [0, π]; ϕ ∈ [0, 2π); n ∈ Z, k ∈ N0, k ≥ |n|.
These form an orthonormal basis of L2(S) with respect to the scalar product

〈f, g〉 ´ 1

2π

∫ π

0

∫ 2π

0

f(θ, ϕ) g(θ, ϕ) sin θ dϕ dθ (f, g ∈ L2(S)).

Definition 2.5 The discrete Fourier transform (DFT) of a discrete, periodic signal
s : Z→ C with period N (i.e. s(n) = s(n+ kN) for all k ∈ Z) is defined as

ak ´
1

N

N−1∑

n=0

s(n) e−i2π kn
N ,

where k = 0, . . . , N − 1.
The inverse discrete Fourier transform (IDFT) of (ak)

N−1
k=0 , ak ∈ C is defined as

s(n) ´
N−1∑

k=0

ak e
i2π kn

N ,

where n ∈ Z.
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3. The Spherical Filter and Wavelet Decomposition on

the Sphere

In this section, we will introduce the concept of band-limited functions and use these to
define the spherical filter and the wavelet decomposition on the sphere. We will introduce
the forward and inverse discrete spherical Fourier transforms for transforming from the
longitude / latitude grid to Fourier space and back. And finally, we will combine these
two transforms to yield an algorithm for the spherical filter.

3.1. Definition of the Spherical Filter and the Wavelet
Decomposition

Definition 3.1 A function f ∈ L2(S) is said be band-limited with bandwidth N if it
can be expressed as

f(θ, ϕ) =
N∑

k=0

k∑

n=−k
ank Y

n
k (θ, ϕ) (ank ∈ C).

Note that, for any N , the set of band-limited functions with bandwidth N forms a
subspace of L2(S).

Remark 3.2 Band-limited functions possess the useful property that any rotated ver-
sion of a band-limited function is also a band-limited function with the same bandwidth
(see [JA97, Section 2.1]). Thus, band-limited functions are referred to as having uniform
resolution, meaning that features are resolved equally well at all points on the sphere.

This is especially useful when the sphere is discretised with a latitude / longitude
grid — such a grid cannot in general be expected to afford uniform resolution since the
grid points are more dense at the poles than at the equator. This can cause problems
when integrating PDE, for example, which is why a function defined on a spherical grid
is often projected onto the space of band-limited functions of a certain bandwidth to
guarantee uniform resolution. ¤

Definition 3.3 The orthogonal projection of a function f ∈ L2(S) onto the subspace
of band-limited functions with bandwidth N is called the spherical filter with bandwidth
N. The result of this operation is denoted by fN , i.e. if f =

∑

n∈Z,k∈N0,k≥|n| a
n
k Y

n
k , then

fN(θ, ϕ) =
N∑

k=0

k∑

n=−k
ank Y

n
k (θ, ϕ).

This operation is also referred to as a “triangular truncation”, since the Fourier
coefficients in fN can be arranged in the shape of a triangle (see Figure 3.1).

Definition 3.4 Given a band-limited function f with bandwidth N − 1, we define its
wavelet decomposition as the decomposition f = fN−1 = fN/2−1 + g, where
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Figure 3.1: The coefficients that remain after triangular truncation can be arranged in the
shape of a triangle, hence the name. N = 3 in this case.

fN/2−1(θ, ϕ) =

N/2−1
∑

k=0

k∑

n=−k
ank Y

n
k (θ, ϕ)

(as defined above) is the low-frequency component and

g(θ, ϕ) =
N−1∑

k=N/2

k∑

n=−k
ank Y

n
k (θ, ϕ)

is the wavelet component.
In practice, to perform the wavelet decomposition, we will compute fN/2−1 and then

obtain g by g = fN−1 − fN/2−1.

Details on spherical wavelets, including an explanation of why the above operation
can be referred to as a wavelet decomposition, are given in [PST96] and [FGS98]. The
underlying wavelets are called Shannon wavelets.

The definition of the wavelet decomposition assumes that the Fourier coefficients of f
are known. In numerical applications, however, we often know only the function values
at certain grid points on the sphere. In this case, to carry out the wavelet decomposition,
we first have to determine the Fourier coefficients. Since the Y n

k are orthonormal, as
noted above, this can be accomplished by computing

ank = 〈f, Y n
k 〉

=
1

2π

∫ π

0

∫ 2π

0

f(θ, ϕ) P
|n|
k (cos θ)e−inϕ sin θ dϕ dθ

=

∫ π

0

P
|n|
k (cos θ) sin θ

1

2π

∫ 2π

0

f(θ, ϕ)e−inϕ dϕ dθ.

For convenience, we denote the inner integral, together with the normalisation con-
stant 1

2π
, by fn(θ) and thus obtain
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fn(θ) ´
1

2π

∫ 2π

0

f(θ, ϕ)e−inϕ dϕ (3.1)

and

ank =

∫ π

0

P
|n|
k (cos θ)fn(θ) sin θ dθ. (3.2)

3.2. Discretising the Integrals

We will now proceed to show that, for band-limited functions, the integrals in (3.1) and
(3.2) can be computed by discrete sums, making it possible to evaluate them numerically.
To do this, we will first prove an aliasing theorem for Fourier series.

Theorem 3.5 Let f be a one-periodic function with pointwise convergent Fourier series,
i.e.

f(x) =
∑

k∈Z
ck(f) e

i2πkx (3.3)

with Fourier coefficients

ck(f) ´

∫ 1
2

− 1
2

f(x) e−i2πkxdx. (3.4)

If the ck(f) are approximated as

ĉk(f) ´
1

n

n/2−1
∑

j=−n/2
f

(
j

n

)

e−i2πjk/n (3.5)

using the rectangle quadrature rule, then the following aliasing relation holds:

ĉk(f) = ck(f) +
∑

r∈Z
r 6=0

ck+rn(f).

Proof. Substituting the Fourier expansion of f from (3.3) into the definition of the ĉk(f)
(given in (3.5)) yields

ĉk(f) =
1

n

n/2−1
∑

j=−n/2

∑

l∈Z
cl(f) e

i2πlj/n e−i2πjk/n

=
∑

l∈Z
cl(f)

1

n

n/2−1
∑

j=−n/2
ei2πj(l−k)/n

=
∑

l∈Z
cl(f)

1

n

n−1∑

j=0

ei2πj(l−k)/n. (3.6)
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We claim that
1

n

n−1∑

j=0

ei2πj(l−k)/n =

{

1 if l−k
n
∈ Z

0 otherwise.
(3.7)

In the case where l−k
n
∈ Z, this holds because all of the terms in the sum are 1. In the

case where l−k
n
6∈ Z, we apply the geometrical sum

∑n−1
k=0 q

k = qn−1
q−1

. This yields

n−1∑

j=0

ei2πj(l−k)/n =
ei2π(l−k) − 1

ei2π(l−k)/n − 1
=

0

ei2π(l−k)/n − 1
= 0

because l−k
n
6∈ Z and thus ei2π(l−k)/n 6= 1.

Applying (3.7) to (3.6) yields

ĉk(f) =
∑

l∈Z
(l−k)/n∈Z

cl(f) =
∑

r∈Z
ck+rn(f) = ck(f) +

∑

r∈Z
r 6=0

ck+rn(f).

¥

Corollary 3.6 If f is a one-periodic function of which only the lowest n Fourier coef-
ficients are non-zero, i.e.

f(x) =

n/2−1
∑

k=−n/2
ck(f) e

i2πkx,

then the approximation ĉk(f) for the Fourier coefficients (as defined in Theorem 3.5) is
exact for k = −n/2, . . . , n/2− 1.

This result can now be used to compute the fn(θ) using a discrete sum.

Theorem 3.7 If f ∈ L2(S) is a band-limited function of bandwidth N − 1, then for
n = −(N − 1), . . . , N − 1 the fn(θ) from (3.1) can be computed as

fn(θ) =
1

2N

2N−1∑

t=0

f(θ, ϕt) e
−inϕt , (3.8)

where

ϕt ´
tπ

N
(t = 0, . . . , 2N − 1).

Proof. First, we will show that f(θ, ϕ), as a function of ϕ, is a Fourier series with a finite
number of non-zero coefficients:

f(θ, ϕ) =
N−1∑

k=0

k∑

n=−k
ank P

|n|
k (cos θ)einϕ

=
N−1∑

n=−(N−1)

einϕ

N−1∑

k=|n|
ank P

|n|
k (cos θ).
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We now apply Corollary 3.6, setting n = 2N and performing the substitution ϕ =
2πx. The integral (3.1) then corresponds to the Fourier coefficients (3.4), and the sum
(3.8) corresponds to the approximated Fourier coefficients (3.5), and so, by the corollary,
the two are equal for n = −(N − 1), . . . , N − 1. ¥

Theorem 3.8 If f ∈ L2(S) is a band-limited function of bandwidth N − 1, then the
integral (3.2) for the ank can be computed as

ank =
N−1∑

s=0

wsP
|n|
k (xs)fn(arccos xs), (3.9)

where the ws and xs (s = 0, . . . , N − 1) are the weights and nodes for Gauss-Legendre
quadrature, respectively (see Appendix A).

Proof. We perform the substitution x = cos θ on the integral (3.2), yielding

ank =

∫ 1

−1

P
|n|
k (x)fn(arccosx) dx. (3.10)

Applying the Gauss-Legendre quadrature rule with N nodes yields the sum given
above.

What remains to be shown is that this quadrature is exact for functions of bandwidth
N − 1 or less. To do this, it is sufficient to show that the quadrature is exact for
the spherical harmonics Y n

k (k = 0, . . . , N − 1;n = −k, . . . , k), since the functions of
bandwidth N − 1 are linear combinations of these spherical harmonics.

For f = Y m
l where m 6= n, we have fn ≡ 0 because

∫ 2π

0
eimϕ e−inϕdϕ = 0 for m 6= n.

Therefore, we need only examine the case where f = Y n
l , |n| ≤ l ≤ N − 1. In this case

we have fn(θ) = P
|n|
l (cos θ). Using the definition of the P n

k (2.1), the integrand in (3.10)
thus becomes

P
|n|
k (x)P

|n|
l (x) = c ·

(

(1− x2)
|n|
2

d|n|

dx|n|
Pk(x)

)(

(1− x2)
|n|
2

d|n|

dx|n|
Pl(x)

)

= c · (1− x2)|n|
(

d|n|

dx|n|
Pk(x)

)(
d|n|

dx|n|
Pl(x)

)

.

(The normalisation constants are not relevant in this context and have been combined
into the constant c for clarity.) We thus have a product of polynomials of degree 2|n|,
k − |n| and l − |n|, respectively; hence, the integrand is a polynomial of degree k + l ≤
2N−2 (because k, l ≤ N−1). Gaussian quadrature withN nodes is exact for polynomials
up to a degree of 2N − 1, and so the quadrature is exact for functions with bandwidth
N − 1. ¥
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3.3. Algorithms

The computation of the ank (also known as the discrete spherical Fourier transform) has
been split up into two phases: The computation of the fn(θ) by a Fourier series and the
subsequent computation of the ank by Gauss-Legendre quadrature.

Before we summarise the discrete spherical Fourier transform algorithm obtained in
this way, we will investigate how the computation of f(θ, ϕ) from given Fourier coeffi-
cients ank (also known as the inverse discrete spherical Fourier transform) can similarly
be split up into two phases. We recall that a function on the sphere with bandwidth
N − 1 has the form

f(θ, ϕ) =
N−1∑

k=0

k∑

n=−k
ank Y

n
k (θ, ϕ) (ank ∈ C).

We will introduce an additional parameter Nlim for the upper limit of the first sum.
This will allow us to obtain a formula for the full reconstruction of f from the ank as well
as for fNlim , the result of applying the spherical filter with bandwidth Nlim. We will thus
compute

fNlim(θ, ϕ) =

Nlim∑

k=0

k∑

n=−k
ank Y

n
k (θ, ϕ).

This double sum can now be split up in the following way:

fNlim(θ, ϕ) =

Nlim∑

k=0

k∑

n=−k
ank Y

n
k (θ, ϕ)

=

Nlim∑

n=−Nlim

Nlim∑

k=|n|
ank Y

n
k (θ, ϕ)

=

Nlim∑

n=−Nlim

Nlim∑

k=|n|
ank P

|n|
k (cos θ) einϕ

=

Nlim∑

n=−Nlim

einϕ

Nlim∑

k=|n|
ank P

|n|
k (cos θ)

=

Nlim∑

n=−Nlim

einϕgn(θ)

where

gn(θ) ´

Nlim∑

k=|n|
ank P

|n|
k (cos θ). (3.11)
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As in the forward transform, we have two steps: The computation of the gn(θ) and
the summation of the Fourier series.

Let us summarise the two transforms. In doing so, we will assume from the beginning
that the values of f are given on the grid (θs, ϕt)

N−1
s=0,

2N−1
t=0 where θs ´ arccos xs, xs being

the Gauss-Legendre nodes, and ϕt ´
tπ
N
. (See Appendix A on how to compute the nodes

and weights for Gauss-Legendre quadrature.)

Algorithm 3.1 (Discrete Spherical Fourier Transform)

Input: f(θs, ϕt) ∈ C (s = 0, . . . , N − 1, t = 0, . . . , 2N − 1)
(f is band-limited with bandwidth N − 1)

Output: ank ∈ C (k = 0, . . . , N − 1, n = −k, . . . , k)
(Fourier coefficients for f)

Constants: N ∈ N

xs, ws ∈ R (s = 0, . . . , N − 1)
(nodes and weights for Gauss-Legendre quadrature)

θs ´ arccos xs (s = 0, . . . , N − 1), ϕt ´
tπ
N

(t = 0, . . . , 2N − 1)
(grid points)

1. For s = 0, . . . , N − 1 compute

fn(θs) ´
1

2N

2N−1∑

t=0

f(θs, ϕt) e
−inϕt (n = −(N − 1), . . . , N − 1)

using an FFT. Complexity: O(N 2 logN)

2. For k = 0, . . . , N − 1 and n = −k, . . . , k compute

ank ´
N−1∑

s=0

wsP
|n|
k (xs)fn(θs)

Complexity: O(N 3)

Algorithm 3.2 (Inverse Discrete Spherical Fourier Transform)

Input: ank ∈ C (k = 0, . . . , Nlim, n = −k, . . . , k)
(Fourier coefficients)

Output: fNlim(θs, ϕt) ∈ C (s = 0, . . . , N − 1, t = 0, . . . , 2N − 1)

Constants: N,Nlim ∈ N

θs ´ arccos xs (s = 0, . . . , N − 1), ϕt ´
tπ
N

(t = 0, . . . , 2N − 1)
(grid points — the xs are the Gauss-Legendre nodes)
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1. For n = −Nlim, . . . , Nlim and s = 0, . . . , N − 1 compute

gn(θs) ´

Nlim∑

k=|n|
ankP

|n|
k (xs)

Complexity: O(Nlim
2 N)

2. For s = 0, . . . , N − 1 compute

fNlim(θs, ϕt) ´

Nlim∑

n=−Nlim

einϕtgn(θs) (t = 0, . . . , 2N − 1)

using an FFT. This will require those components of the input vector with indexes
greater than Nlim to be padded with zeros. Complexity: O(N 2 logN)

It is, of course, possible to apply the discrete spherical Fourier transform to functions
f that are not band-limited. In this case, an inverse transform will not reconstruct
the original data. Instead, one obtains the result of applying a spherical filter with
bandwidth Nlim, which filters out high-frequency components and yields a representation
with “uniform resolution”, i.e. where details are resolved equally well all over the sphere
(see Remark 3.2). This is useful when integrating PDE on the sphere since it allows one
to choose a time step that is appropriate for the grid resolution at the equator — even
though the grid points are much closer together at the poles — without encountering
the instabilities that would occur if the high-frequency components were not filtered out.
For details on this, see [Bo01, Section 18.10].

3.4. Combining the Middle Steps

In applications such as the wavelet decomposition and the spherical filter, the forward
transform is followed directly by the inverse transform, which means that the ank need
never be calculated explicitly. This allows us to combine the second step of the forward
transform (Algorithm 3.1) with the first step of the inverse transform (Algorithm 3.2),
which will, in turn, enable us to employ some fast approximate algorithms later on.
Optimising the middle steps should allow us to improve the asymptotic complexity of
the whole algorithm, since these steps are the most costly parts of the algorithm — they
have a complexity of O(N 3) compared to O(N 2 logN) for the outer steps.

Combining the middle steps, i.e. substituting the quadrature formula for the ank (3.9)
into the definition of the gn (3.11), yields (for σ = 0, . . . , N − 1)
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gn(θσ) ´

Nlim∑

k=|n|
ankP

|n|
k (cos θσ)

=

Nlim∑

k=|n|

N−1∑

s=0

wsP
|n|
k (xs)fn(θs)P

|n|
k (xσ)

=
N−1∑

s=0

wsfn(θs)

Nlim∑

k=|n|
P
|n|
k (xs)P

|n|
k (xσ). (3.12)

We will now proceed to derive a closed form for the inner sum in this formula that
will enable the application of a fast algorithm to compute the outer sum.

3.5. The Christoffel-Darboux Formula

In this section we will derive a closed form for the sum

S(x, y) ´
N−1∑

k=n

P n
k (x) P

n
k (y). (3.13)

The closed form we will derive is known as the Christoffel-Darboux formula. (In fact,
this name is applied to a whole family of similar formulas that can be derived for various
orthogonal polynomials.) Our derivation is based on [SwSp00, Section A.3] but is more
detailed.

Theorem 3.9 The sum (3.13) possesses the closed form

S(x, y) =







αnN
(
P n
N(x)P

n
N−1(y)− P n

N−1(x)P
n
N(y)

)

x− y if x 6= y

αnN
(
P n ′
N (x)P n

N−1(x)− P n ′
N−1(x)P

n
N(x)

)
if x = y,

(3.14)

where the αnk are the constants from the three-term recurrence (2.2).

Proof. We first examine the case where x 6= y. Applying the three-term recurrence (2.2)
to equation (3.13) yields

xS(x, y) =
N−1∑

k=n

(
αnkP

n
k−1(x) + αnk+1P

n
k+1(x)

)
P n
k (y)

and

yS(x, y) =
N−1∑

k=n

P n
k (x)

(
αnkP

n
k−1(y) + αnk+1P

n
k+1(y)

)
.
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Taking the difference of these two equations yields

(x− y)S(x, y) =
N−1∑

k=n

αnkP
n
k−1(x)P

n
k (y) + αnk+1P

n
k+1(x)P

n
k (y)

−αnkP n
k (x)P

n
k−1(y)− αnk+1P

n
k (x)P

n
k+1(y)

=
N−1∑

k=n

αnkP
n
k−1(x)P

n
k (y)− αnkP n

k (x)P
n
k−1(y)

+
N−1∑

k=n

αnk+1P
n
k+1(x)P

n
k (y)− αnk+1P

n
k (x)P

n
k+1(y)

=
N−1∑

k=n

αnkP
n
k−1(x)P

n
k (y)− αnkP n

k (x)P
n
k−1(y)

+
N∑

k=n+1

αnkP
n
k (x)P

n
k−1(y)− αnkP n

k−1(x)P
n
k (y)

= αnnP
n
n−1(x)P

n
n (y)− αnnP n

n (X)P n
n−1(y)

︸ ︷︷ ︸

=0 because Pn
k ≡0 for k<n

+ αnNP
n
N(x)P

n
N−1(y)− αnNP n

N−1(x)P
n
N(y)

= αnN
(
P n
N(x)P

n
N−1(y)− P n

N−1(x)P
n
N(y)

)
.

Dividing by x− y yields the proposition.
We now turn to the case x = y. Using l’Hôpital’s rule, we obtain

lim
y→x

S(x, y) = lim
y→x

αnN
(
P n
N(x)P

n
N−1(y)− P n

N−1(x)P
n
N(y)

)

x− y

= lim
y→x

αnN
(
P n
N(x)P

n ′
N−1(y)− P n

N−1(x)P
n ′
N (y)

)

−1
= αnN

(
P n
N−1(x)P

n ′
N (x)− P n

N(x)P
n ′
N−1(x)

)
.

¥

The Christoffel-Darboux formula for the case where x = y requires the evaluation
of P n ′

k , the derivatives of the normalised associated Legendre functions. A recurrence
equation for the P n ′

k can be obtained by differentiating the three-term recurrence

xP n
k = αnkP

n
k−1 + αnk+1P

n
n+1,

yielding
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P n
k + xP n ′

k = αnkP
n ′
k−1 + αnk+1P

n ′
k+1. (3.15)

To start the recurrence, we need P n ′
n . We have

P n
n (x) =

1

2nn!

[
2n+ 1

2
(2n)!

]1/2

(1− x2)n/2

(see Remark 2.3). Denoting c ´ 1
2nn!

[
2n+1

2
(2n)!

]1/2
for clarity, we obtain

P n ′
n (x) = c ·

[n

2
(1− x2)(n−2)/2 · (−2x)

]

= − cnx(1− x2)(n−2)/2.

Again, as mentioned for the P n
n in Remark 2.3, care must be taken in evaluating the

constant c to avoid overflow.

3.6. Applying the Christoffel-Darboux Formula to the Spherical
Filter

Applying the Christoffel-Darboux formula (3.14) to the equation (3.12) that was derived
for the middle steps yields

gn(θσ) =
N−1∑

s=0

wsfn(θs)

Nlim∑

k=|n|
P
|n|
k (xs)P

|n|
k (xσ)

= wσfn(θσ)α
|n|
Nlim+1

(

P
|n| ′
Nlim+1(xσ)P

|n|
Nlim

(xσ)− P |n| ′Nlim
(xσ)P

|n|
Nlim+1(xσ)

)

+

N−1∑

s=0
s6=σ

wsfn(θs)
α
|n|
Nlim+1

(

P
|n|
Nlim+1(xs)P

|n|
Nlim

(xσ)− P |n|Nlim
(xs)P

|n|
Nlim+1(xσ)

)

xs − xσ
.

Focusing only on the sum
∑N−1

s=0
s6=σ

. . ., we find

N−1∑

s=0
s6=σ

wsfn(θs)
α
|n|
Nlim+1

(

P
|n|
Nlim+1(xs)P

|n|
Nlim

(xσ)− P |n|Nlim
(xs)P

|n|
Nlim+1(xσ)

)

xs − xσ

= α
|n|
Nlim+1




P

|n|
Nlim

(xσ)
N−1∑

s=0
s6=σ

wsfn(θs)P
|n|
Nlim+1(xs)

xs − xσ

− P |n|Nlim+1(xσ)
N−1∑

s=0
s6=σ

wsfn(θs)P
|n|
Nlim

(xs)

xs − xσ




 . (3.16)
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This alone has not led to a reduction in the asymptotic complexity of the middle steps
— we still have a complexity of O(Nlim N2): O(Nlim) for the loop n = −Nlim, . . . , Nlim;
O(N) for the loop σ = 0, . . . , N − 1; and O(N) for the loop s = 0, . . . , N − 1. However,
the evaluation of the sums in (3.16) can be speeded up using fast approximate algorithms.
This was done using Fast Multipole Methods in [JA97]; we will use a different technique,
which will be presented next.
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4. A Fast Approximate Summation Algorithm

In this section, we will present an algorithm, from [PoSt02], that computes sums of the
form

f(yj) =
N∑

k=1

βkK(yj − xk) (j = 1, . . . ,M),

where K is the so-called kernel. To compute the sums arising in our application, we will
choose K(x) = 1/x.

The algorithm presented here is an approximate algorithm that is substantially faster
than evaluating the sum directly. It requiresO(σN log(σN)+mM) operations compared
to the O(MN) operations that would be required for a direct evaluation. (The constants
σ and m control the accuracy of the approximation.)

The algorithm is based on the Nonequispaced Fast Fourier Transform (NFFT), an
approximate algorithm for computing the Discrete Fourier Transform at nonequispaced
nodes. We will derive the NFFT first and then go on to develop the fast summation
algorithm.

4.1. The Nonequispaced FFT

The NFFT is used for the fast evaluation of sums of the forms

f(ωj) =

N/2−1
∑

k=−N/2
fk e

−i2πkωj (j = −M/2, . . . ,M/2− 1)

and

h(k) =

M/2−1
∑

j=−M/2

hj e
−i2πkωj (k = −N/2, . . . , N/2− 1)

(ωj ∈ R), known as the NDFT and NDFTT, respectively.
Note that this is not the most general case — we still have equispaced data in either

the time or the frequency domain. A fast algorithm for the case where the data in both
the time and frequency domains are nonequispaced is presented in [PST00].

Note also that the NDFT can be interpreted as the multiplication of the matrix
A ´ (e−i2πkωj)

M/2−1
j=−M/2,

N/2−1
k=−N/2 with the vector f ´ (fk)

N/2−1
k=−N/2. The NDFTT is equivalent

to the multiplication of AT with h ´ (hj)
M/2−1
j=−M/2.

The fast algorithms used to compute the NDFT and NDFTT are known as the NFFT
and NFFTT, respectively. In the following, we will initially restrict our attention to the
NFFT and then show later on how the NFFT algorithm can be modified to yield the
NFFTT algorithm.

20



Approximating f

We wish to evaluate

f(ω) =

N/2−1
∑

k=−N/2
fk e

−i2πkω

at the nodes ωj ∈ R (j = −M/2, . . . ,M/2− 1).
It is obvious that f is a one-periodic, band-limited function with Fourier coefficients

fk. (Note that, for convenience, this section uses the convention that a Fourier series
is a linear combination of basis functions e−i2πkx; the rest of this work follows the more
usual convention of using the basis functions ei2πkx, i.e. without the minus sign in the
exponent.)

We will approximate f by a sum of translates of a 1-periodic function ϕ̃ (i.e. ϕ̃(ω) =
∑

r∈Z ϕ(ω + r)) with good localisation in time and frequency. That is, we wish to find
an approximation for f of the form

f(ω) ≈ g(ω) ´

σN/2−1
∑

l=−σN/2
gl ϕ̃

(

ω − l

σN

)

,

where σ > 1 is the so-called oversampling factor and should be chosen such that σN/2
is an integer.

Broadly speaking, we will now proceed as follows: We will match the Fourier co-
efficients of g as closely as possible to the Fourier coefficients of f to ensure a good
approximation; from these Fourier coefficients, we will compute the gl; and finally, we
will evaluate g at the nodes ωj. In this last step, we will make use of the fact that ϕ̃
has good localisation in time. Thus, for every ωj, only a few terms in the sum have to
be evaluated to achieve a good approximation for g(ωj).

Note that the definition of g possesses σN degrees of freedom (namely, the coefficients
gl). This means that the Fourier coefficients of g also possess σN degrees of freedom,
i.e. we will only be able to match σN of these to the Fourier coefficients of f (we will
choose to match the lowest-frequency coefficients). This explains why σ is referred to as
the “oversampling factor”.

We will now state the properties that ϕ̃ should have in more detail. ϕ̃ should have
an absolute convergent Fourier series with Fourier coefficients

ck(ϕ̃) ´

∫ 1
2

− 1
2

ϕ̃(ω) ei2πkωdω,

it should be even (this guarantees that the ck(ϕ̃) are real-valued), and the ck(ϕ̃) should
become small for |k| ≥ σN − N/2. (The reason for the value σN − N/2 will become
clear in a moment.) We will also require ck(ϕ̃) 6= 0 for k = −N/2, . . . , N/2− 1.

Remark 4.1 If the Fourier transform ϕ̂(η) ´
∫∞
−∞ ϕ(ω) e

−i2πηωdω of ϕ is known, then
the ck(ϕ̃) can be obtained by sampling ϕ̂ at the frequencies η = −k, k ∈ Z. This is
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because

ck(ϕ̃) =

∫ 1
2

− 1
2

ϕ̃(ω) ei2πkωdω

=

∫ 1
2

− 1
2

[
∑

r∈Z
ϕ(ω + r)

]

ei2πkωdω

=
∑

r∈Z

∫ 1
2

− 1
2

ϕ(ω + r) ei2πkωdω

=
∑

r∈Z

∫ 1
2
+r

− 1
2
+r

ϕ(x) ei2πk(x−r)dx

=
∑

r∈Z

∫ 1
2
+r

− 1
2
+r

ϕ(x) ei2πkxdx

=

∫ ∞

−∞
ϕ(x) ei2πkxdx

= ϕ̂(−k).

¤

Matching the Fourier coefficients of g to those of f

We have already mentioned that we will choose the coefficients gl in the definition of g
such that the Fourier coefficients of g match those of f as closely as possible. Since the
Fourier coefficients of ϕ̃(· − l

σN
) are

ck

(

ϕ̃

(

· − l

σN

))

= ck(ϕ̃) · ei2πkl/(σN),

we have

ck(g) =

σN/2−1
∑

l=−σN/2
gl ck(ϕ̃) e

i2πkl/(σN)

= ck(ϕ̃) ĝk where ĝk ´

σN/2−1
∑

l=−σN/2
gl e

i2πkl/(σN).

We can thus write g(ω) as

g(ω) =
∑

k∈Z
ck(ϕ̃) ĝk e

−i2πkω.
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Note the relationship between the gl and the ĝk: The ĝk can be computed from the
gl using an IDFT; this means that the gl can be obtained from the ĝk using a DFT:

gl =
1

σN

σN/2−1
∑

k=−σN/2
ĝk e

−i2πkl/(σN).

What remains, thus, is to choose appropriate values for the ĝk, which we will do in
a moment; the gl can then be computed using a DFT (or, more efficiently, an FFT).

Note that the ĝk are, by their definition, periodic, i.e. ĝk = ĝk+rσN for any r ∈ Z.
This means that the ĝk only have σN degrees of freedom, as has been mentioned already.

In choosing the ĝk, we want to match the Fourier coefficients of g as closely as possible
to those of f . Since the Fourier coefficients of f are ck(f) = fk for k = −N/2, . . . , N/2−1
and ck(f) = 0 for all other k, and since the Fourier coefficients of g are ĝk · ck(ϕ̃), we set

ĝk ´

{

fk/ck(ϕ̃) for k = −N/2, . . . , N/2− 1

0 for k ∈ {−σN/2, . . . , σN/2− 1} \ {−N/2, . . . , N/2− 1},

and of course the ĝk are then continued periodically. The aliasing error is then described
by

g(ω)− f(ω) =
∑

k∈Z\
{−σN/2,...,σN/2−1}

ĝk ck(ϕ̃) e
−i2πkω.

By the assumption that ck(ϕ̃) ≈ 0 for |k| ≥ σN −N/2, the aliasing error will remain
small. It may not be immediately obvious why we have to require ck(ϕ̃) ≈ 0 only for
|k| ≥ σN−N/2 and not for |k| ≥ σN/2. The reason is that for σN/2 ≤ |k| < σN−N/2
we have ĝk = 0 (because the ĝk are continued periodically). This means that the
corresponding terms in the aliasing error will vanish, so that we have to require ck(ϕ̃)
to be small only for |k| ≥ σN −N/2.

Evaluating g

We have now determined the ĝk and thus the gl. What remains is to evaluate the sum

g(ω) =

σN/2−1
∑

l=−σN/2
gl ϕ̃

(

ω − l

σN

)

efficiently.
To this end, we will assume, as stated previously, that ϕ possesses good localisation

in time. Assuming that ϕ is small outside the window Im ´ [−m/(σn),m/(σn)] (where
m ∈ N is a constant with m¿ n), we can approximate it by the truncated version

ψ(ω) ´

{

ϕ(ω) if ω ∈ Im
0 otherwise,
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and again we set ψ̃(ω) ´
∑

r∈Z ψ(ω + r).
We thus have

g(ω) ≈
σN/2−1
∑

l=−σN/2
gl ψ̃

(

ω − l

σN

)

=

[ωσN ]+m
∑

l=[ωσN ]−m
gl ψ̃

(

ω − l

σN

)

, (4.1)

where [a] denotes the integer closest to a.
To see why this is correct, consider the following example, where m = 1 and j =

[ωσN ]:

PSfrag replacements

j−2
σN

j−1
σN

j
σN

j+1
σN

ω

The sum runs through the indexes l = j− 1, j, j+1. Strictly speaking, the translate
ψ̃(ω− j+1

σN
) need not be included in the sum, since it does not make a contribution at ω.

In the opposite case where ω is slightly larger than j
σN

, the translate ψ̃(ω + j+1
σN

) could
be left out of the sum. However, rather than trying to determine which of these two
cases applies in a given situation, we will keep our formulas simple and always include
both marginal translates in the sum.

It should be noted that, in the implementation, one can perform the small optimisa-
tion of replacing ψ̃ in equation (4.1) with ϕ. This eliminates the need to check whether
ω ∈ Im, and at the same time the sum becomes slightly more accurate because the
marginal translate that did not contribute to the sum when ψ̃ was used now makes a
contribution.

Truncating ϕ introduces the so-called truncation error. (It should be noted that, in
general, ϕ̃(ω) 6= ψ̃(ω) even for ω ∈ Im. This is because, for ω ∈ Im, ϕ̃(ω) =

∑

r∈Z ϕ(ω+r)

but ψ̃(ω) = ϕ(ω), since ψ̃ was truncated before being made periodic.)
We thus have two errors that must be balanced against one another. The aliasing

error depends on the frequency localisation of ϕ, and the truncation error depends on
the time localisation of ϕ. Since an increase in time localisation leads to a decrease
in frequency localisation and vice versa, a good balance must be struck in the choice
of ϕ. Possible choices include Gaussians, cardinal central B-splines and Kaiser-Bessel
functions; the latter are favoured in [PoSt02], and so we choose to use these functions.
We thus have
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ϕ(ω) =
1

π







sinh
(

b
√

m2 − (σN)2 ω2
)

√

m2 − (σN)2 ω2
for |ω| < m

σN
(b ´ π(2− 1

σ
))

sin
(

b
√

(σN)2 ω2 −m2
)

√

(σN)2 ω2 −m2
otherwise

and

ck(ϕ̃) =







1
σN

I0

(

m
√

b2 − (2πk/(σN))2
)

for k = −σN(1− 1
2σ
), . . . , σN(1− 1

2σ
)

0 otherwise,

(4.2)

where I0 denotes the modified zero-order Bessel function. (These definitions were taken
from [PoSt02].)

Suitable values for m and σ also have to be chosen — the former controls the trun-
cation error, and the latter controls the aliasing error. Error estimates that provide
guidance in the choice of these parameters are presented in Section 5 of [PoSt02].

We are now ready to summarise the NFFT algorithm:

Algorithm 4.1 (NFFT)

Input: fk ∈ C (k = −N/2, . . . , N/2− 1)
(Fourier coefficients)

Output: f̃(ωj) ∈ C (j = −M/2, . . . ,M/2− 1)
(approximate values for f(ωj))

Constants: M,N ∈ N

ωj ∈ R (j = −M/2, . . . ,M/2− 1)
σ ∈ Q (oversampling factor, must satisfy σN/2 ∈ N)
m ∈ N (parameter for the truncation of ϕ̃)

Precomputation: (i) For k = −N/2, . . . , N/2− 1, compute

ck(ϕ̃) ´

∫ 1
2

− 1
2

ϕ̃(ω) ei2πkωdω

(A closed expression can usually be found for the ck(ϕ̃);
see Remark 4.1. For the case where ϕ is a Kaiser-Bessel
function, see equation (4.2).)

(ii) For j = −M/2, . . . ,M/2− 1, compute

ψ

(

ωj −
l

σN

)

(l = [ωjσN ]−m, . . . , [ωjσN ] +m)
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1. For k = −N/2, . . . , N/2− 1, compute

ĝk ´ fk/ck(ϕ̃)

Complexity: O(N)

2. For l = −σN/2, . . . , σN/2− 1, compute

gl ´
1

σN

N/2−1
∑

k=−N/2
ĝk e

−i2πkl/(σN)

using an FFT. Complexity: O(σN log(σN))

3. For j = −M/2, . . . ,M/2− 1, compute

f̃(ωj) ´

[ωjσN ]+m
∑

l=[ωjσN ]−m
gl ψ

(

ωj −
l

σN

)

Complexity: O(mM)

The overall complexity is O(σN log(σN) +mM).

Interpreting the NFFT as a product of matrices

It was already mentioned earlier that the NDFT can be interpreted as a matrix-vector
multiplication Af (A ∈ CM×N , f ∈ CN). In this section, we will show that the NFFT
algorithm can be interpreted as an approximate factorisation of A. Since the NDFTT

is given by ATh (h ∈ CM), we need only transpose the factorisation of A to obtain an
NFFTT algorithm.

A may be factorised approximately as follows:

A ≈ BFD,

where each of the three matrices corresponds to a step in the NFFT algorithm:

1. D ∈ RN×N is a diagonal matrix:

D ´ diag

(
1

ck(ϕ̃)

)N/2−1

k=−N/2

2. F ∈ C σN×N is a truncated Fourier matrix:

F ´
(
e−i2πkl/(σN)

)σN/2−1

l=−σN/2,
N/2−1

k=−N/2
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Figure 4.1: Structure of the matrix B. Non-zero entries are indicated by dots. The row
index j runs from −M/2 to M/2 − 1, the column index l runs from −σN/2 to σN/2 − 1.
Parameters used were M = N = 64, σ = 2 and m = 5; Legendre nodes were used for the ωj .

3. B ∈ RM×σN is a sparse band matrix with 2m+ 1 non-zero entries per row:

B ´ (bj l)
M/2−1
j=−M/2,

σN/2−1

l=−σN/2

where

bj l =

{

ψ̃
(
ωj − l

σN

)
if l ∈ {[ωjσN ]−m, . . . , [ωjσN ] +m}

0 otherwise.

(Note: For notational convenience, we are assuming that the elements of the set
{[ωjσN ] −m, . . . , [ωjσN ] +m} will wrap around automatically to fall within the
range −σN/2, . . . , σN/2− 1.)

A diagram illustrating the structure of the matrix B is given in Figure 4.1.

The NFFTT algorithm

The factorisation that was derived for A allows us to derive an NFFTT algorithm simply
by transposing A:

ATh ≈ DTFTBTh = DFTBTh.

This is quite straightforward; the only point which deserves to be commented on is
the multiplication of the sparse matrix BT = (bj l)

σN/2−1
l=−σN/2,

M/2−1

j=−M/2
with h. Performing

this matrix-vector multiplication in the usual way — that is, stepping down the rows of
BT — is difficult to implement because there is no simple rule to tell us which columns
in a given row are non-zero. It is much easier to determine which rows in a given column
are non-zero — for column j, these are rows [ωjσN ]−m, . . . , [ωjσN ]+m (assuming that
indexes are automatically wrapped to the appropriate range).
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Because of this, we will perform the matrix-vector multiplication by stepping across
BT and processing one column at a time. This means that each component of the result
vector will be updated several times during the computation until it reaches its final
value when the last column has been processed.

We thus propose implementing the operation g = BTh like this:

for l = −σN/2, . . . , σN/2− 1
gl ´ 0

end

for j = −M/2, . . . ,M/2− 1
for l = [ωjσN ]−m, . . . , [ωjσN ] +m

gl ´ gl + hj bjl
end

end

We are now ready to present the NFFTT algorithm:

Algorithm 4.2 (NFFTT)

Input: hj ∈ C (j = −M/2, . . . ,M/2− 1)
(Fourier coefficients)

Output: h̃(k) ∈ C (k = −N/2, . . . , N/2− 1)
(approximate values for h(k))

Constants: M,N ∈ N

ωj ∈ R (j = −M/2, . . . ,M/2− 1)
σ ∈ Q (oversampling factor, must satisfy σN/2 ∈ N)
m ∈ N (parameter for the truncation of ϕ̃)

Precomputation: Compute ck(ϕ̃) and ψ(ωj − l
σN

) as for the NFFT.

1. for l = −σN/2, . . . , σN/2− 1
gl ´ 0

end

for j = −M/2, . . . ,M/2− 1
for l = [ωjσN ]−m, . . . , [ωjσN ] +m

gl ´ gl + hj ψ(ωj − l
σN

)
end

end

2. For k = −N/2, . . . , N/2− 1, compute

ĝk ´
1

σN

σN/2−1
∑

l=−σN/2
gl e

−i2πk l
σN

using a reduced FFT
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3. For k = −N/2, . . . , N/2− 1, compute

h̃(k) ´ ĝk/ck(ϕ̃)

The overall complexity is O(σN log(σN)+mM) — the same as for the NFFT, since
the same operations are performed, only in a different order.

4.2. A Fast Summation Algorithm Based on the NFFT

As stated already in the introduction to this section, we will present a fast summation
algorithm for sums of the form

f(yj) =
N∑

k=1

βkK(yj − xk) (j = 1, . . . ,M), (4.3)

where βk ∈ C, xk ∈ R (k = 1, . . . , N), yj ∈ R (j = 1, . . . ,M).
The kernel K must be in C∞, except for the origin, which may (and typically does)

exhibit a singularity. If so, we agree to set K(0) ´ 0 so that we will be able to evaluate
K for all x ∈ R. (The effect of this is that any terms for which yj = xk will simply be
left out of the sum.) The kernel that we will use in our application is K(x) = 1/x.

The general idea is to regularise the kernel and make it periodic so that it can be
approximated well by a Fourier series. Replacing the regularised kernel by the Fourier
series then allows the NFFT to be used to speed up the computation but has two
consequences that must be taken into consideration. Firstly, the Fourier series will not
approximate K well near the origin, because of the singularity. For this reason, so-called
near-field corrections have to be applied for values of yj − xk that are close to zero.
Secondly, since the kernel has been made periodic, the values of yj − xk have to lie
within the period that spans the origin, which may mean that the xk and yj have to be
scaled to a suitable range. This will be discussed in more detail later on.

Regularising the kernel

In the following, we will derive KR, a 1-periodic version of the kernel that is regularised
near 0 and ±1/2. This regularisation is carried out using a cosine series for even kernels,
a sine series for odd kernels, and a Fourier series for other kernels. Since our application
uses the kernel 1/x, we will only examine the regularisation of odd kernels.

An example of a regularised kernel is shown in Figure 4.2. To demonstrate that the
kernel has been made periodic, two periods are shown.

We will parameterise our regularised kernel by the constant a, which governs the
width of the intervals on which the kernel is regularised. Specifically, the kernel will be
replaced by a sine series on the intervals

[
−1

2
,−1

2
+ a

n

)
,
(
− a

n
, a
n

)
and

(
1
2
− a

n
, 1

2

]
, where

n is the number of terms that will be used later on in the Fourier series approximation
of KR. Thus, on x ∈

[
−1

2
, 1

2

]
, we have
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Figure 4.2: The kernel K(x) = 1/x (dotted) and its 1-periodic regularised version (solid).
Parameters used were n = 128, a = p = 12.

KR(x) ´







TI(x) if x ∈
(
− a

n
, a
n

)

TB(x) if x ∈
[
−1

2
,−1

2
+ a

n

)
∪
(

1
2
− a

n
, 1

2

]

K(x) otherwise

with

TI(x) ´

p
∑

j=1

aIj sin
πnj

2a
x and

TB(x) ´







p
∑

j=1

aBj sin
πnj

2a
(x− 1/2) if x ∈

(
1
2
− a

n
, 1

2

]

p
∑

j=1

aBj sin
πnj

2a
(x+ 1/2) if x ∈

[
−1

2
,−1

2
+ a

n

)
,

where p is a parameter that controls how smoothly the sine series blends into the kernel.
For x 6∈

[
−1

2
, 1

2

]
, KR(x) is continued periodically.

To determine the coefficients aIj and a
B
j , we will demand that TI and TB should match

the value and the first p− 1 derivatives of the kernel at the joins, i.e.

T
(r)
I

(a

n

)

= K(r)
(a

n

)

(r = 0, . . . , p− 1) (4.4)

and
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T
(r)
B

(

−1

2
+
a

n

)

= K(r)

(

−1

2
+
a

n

)

(r = 0, . . . , p− 1). (4.5)

From (4.4), we obtain

p
∑

j=1

aIj

(
πnj

2a

)r

(−1)r/2 sin
πj

2
= K(r)

(a

n

)

(4.6)

for even r and

p
∑

j=1

aIj

(
πnj

2a

)r

(−1)(r−1)/2 cos
πj

2
= K(r)

(a

n

)

(4.7)

for odd r (r = 0, . . . , p− 1).
Note that the system matrix of this system of equations exhibits a chessboard-like

structure, allowing it to be split into the two systems of equations

b(p−1)/2c
∑

j=0

aI2j+1 (2j + 1)2r (−1)r (−1)j =
(
2a

πn

)2r

K(2r)
(a

n

)

(r = 0, . . . , b (p−1)
2
c)

and

bp/2c
∑

j=0

aI2j (2j)
2r+1 (−1)r (−1)j =

(
2a

πn

)2r+1

K(2r+1)
(a

n

)

(r = 0, . . . , b (p−2)
2
c).

Turning now to equation (4.5), the condition for regularisation around ±1/2, we
obtain

p
∑

j=1

aBj

(
πnj

2a

)r

(−1)r/2 sin

[
πnj

2a

(

−1

2
+
a

n
+

1

2

)]

= K(r)

(

−1

2
+
a

n

)

⇔

p
∑

j=1

aBj

(
πnj

2a

)r

(−1)r/2 sin
πj

2
= K(r)

(

−1

2
+
a

n

)

.

for even r. Note that this equation has the same left-hand side as equation (4.6). The
case for odd r proceeds in a similar way, yielding an equation with the same left-hand
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side as equation (4.7). The result of this is that we can compute the aBj using the same
system matrices as for the aIj .

Approximating KR by a Fourier Series

We approximate KR by the Fourier series

KRF (x) ´

n/2−1
∑

l=−n/2
bl e

i2πlx,

where n ≈ N is the desired number of terms in the Fourier series and the Fourier
coefficients are given by

bl ´
1

n

n/2−1
∑

j=−n/2
KR

(
j

n

)

e−i2πjl/n (l = −n/2, . . . , n/2− 1).

We now split up K like this:

K = (K −KR) + (KR −KRF ) +KRF (4.8)

and denote K −KR by KNE (this is the so-called near-field correction) and KR −KRF

by KER (this is the error introduced by the Fourier series approximation). Since KR is
smooth, we expect that KER will almost vanish, and so we replace K by KNE +KRF in
the sum we wish to compute:

f̃(yj) ´
N∑

k=1

βk(KNE +KRF )(yj − xk) (j = 1, . . . ,M)

=
N∑

k=1

βkKNE(yj − xk) +
N∑

k=1

βkKRF (yj − xk). (4.9)

We denote the first sum by fNE(yj) and the second by fRF (yj).
With a view to evaluating fNE(yj) efficiently, we now return to the question of

which range the xk and yj should be constrained to. We note that KNE(x) = 0 for
x ∈

[
−1

2
+ a

n
, 1

2
− a

n

]
\
(
− a

n
, a
n

)
. By requiring yj−xk ∈

[
−1

2
+ a

n
, 1

2
− a

n

]
, we can eliminate

all of the terms from
∑N

k=1 βkKNE(yj − xk) for which yj − xk 6∈
(
− a

n
, a
n

)
. If the xk and

yj are distributed evenly, this means that only a few terms will be left in the sum.
To satisfy the condition yj−xk ∈

[
−1

2
+ a

n
, 1

2
− a

n

]
, we will require |xk|, |yj| ≤ 1

4
− a

2n
.

If the xk and yj do not lie within the required range, they can be scaled by the factor

s ´
1
4
− a

2n

max {|x1|, . . . , |xN |, |y1|, . . . , |yM |}
.

Of course, this will require the kernel K(x) to be replaced with K( x
s
).

Having seen how to compute fNE efficiently, we turn our attention to fRF . We have
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fRF (yj) =
N∑

k=1

βkKRF (yj − xk)

=
N∑

k=1

βk

n/2−1
∑

l=−n/2
bl e

i2πl(yj−xk)

=

n/2−1
∑

l=−n/2
bl

(
N∑

k=1

βke
−i2πlxk

)

ei2πlyj .

The expression in brackets can be computed efficiently using an NFFTT. We then
multiply with the bl and compute the outer sum using an NFFT.

We are now ready to summarise the NFFT summation algorithm:

Algorithm 4.3 (NFFT Summation)

Input: βk ∈ C (k = 1, . . . , N)
(Coefficients for the sum)

Output: f̃(yj) (j = 1, . . . ,M)
(approximate values for f(yj))

Constants: M,N ∈ N

xk ∈ R (k = 1, . . . , N)
yj ∈ R (j = 1, . . . ,M)
(|xk − yj| ≤ 1

4
− a

2n
(k = 1, . . . , N , j = 1, . . . ,M))

a, p ∈ N (parameters for the regularisation of the kernel)
n ∈ N (number of terms in the Fourier series KRF )
m ∈ N, σ ∈ Q (parameters for the NFFT)

Precomputation: (i) Compute coefficients aIj and aBj (j = 1, . . . , p) for the
regularised kernel by solving the systems of equations de-
rived from (4.4) and (4.5).

(ii) For l = −n/2, . . . , n/2− 1, compute

bl ´
1

n

n/2−1
∑

j=−n/2
KR

(
j

n

)

e−i2πjl/n

using an FFT

(iii) For j = 1, . . . ,M , compute

KNE(yj − xk)
for those k ∈ {1, . . . , N} that satisfy |yj − xk| < a

n
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1. For l = −n/2, . . . , n/2− 1, compute

al ´
N∑

k=1

βk e
−i2πlxk

using an NFFTT. Complexity: O(σn log(σn) +mN)

2. For l = −n/2, . . . , n/2− 1, compute

dl ´ al bl

Complexity: O(n)

3. For j = 1, . . . ,M , compute

fRF (yj) ´

n/2−1
∑

l=−n/2
dl e

i2πlyj

using an NFFT. Complexity: O(σn log(σn) +mM)

4. For j = 1, . . . ,M , compute

fNE(yj) ´
∑

k∈{1,...,N},
|yj−xk|<a/n

βk KNE(yj − xk)

Complexity: O(aνM)

5. For j = 1, . . . ,M , compute

f̃(yj) ´ fRF (yj) + fNE(yj)

Complexity: O(M)

The constant ν in the complexity estimate for step 4 is the maximum number of
xk in an interval of width 1/n. Obviously, the more evenly the xk are distributed, the
smaller ν will become. The overall complexity is O(σn log(σn) +m(M +N) + aνM).

4.3. Error Estimate for the Fast Summation Algorithm

We will now provide an error estimate for the fast summation algorithm (Algorithm 4.3)
just presented. The error estimate is based on [PoSt02, Section 3.2], but in contrast to
the results given there, we estimate the error not for the general case of an even kernel
but for the special case of the odd kernel K(x) = s

x
(s ∈ R, s > 0). Also, our error
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estimate still contains the coefficients aIj and aBj which occur in the regularised kernel,
whereas the magnitude of these coefficients is also estimated in [PoSt02].

In the following, we will deal solely with the error introduced by Algorithm 4.3. The
additional error introduced by the NFFT has already been investigated thoroughly, see
Section 5 of [PoSt02] and the literature cited there. Basically, the error in the NFFT
has been shown to decay exponentially with the parameter m for several choices of ϕ,
including the Kaiser-Bessel functions we use.

Let us now examine the approximation error in Algorithm 4.3. In Section 4.2, the
kernel K was split up into three components:

K = KNE +KER +KRF

(see equation (4.8)), where KNE was the near-field correction, KER was the error intro-
duced by the Fourier series approximation, and KRF was the Fourier series itself. The
kernel was then approximated as K ≈ KNE +KRF . By comparing the definition of f
(4.3) and the definition of the approximation f̃ (4.9), we see that

|f(yj)− f̃(yj)| =
∣
∣
∣
∣
∣

N∑

k=1

βkKER(yj − xk)
∣
∣
∣
∣
∣

(j = 1, . . . ,M),

and by applying Hölder’s inequality we obtain

|f(yj)− f̃(yj)| ≤
∥
∥(βk)

N
k=1

∥
∥
p

∥
∥
(
KER(yj − xk)

)N

k=1

∥
∥
q
, (4.10)

where 1
p
+ 1

q
= 1 (1 ≤ p ≤ ∞). (The p-norm of a vector v = (vk)

N
k=1 is defined as

‖v‖p ´
(
∑N

k=1 |vk|p
) 1
p
for 1 ≤ p <∞ and ‖v‖∞ ´ max

k=1,...,N
|vk|.) As in [PoSt02], we will

only examine (4.10) for p = 1 but note that the choice p =∞ would be preferable if all
of the βk are nearly equal.

For p = 1 we have q = ∞, and so we need to estimate
∥
∥
(
KER(yj − xk)

)N

k=1

∥
∥
∞ ≤

max
x∈[−1/2,1/2]

|KER(x)|. An estimate for this is given by the following theorem.

Theorem 4.2 For the kernel K(x) = s
x
(s ∈ R, s > 0), we have

|KER(x)| ≤ 4
p− 1 + n

(p− 1)πpap−1n

[

s(p− 1)! n

a
+
(π

2

)p
p
∑

j=1

jp(|aIj |+ |aBj |)
]

for x ∈ [−1
2
, 1

2
], where a, p and n are the parameters for the NFFT summation algorithm

(Algorithm 4.3) and aIj and a
B
j (j = 1, . . . , p) are the coefficients for the regularised kernel

KR which are obtained by solving the systems of equations derived from (4.4) and (4.5).

Proof. The coefficients bl of the Fourier series KRF were defined as

bl ´
1

n

n/2−1
∑

j=−n/2
KR

(
j

n

)

e−i2πjl/n (l = −n/2, . . . , n/2− 1).
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This allows us to apply Theorem 3.5 (the aliasing theorem for Fourier series), yielding

bl = ck(KR) +
∑

r∈Z
r 6=0

ck+rn(KR).

This means that

KER(x) = KR(x)−KRF (x)

=
∑

l∈Z
cl(KR) e

i2πlx −
n/2−1
∑

l=−n/2
bl e

i2πlx

=
∑

l∈Z
cl(KR) e

i2πlx −
n/2−1
∑

l=−n/2
cl(KR) e

i2πlx −
∑

r∈Z
r 6=0

n/2−1
∑

l=−n/2
cl+rn(KR) e

i2πlx

=
∑

r∈Z
r 6=0

n/2−1
∑

l=−n/2
cl+rn(KR) e

i2π(l+rn)x −
∑

r∈Z
r 6=0

n/2−1
∑

l=−n/2
cl+rn(KR) e

i2πlx

=
∑

r∈Z
r 6=0

n/2−1
∑

l=−n/2
cl+rn(KR) e

i2πlx(ei2πrnx − 1),

and we can estimate

|KER(x)| ≤ 2
∑

r∈Z
r 6=0

n/2−1
∑

l=−n/2
|cl+rn(KR)|

= 2



|cn/2(KR)|+ 2
∞∑

k=n/2+1

|ck(KR)|



 .

For the ck(KR) we have

ck(KR) = (i2πk)−pck(K
(p)
R ),

which we see by partial integration:

ck(KR) =

∫ 1
2

− 1
2

KR(x) e
−i2πkxdx

=

[

KR(x)

(

− 1

i2πk

)

e−i2πkx

] 1
2

− 1
2

+
1

i2πk

∫ 1
2

− 1
2

K ′
R(x) e

−i2πkxdx

= 0 +
1

i2πk
ck(K

′
R).
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Iteration then yields ck(KR) = (i2πk)−pck(K
(p)
R ). Using this, we obtain

|KER(x)| ≤ 2



(πn)−p
∣
∣cn/2(K

(p)
R )
∣
∣+ 2

∞∑

k=n/2+1

(2πk)−p
∣
∣ck(K

(p)
R )
∣
∣





≤ 2



(πn)−p + 2
∞∑

k=n/2+1

(2πk)−p





∫ 1
2

− 1
2

∣
∣K

(p)
R (x)

∣
∣ dx,

because ck(K
(p)
R ) =

∫ 1/2

−1/2
K

(p)
R (x) e−i2πkxdx and thus

∣
∣ck(K

(p)
R )
∣
∣ ≤

∫ 1/2

−1/2

∣
∣K

(p)
R (x)

∣
∣ dx. The

sum
∑∞

k=n/2+1(2πk)
−p can be estimated as the lower sum of an integral:

∞∑

k=n/2+1

(2πk)−p ≤ 1

2π

∫ ∞

πn

x−pdx

=
1

2π

[
x−p+1

1− p

]∞

πn

=
1

2π(p− 1)
(πn)−p+1

=
1

2(p− 1)πpnp−1
.

Using this, we obtain

|KER(x)| ≤ 2

(

(πn)−p +
1

(p− 1)πpnp−1

)∫ 1
2

− 1
2

∣
∣K

(p)
R (x)

∣
∣dx

= 2
p− 1 + n

(p− 1)(πn)p

∫ 1
2

− 1
2

∣
∣K

(p)
R (x)

∣
∣dx.

What remains is to estimate the integral in this equation. Since KR is odd, we have

∫ 1
2

− 1
2

∣
∣K

(p)
R (x)

∣
∣dx ≤ 2

∫ 1
2

0

∣
∣K

(p)
R (x)

∣
∣dx

= 2

(
∫ a

n

0

∣
∣T

(p)
I

∣
∣dx+

∫ 1
2
− a
n

a
n

∣
∣K(p)(x)

∣
∣dx+

∫ 1
2

1
2
− a
n

∣
∣T

(p)
B

∣
∣dx

)

.

(4.11)

Since K(x) = s
x
, we have K(p)(x) = s(−1)p p!

xp+1 , and so for the middle integral in (4.11)
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we have

∫ 1
2
− a
n

a
n

∣
∣K(p)(x)

∣
∣ dx =

∫ 1
2
− a
n

a
n

s
p!

xp+1
dx

=

[

−s(p− 1)!

xp

] 1
2
− a
n

a
n

= s(p− 1)!

(

1
(
a
n

)p −
1

(
1
2
− a

n

)p

)

= s(p− 1)!
(n

a

)p
(

1− 1
(
n
2a
− 1
)p

)

≤ s(p− 1)!
(a

n

)p

.

For the left integral in (4.11), we have

∣
∣T

(p)
I (x)

∣
∣ =

(πn

2a

)p

∣
∣
∣
∣
∣

p
∑

j=1

jpaIj sin
πnj

2a
x

∣
∣
∣
∣
∣

(4.12)

≤
(πn

2a

)p
p
∑

j=1

jp|aIj |

∫ a
n

0

∣
∣T

(p)
I (x)

∣
∣dx ≤

(π

2

)p (n

a

)p−1
p
∑

j=1

jp|aIj |

for even p. For odd p, we have a cosine instead of the sine in (4.12) and arrive at the
same estimate. Similarly, for the right integral in (4.11), we have

∫ 1
2

1
2
− a
n

∣
∣T

(p)
B (x)

∣
∣dx ≤

(π

2

)p (n

a

)p−1
p
∑

j=1

jp|aBj |.

By assembling these various estimates, we obtain

|KER(x)| ≤ 2
p− 1 + n

(p− 1)πpnp
· 2
[

s(p− 1)!
(n

a

)p

+
(π

2

)p (n

a

)p−1
p
∑

j=1

jp(|aIj |+ |aBj |)
]

= 4
p− 1 + n

(p− 1)πpap−1n

[

s(p− 1)! n

a
+
(π

2

)p
p
∑

j=1

jp(|aIj |+ |aBj |)
]

¥

Note that Stirling’s formula can be used to show that the πpap−1 in the denominator
will dominate the (p−1)! in the numerator if a is sufficiently large compared to p. How-
ever, Theorem 4.2 still requires the values of the coefficients aIj and aBj to be calculated
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for every combination of parameters a, p, and n, and because the dependence of aIj and
aBj on these parameters has not been quantified, the theorem does not tell us anything
about the asymptotic behaviour of the error for varying a and p.

Potts and Steidl [PoSt02] go on to estimate aIj and a
B
j and show that the error decays

exponentially in p if a is sufficiently large compared to p (for example, a = p). Their
proof is for even kernels, but we expect that it can easily be adapted to odd kernels.
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5. The Fast Spherical Filter Algorithm

In this section, we will summarise the fast spherical filter algorithm and show that it
has an asymptotic complexity of O(N 2 logN) by proving that the NFFT summation
algorithm has a complexity of O(N logN) when used with Legendre nodes.

5.1. Algorithm

Having discussed all of the components of the fast spherical filter algorithm, we are ready
to present it in its entirety.

Algorithm 5.1 (Fast Spherical Filter)

Input: f(θs, ϕt) ∈ C (s = 0, . . . , N − 1, t = 0, . . . , 2N − 1)
(function values on the spherical grid)

Output: f̃Nlim(θs, ϕt) ∈ C (s = 0, . . . , N − 1, t = 0, . . . , 2N − 1)
(approximate values for fNlim(θs, ϕt))

Constants: N,Nlim ∈ N

xs, ws ∈ R (s = 0, . . . , N − 1)
(nodes and weights for Gauss-Legendre quadrature)

θs ´ arccos xs (s = 0, . . . , N − 1), ϕt ´
tπ
N

(t = 0, . . . , 2N − 1)
(grid points)

a, p,m ∈ N, σ ∈ Q

(parameters for the NFFT summation algorithm)

Precomputation: For n = 0, . . . , Nlim, s = 0, . . . , N − 1 compute P n
Nlim

(xs),
P n
Nlim+1(xs), P

n ′
Nlim

(xs) and P n ′
Nlim+1(xs) using the recurrences

(2.2) and (3.15).

1. For s = 0, . . . , N − 1 compute

fn(θs) ´
1

2N

2N−1∑

t=0

f(θs, ϕt) e
−inϕt (n = −(N − 1), . . . , N − 1)

using an FFT. Complexity: O(N 2 logN)

2. For n = −Nlim, . . . , Nlim compute

S1(n, σ) ´
N−1∑

s=0
s6=σ

wsfn(θs)P
|n|
Nlim+1(xs)

xs − xσ
(σ = 0, . . . , N − 1)
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and

S2(n, σ) ´
N−1∑

s=0
s6=σ

wsfn(θs)P
|n|
Nlim

(xs)

xs − xσ
(σ = 0, . . . , N − 1)

using the NFFT summation algorithm, and then set

gn(θσ) ´ α
|n|
Nlim+1

(

P
|n|
Nlim

(xσ)
(
S1(n, σ) + wsfn(θσ)P

|n| ′
Nlim+1(xσ)

)

−P |n|Nlim+1(xσ)
(
S2(n, σ) + wsfn(θσ)P

|n| ′
Nlim

(xσ)
))

.

Complexity: O
(
Nlim · (σN log(σN) + (m+ a logN)N)

)

3. For s = 0, . . . , N − 1 compute

f̃Nlim(θs, ϕt) ´

Nlim∑

n=−Nlim

einϕtgn(θs) (t = 0, . . . , 2N − 1)

using an FFT. Complexity: O(N 2 logN)

Note that the complexity estimates assume that the parameter n for the NFFT
summation algorithm is set to N . This seems to be a sensible choice that is also used
in [PoSt02] for the numerical experiments.

Note also that the reasoning behind the complexity estimate for step 2 is not entirely
straightforward — it will be given in the next section. The overall complexity of the
algorithm is O

(
σN2 log(σN)+(m+a logN)N 2

)
(where Nlim and N have been combined

for clarity).
A point that merits discussion is the precomputation of the P n

k and P n ′
k . It is

important to do this as a precomputation, since the time required is O(N 2
limN) — there

are N points for which to evaluate these functions, Nlim+1 different values for n, and the
evaluation of the functions for k = Nlim and k = Nlim + 1 requires O(Nlim) applications
of the three-term recurrence. If these values were not precomputed, the time required
to evaluate them would dominate the running time of the algorithm.

Since the values of the P n
k are only required for two different values of k, it would

seem preferable to use a recurrence over n instead of recurrence (2.2), which runs over
k. A recurrence over n does exist (see [MaOb43, Chapter 4, §3]), but it is unsuitable
for numerical work because it is unstable when applied forwards and prone to underflow
when applied backwards.

5.2. Complexity Estimate

We will now examine the asymptotic complexity of Algorithm 5.1 and justify the com-
plexity estimate of O

(
Nlim · (σN log(σN)+(m+a logN)N)

)
for step 2 of the algorithm.
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In this step, the NFFT summation algorithm (Algorithm 4.3) is applied O(Nlim)
times. The asymptotic complexity for this algorithm is O(σn log(σn) + m(M + N) +
aνM), and in our application we have M = N and n = N , yielding a complexity of
O(σN log(σN) + (m + aν)N). The variable ν denotes the maximum number of nodes
xk in an interval of width 1/N and was used in Section 4.2 to estimate the number of
times the near field has to be evaluated in step 4 of the algorithm.

What value should we assign to this variable? In the spherical filter algorithm, the
xk are Legendre nodes. The distances between Legendre nodes are proportional to 1/N
in the middle of the interval [−1, 1] and proportional to 1/N 2 near the borders [Fu92,
Section 3.1]. This means that an interval of width 1/N contains O(1) nodes if it is
located near the middle of [−1, 1], and O(N) nodes if it is located near the borders.
Since ν is the maximum number of nodes in an interval of width 1/N , it would appear
that one should set ν = N , giving a complexity estimate of O(N 3).

However, this estimate is too pessimistic. This is because the node distance of 1/N 2

only applies quite close to the borders of the interval. Over most of the interval, the
nodes are spaced much further apart. For this reason, we do not obtain a very precise
complexity estimate if we use the minimum node distance to estimate the number of
near-field evaluations.

We will now show that for the case of Legendre nodes xk, the number of near-
field evaluations performed in step 4 of the NFFT summation algorithm is bounded by
O(aN logN). To do this, we will introduce the requirement that a

n
< 1√

2
; note that a

n
is

always far less than this value in practice. To simplify the proof, we will also require N
to be an integer multiple of 4.

Lemma 5.1 If the NFFT summation algorithm (Algorithm 4.3) is used with Legendre
nodes xk (k = 1, . . . , N , with N an integer multiple of 4), if M = N and yk = xk
(k = 1, . . . , N) and the parameters a and n satisfy a

n
< 1√

2
, then the number of near-field

evaluations required in step 4 of the algorithm is not greater than

a(2N + 1)2

n

(
7

24
+

1

2
√
2π

ln
4N + 2

3π

)

Proof. In the following, we will use the notation #S to denote the number of elements
of the finite set S.

A near-field evaluation has to be carried out for all xk and xj with |xk − xj| < a
n
.

We want to count the number of such (ordered) pairs, and we will call this number C.
If we introduce an asymmetry between the xk and xj, we can restate the problem as

follows: For all xk, count the xj with xj ∈ (xk − a
n
, xk +

a
n
), i.e.

C =
N∑

k=1

#
{

xj : xj ∈
(

xk −
a

n
, xk +

a

n

)}

.
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We can split up this problem into three parts,

C1 ´

N∑

k=1

#
{

xj : xj ∈
(

xk, xk +
a

n

)}

C2 ´

N∑

k=1

#
{

xj : xj ∈
(

xk −
a

n
, xk

)}

C3 ´

N∑

k=1

#{xj : xj = xk} = N,

and we then have C = C1 + C2 + C3.
The xk are symmetric about the origin, i.e. if xk is a Legendre node, then −xk is

also a Legendre node. (This is because the xk are the roots of PN and PN is an even
polynomial for even N , see Definition 2.1). Because of the symmetry of the xk, the count
that we obtain in C1 for a certain xk is equal to the count that we obtain in C2 for −xk.
This means that we can obtain C1 + C2 as follows:

C1 + C2 = 2
(
C<0

1 + C<0
2

)
,

where

C<0
1 ´

N∑

k=1
xk<0

#
{

xj : xj ∈
(

xk, xk +
a

n

)}

C<0
2 ´

N∑

k=1
xk<0

#
{

xj : xj ∈
(

xk −
a

n
, xk

)}

.

(Since we required N to be even, we have xk 6= 0 for all k; this makes things easier,
because if there were an xk = 0, we would have to take care of the fact that it is
symmetric to itself.)

If we consider that

xj ∈
(

xk −
a

n
, xk

)

⇔

xk −
a

n
< xj ∧ xj < xk ⇔

xk < xj +
a

n
∧ xj < xk ⇔

xk ∈
(

xj, xj +
a

n

)

,

we see that C<0
2 can also be written as

C<0
2 =

N∑

j=1

#
{

xk : xk < 0 ∧ xk ∈
(

xj, xj +
a

n

)}

.
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If xk < 0, then xk ∈
(
xj, xj +

a
n

)
is only possible if xj < 0, and so we can add this

additional constraint without changing C<0
2 :

C<0
2 =

N∑

j=1
xj<0

#
{

xk : xk < 0 ∧ xk ∈
(

xj, xj +
a

n

)}

≤
N∑

j=1
xj<0

#
{

xk : xk ∈
(

xj, xj +
a

n

)}

= C<0
1 .

From C1 + C2 = 2
(
C<0

1 + C<0
2

)
and C<0

2 ≤ C<0
1 we obtain the estimate

C1 + C2 ≤ 2
(
C<0

1 + C<0
1

)

= 4
N∑

k=1
xk<0

#
{

xj : xj ∈
(

xk, xk +
a

n

)}

,

and assuming that the xk are ordered we have

C1 + C2 ≤ 4

N/2
∑

k=1

#
{

xj : xj ∈
(

xk, xk +
a

n

)}

. (5.1)

Before continuing further, we need the following inequality, which gives us an estimate
for the location of the xk:

−1 ≤ − cos
k − 1

2

N + 1
2

π ≤ xk ≤ − cos
k

N + 1
2

π ≤ 1 (k = 1, . . . , N) (5.2)

(see [Fu92, equation 3.1.1]).
Let us now turn to the problem of estimating how many xj lie in the interval (xk, xk+

a
n
). Let c(k) denote the smallest index i for which xk+i ≥ xk+

a
n
. If we constrain ourselves

to k ≤ N
2
, then our requirement a

n
< 1√

2
implies that such an index always exists, i.e.

that c(k) is well-defined. We can see this if we consider that

xN ≥ − cos
N − 1/2

N + 1/2
π = − cos

1− 1/(2N)

1 + 1/(2N)
π

by equation (5.2), which implies

xN ≥ − cos
1− 1/8

1 + 1/8
π = − cos

7

9
π ≥ − cos

3

4
π =

1√
2

because N ≥ 4. On the other hand, xk ≤ 0 because of k ≤ N
2
, and so xN ≥ 1√

2
≥ xk+

a
n
.

44



By the definition of c(k) is it clear that the xj in the interval (xk, xk +
a
n
) are just

those for j = k + 1, . . . , k + c(k)− 1, which means that there are exactly c(k)− 1 such
xj. We will construct an upper bound c̃(k) ≥ c(k) (k = 1, . . . , N

2
) for c(k), and in this

way we immediately obtain an upper bound for the number of xj in (xk, xk +
a
n
).

We set

c̃(k) ´







min

(

N
2
, a

n
· 2N+1

4
√

2
·
(

sin
2k− 1

2

2N+1
π
)−1

+ 1
2

)

for k = 1, . . . , N
4

min
(
N
2
, a

n
· 2N+1

4
+ 1

2

)
for k = N

4
+ 1, . . . , N

2
,

(5.3)

and we will show that this is an upper bound for c(k). Note that 1
2
≤ c̃(k) ≤ N

2
for

k = 1, . . . , N
2
; this property will be needed in the following.

Claiming that c̃(k) ≥ c(k) is equivalent to claiming

xk+c̃(k) ≥ xk +
a

n
(5.4)

because c(k) was defined as the smallest i for which xk+i ≥ xk + a
n
. We will now

investigate under which conditions inequality (5.4) is satisfied. This inequality holds if

− cos

(
k + c̃(k)− 1

2

N + 1
2

π

)

≥ − cos

(
k

N + 1
2

π

)

+
a

n

(because of inequality (5.2)), and this is equivalent to

cos

(
k + c̃(k)− 1

2

N + 1
2

π

)

≤ cos

(
k

N + 1
2

π

)

− a

n
⇔

cos

(
k + c̃(k)− 1

2

N + 1
2

π

)

− cos

(
k

N + 1
2

π

)

≤ − a

n
.

With cos(α)− cos(β) = −2 sin
(
α+β

2

)
sin
(
α−β

2

)
, this is equivalent to

−2 sin
(
2k + c̃(k)− 1

2

2N + 1
π

)

sin

(
c̃(k)− 1

2

2N + 1
π

)

≤ − a

n
⇔

2 sin

(
2k + c̃(k)− 1

2

2N + 1
π

)

sin

(
c̃(k)− 1

2

2N + 1
π

)

≥ a

n

and this is satisfied if

2 sin

(
2k + c̃(k)− 1

2

2N + 1
π

)
2
√
2

π
· c̃(k)−

1
2

2N + 1
π ≥ a

n

because sin(x) ≥ 2
√

2
π
x for 0 ≤ x ≤ π

4
and 1

2
≤ c̃(k) ≤ N

2
. The above is equivalent to

c̃(k) ≥ a

n
· 2N + 1

4
√
2

(

sin
2k + c̃(k)− 1

2

2N + 1
π

)−1

+
1

2
. (5.5)
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We will now show that c̃(k) satisfies c̃(k) ≥ c(k), and we can do this either directly
or by showing that c̃(k) satisfies inequality (5.5), which implies c̃(k) ≥ c(k). We will
consider two cases.

Case 1 k = 1, . . . , N
4

(This corresponds to the first case in (5.3), the definition of the c̃(k).)

Assume first that c̃(k) = N
2
. By inequality (5.2) we have

xk ≤ − cos
N
4

N + 1
2

π ≤ − cos
π

4
= − 1√

2
,

and we know by the symmetry of the xk that xN/2+1 ≥ 0. Thus xk +
a
n
≤ − 1√

2
+

1√
2
= 0 ≤ xN/2+1, so by setting i = N

2
+ 1 − k we have xk+i ≥ xk +

a
n
and thus

c(k) ≤ i ≤ N
2
= c̃(k).

Assume conversely that

c̃(k) =
a

n
· 2N + 1

4
√
2
·
(

sin
2k − 1

2

2N + 1
π

)−1

+
1

2
.

Because k ≤ N
4

and c̃(k) ≤ N
2
, we have 2k + c̃(k) ≤ N and thus sin

2k− 1
2

2N+1
π ≤

sin
2k+c̃(k)− 1

2

2N+1
π. This means that c̃(k) satisfies inequality (5.5).

Case 2 k = N
4
+ 1, . . . , N

2
.

(This corresponds to the second case in (5.3).)

Again, assume first that c̃(k) = N
2
. By the symmetry of the xk we know that

xk ≤ 0, and by inequality (5.2) we have

x3N/4+1 ≥ − cos
3N
4

+ 1
2

N + 1
2

π ≥ − cos
3π

4
=

1√
2
.

Thus xk +
a
n
≤ 1√

2
≤ x3N/4+1, so by setting i = 3N

4
+ 1− k we have xk+i ≥ xk +

a
n

and thus c(k) ≤ i ≤ 3N
4

+ 1− (N
4
+ 1) = N

2
= c̃(k).

Assume conversely that c̃(k) = a
n
· 2N+1

4
+ 1

2
. Because N

4
+ 1 ≤ k ≤ N

2
and 1

2
≤

c̃(k) ≤ N
2
, we have N

2
+ 5

2
≤ 2k+ c̃(k) ≤ 3N

2
and thus 1√

2
= sin(π

4
) ≤ sin

2k+c̃(k)− 1
2

2N+1
π.

This means that c̃(k) satisfies inequality (5.5).

We have thus proved that c̃(k) is an upper bound for c(k). Remembering that c(k)− 1
is the number of xj in (xk, xk +

a
n
), we have:

#
{

xj : xj ∈
(

xk, xk +
a

n

)}

≤ c̃(k)− 1

≤







a
n
· 2N+1

4
√

2
·
(

sin
2k− 1

2

2N+1
π
)−1

− 1
2

for k = 1, . . . , N
4

a
n
· 2N+1

4
− 1

2
for k = N

4
+ 1, . . . , N

2
.
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Using this, we can now estimate C1 + C2 (see equation (5.1)):

C1 + C2 ≤ 4

N/2
∑

k=1

#
{

xj : xj ∈
(

xk, xk +
a

n

)}

≤ 4(Cl + Cr)

where

Cl ´

N/4
∑

k=1

[

a

n
· 2N + 1

4
√
2
·
(

sin
2k − 1

2

2N + 1
π

)−1

− 1

2

]

and

Cr ´

N/2
∑

k=N/4+1

[
a

n
· 2N + 1

4
− 1

2

]

.

It is obvious that

Cr =
N

4

(
a

n
· 2N + 1

4
− 1

2

)

=
aN(2N + 1)

16n
− N

8
.

Turning to Cl, we see that

Cl =
a(2N + 1)

4
√
2n





(

sin
3
2

2N + 1
π

)−1

+

N/4
∑

k=2

(

sin
2k − 1

2

2N + 1
π

)−1


− N

8

and we can estimate
(

sin
3
2

2N + 1
π

)−1

≤ π

2
√
2
· 4N + 2

3π
=

2N + 1

3
√
2

using sinx ≥ 2
√

2
π
x for 0 ≤ x ≤ π

4
. (We have 3/2

2N+1
π ≤ 1

4
π because N ≥ 4.)

To estimate the sum S ´
∑N/4

k=2

(

sin
2k− 1

2

2N+1
π
)−1

, we note that it is the lower sum for

an integral:

2π

2N + 1
S ≤

∫ N/2−1/2
2N+1

π

3π
4N+2

1

sinx
dx

≤
∫ π

4

3π
4N+2

1

sinx
dx

=
[

ln tan
x

2

]π
4

x= 3π
4N+2

= ln tan
π

8
− ln tan

3π

8N + 4

≤ ln tan
π

8
− ln

3π

8N + 4

≤ ln
1

2
+ ln

8N + 4

3π

= ln
4N + 2

3π
.
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With this, we obtain

Cl ≤
a(2N + 1)

4
√
2n

(
2N + 1

3
√
2

+
2N + 1

2π
ln

4N + 2

3π

)

− N

8

=
a(2N + 1)2

4
√
2n

(
1

3
√
2
+

1

2π
ln

4N + 2

3π

)

− N

8

and thus

C1 + C2 ≤ 4(Cl + Cr) ≤
a(2N + 1)2√

2n

(
1

3
√
2
+

1

2π
ln

4N + 2

3π

)

+
aN(2N + 1)

4n
−N

≤ a(2N + 1)2

n

(
1

6
+

1

8
+

1

2
√
2π

ln
4N + 2

3π

)

−N

=
a(2N + 1)2

n

(
7

24
+

1

2
√
2π

ln
4N + 2

3π

)

−N.

In all, we have

C = C1 + C2 + C3 = C1 + C2 +N ≤ a(2N + 1)2

n

(
7

24
+

1

2
√
2π

ln
4N + 2

3π

)

.

¥

If we set n = N , as was done in the spherical filter algorithm, then Lemma 5.1
tells us that step 4 of the NFFT summation algorithm (Algorithm 4.3) has a complex-
ity of O(aN logN). This implies an overall complexity for the NFFT summation of
O
(
σN log(σN) + (m+ a logN)N

)
.

Since step 2 of the fast spherical filter (Algorithm 5.1) calls the NFFT summation
O(Nlim) times, it has a complexity of O

(
Nlim ·(σN log(σN)+(m+a logN)N)

)
, as stated

in Section 5.1.

48



6. Implementation and Numerical Experiments

In this section, we present an implementation of the fast spherical filter algorithm.
Numerical experiments will be performed on this implementation to test its accuracy
and speed. We will also discuss a characteristic type of error produced by the NFFT
summation algorithm that was discovered while testing the wavelet decomposition.

6.1. Implementation

The spherical filter algorithm and the auxiliary algorithms were implemented in C++
using double-precision arithmetic. The linear algebra library CLAPACK 3.0 (from
http://www.netlib.org) was used to solve the eigenproblem that occurs in the computa-
tion of the Gauss-Legendre nodes and weights (see Appendix A) and to solve the system
of equations that occurs in the NFFT summation algorithm (Algorithm 4.3). The FFT
library FFTW 2.1.3 (from http://www.fftw.org) was used to evaluate the FFTs that
occur in the various algorithms. The compiler used was GCC 2.95.2 (all optimisations
turned on). Numerical experiments were run under Linux 2.2.14 on a 550 MHz Pentium
III with 256 MB of memory.

6.2. Numerical Experiments

We will first examine the errors that are generated by the approximate algorithms.
Besides testing the spherical filter as a whole, we also performed tests on the NFFT
summation algorithm in isolation to assess the accuracy of the error analysis that was
carried out in Section 4.3. To test the algorithm under the same conditions under which
it is used in the spherical filter, we set M = N and n = N and used Legendre nodes
for the xk. We also replaced the NFFT with an NDFT to make sure we were measuring
only the errors occurring in the summation algorithm itself, since these are the errors
that were estimated in Section 4.3. The coefficients βk were set to βk ´ 0 if k 6= N/2 and
βN/2 ´ 1. This was intended to minimise the estimation error from Hölder’s inequality
in equation (4.10) and to allow us to focus on the accuracy of the estimate for |KER(x)|,
which is the core part of the error analysis and the place where the parameters a and p
come into play.

Figure 6.1 shows the predicted and actual maximum errors for N = 1024 and a =
p = 4, . . . , 12. Both errors decay exponentially, but the predicted error is too pessimistic
by a factor of about 103 and does not decay quite as quickly the actual error.

Next, we will examine the influence of the parameters a, p and m on the accuracy
of the spherical filter algorithm in its entirety. Potts and Steidl [PoSt02] recommend
setting a = p = m for p ≤ 5 and a = p, m = 5 for p > 5.

Experiments were performed to assess whether these recommendations are also valid
in the context of the spherical filter. The relative error between the exact solution and
the approximate solution was computed as

E ´
‖FNlim − F̃Nlim‖F
‖FNlim‖F

.
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Figure 6.1: Predicted maximum error (dashed) and actual maximum error (solid) for the
NFFT summation algorithm (N=1024).

(FNlim
´

(
fNlim(θs, ϕt)

)N−1

s=0,

2N−1

t=0
is the exact solution, F̃Nlim

´

(
f̃Nlim(θs, ϕt)

)N−1

s=0,

2N−1

t=0
is the approximate solution as computed by Algorithm 5.1, and ‖ · ‖F is the Frobenius
norm.) The input data for the spherical filter were random values taken from [0, 1], the
grid resolution was N = 512, and the error was averaged over ten runs with different
input data. The influence of the oversampling factor σ was not tested; the setting
σ = 2 was used in all cases, which is the same value used by Potts and Steidl in their
experiments.

Figure 6.2 shows the error on a logarithmic scale for 1 ≤ a, p ≤ 12, with m = 12 to
keep the error from the NFFT small. The behaviour of the error with varying a and p
agrees well with the theoretical prediction about the behaviour of the NFFT summation
algorithm. The figure supports the recommendation by Potts and Steidl to set a = p.

Figure 6.3 shows the error for 1 ≤ a,m ≤ 12 with p = a. For fixed a, the error
decreases exponentially in m, but only up to about m = a−3; therefore, we recommend
setting m = a− 3, since higher values do not seem to lead to higher precision.

Next, we will examine the execution time of Algorithm 5.1 compared to the exact
algorithm that is obtained by computing the sums S1 and S2 in step 2 of Algorithm 5.1
exactly. For the approximate algorithm, we set a = p = 8 and m = 5, which, according
to the results above, results in a relative error of about 2 · 10−8. Figure 6.4 shows the
execution times for the exact algorithm and the approximate algorithm for different
values of N . The two dashed lines show time complexities of O(N 3) and O(N 2). The
O(N 3) time complexity of the exact algorithm is obvious, whereas the execution times
of the approximate algorithm grow only slightly faster than O(N 2). For this reason,
though the exact algorithm is faster for small N , the execution times are about equal
for N = 64, and for large N , the approximate algorithm is significantly faster — 142
seconds for N = 1024 compared to 1902 seconds for the exact algorithm.

Finally, we will compare the individual times required by the three steps in Algorithm
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Figure 6.4: Execution times of the exact algorithm (plus signs) and the approximate algorithm
(crosses). The dashed lines show time complexities of O(N 2) and O(N3); they intercept the
plots at N = 128.

5.1. Steps 1 and 3 compute FFTs, whereas step 2 uses the NFFT summation algorithm to
evaluate the Christoffel-Darboux formula. All three steps have an asymptotic complexity
of O(N 2 logN), but we are of course also interested in the hidden constant. Figure 6.5
shows two plots, one for the time required in step 2 (solid) and the other for the time
required in steps 1 and 3 combined (dashed). While both the FFT and the NFFT
summation algorithm show the same asymptotic behaviour, the latter is substantially
more expensive to compute — the times differ by a factor of about 40.

6.3. Wavelet Decomposition

As remarked in Section 3.1, a wavelet decomposition on the sphere can be computed
using the spherical filter. The low-frequency component is simply f̃N−1, and the wavelet
component is g̃ = f̃N−1 − f̃N/2−1.

Since the wavelet component usually has quite a small magnitude compared to the
low-frequency component, a lot of cancellation occurs in the subtraction f̃N−1− f̃N/2−1.
This can lead to numerical problems since a small relative error in f̃N−1 or f̃N/2−1 causes
a much larger relative error in the wavelet component g̃, and as we will see, this problem
is very real when wavelet decompositions are computed using the fast spherical filter.

To test the wavelet decomposition, the function

ftest(θ, ϕ) ´

{

1 if θ ∈ [0, π/2]

(1 + 3 cos2 θ)−1/2 if θ ∈ (π/2, π]

was used; this function was taken from [PST96]. If the function values are interpreted
as distances from the origin, then this function describes a half-sphere that is joined to
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Figure 6.5: Execution times for the individual steps in the fast spherical filter (Algorithm
5.1). The solid line plots the time taken by step 2, the dashed line plots the time for steps
1 and 3 combined.

a half-ellipsoid. It is smooth everywhere except at the equator; this discontinuity should
show up in the wavelet component.

A wavelet decomposition was carried out on the function ftest rotated around the
x1 axis by an angle of π/6. (A grid resolution of N = 1024 was used, and the NFFT
summation parameters were set to a = p = 8 and m = 5.) The corresponding wavelet
component is shown in Figure 6.6. Two things are apparent. Firstly, the discontinuity
shows up in the wavelet component, as expected. Secondly, and rather unexpectedly,
there are prominent bands at θ = π

4
and θ = 3π

4
. These are artefacts caused by the

NFFT summation algorithm.
Note the scale to the right of the image. The amplitude of the wavelet component

is about 10−6, and that of the artefacts about 2 · 10−7. It is evident that, as discussed
above, a lot of cancellation is taking place in the computation g̃ = f̃N−1 − f̃N/2−1, and
this is causing the errors from the NFFT summation algorithm, which have about the
same magnitude as the wavelet component, to become apparent.

Note also that the rotation of the discontinuity has not transferred to the artefacts —
they run parallel to the equator. It appears that the artefacts are quite independent of
the properties of the wavelet component; in fact, almost the same artefacts were observed
when a wavelet decomposition was carried out on the constant function f(θ, ϕ) = 1.

The amplitude of these artefacts can of course be reduced by increasing the NFFT
summation parameters a and p, and the results obtained by doing this will be presented
in a moment. (The parameter m, which controls the accuracy of the NFFT, was found
to have no visible effect on the artefacts. This indicates that they are caused by the
NFFT summation algorithm and not by the underlying NFFT.)

First, however, we will examine the artefacts in a little more detail. Of course, the
fact that an error is occurring is not surprising — after all, we are using an approximate
algorithm. Nor is the magnitude of the error excessive — an error of 10−7 is within
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Figure 6.6: Wavelet component (absolute values) of the function ftest rotated around the x1

axis by an angle of π/6. The grid resolution was N = 1024, and the NFFT summation
parameters were a = p = 8 and m = 5. (The slight Moiré effect was caused by the software
used to render the image and not by the wavelet decomposition.) The prominent bands at
around θ = π

4 and θ = 3π
4 are artefacts caused by the NFFT summation algorithm.
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Figure 6.7: gN−1
0 (θ) (left) and g

N/2−1
0 (θ) (right), the results that were obtained by applying

step 2 of the fast spherical filter to the constant function f0(θ) = 1. The NFFT was replaced
by an NDFT. Parameter values were a = p = 8, the resolution was N = 1024.

the range that the results from Section 6.2 would lead one to expect for a setting of
a = p = 8 and m = 5. What is surprising, however, is that the error has a such a regular
structure and that it is so strong even for very simple inputs like f(θ, ϕ) = 1.

The exact cause for the artefacts has not been determined yet, but it is clear that
they originate in the NFFT summation algorithm. It seems that the higher-derivative
discontinuities at the join points of the regularised kernel KR lead to oscillations in
the Fourier series KRF , and that under certain circumstances the oscillations from the
various translates of KRF can add up to generate the artefacts we have seen; apparently,
this happens when the distance between the nodes xs is about the same as the period
of the oscillations in KRF or an integer multiple of this period.

We will examine step 2 of Algorithm 5.1 in isolation, since this is the step where
the NFFT summation algorithm is employed. Additionally, we will set n = 0, thus
obtaining an algorithm that operates on one-dimensional functions f0(θ) and yields the
output g

Nlim
0 (θ) — the superscript indicates different values of Nlim. (This is equivalent

to applying the original spherical filter algorithm to functions f(θ, ϕ) that depend only
on θ.) For all of our tests, we will replace the NFFT with an NDFT to eliminate any
additional errors caused by the NFFT.

Since the wavelet decomposition involves applying the spherical filter twice, once for
Nlim = N − 1 and once for Nlim = N/2 − 1, we will first look at the results of these

two operations separately. Figure 6.7 shows the results gN−1
0 (θ) and g

N/2−1
0 (θ) that were

obtained by applying step 2 of the algorithm to the constant function f0(θ) = 1. What is

striking is that artefacts are only visible in g
N/2−1
0 (θ), whereas gN−1

0 (θ) merely contains
small numerical errors. This reason for this has not been established, and one might hope
that a better understanding of this phenomenon could allow the artefacts in g

N/2−1
0 (θ)

to be eliminated as well. As we will see, however, it is doubtful whether gN−1
0 (θ) will

be free of artefacts for general f0(θ). In any case, we will now concentrate on g
N/2−1
0 (θ),

since this is where the artefacts occur in our case.
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Figure 6.8 shows the “wavelet component” gN−1
0 (θ) − g

N/2−1
0 (θ) of f0(θ) = 1 for

parameter values of a = 8, p = 4, . . . , 11. Increasing p reduces the size of the artefacts,
as expected, but what is interesting is the effect that p has on the shape of the artefacts:
For even p, the artefacts are smooth, while for odd p, they are quite “noisy”. A second
pattern is that for p = 4, 5, 8, 9, the largest peak is positive, while for p = 6, 7, 10, 11, it
is negative.

The pattern in the shape of the artefacts, which repeats after four steps, is quite
reminiscent of the pattern exhibited by the sine function and its derivatives (sin, cos,
− sin, − cos, sin, . . .), and one may suspect that this pattern is caused by the sine series
used in the regularised kernel KR in Section 4.2 — particularly since p is the parameter
that controls the number of terms in the sine series.

This suspicion is strengthened even more when one examines KER, the difference
between the regularised kernel KR and the Fourier series KRF used to approximate it.
Figure 6.9 shows plots of KER for a = 8 and p = 4, . . . , 7. The same kind of pattern that
was observed in the artefacts is observed here, too; again, there is a similarity in shape
between the plots with even p on the one hand and those with odd p on the other.

The similarity between the properties of the artefacts and those of KER is not sur-
prising when one considers that the error incurred in the NFFT summation algorithm
is

N∑

k=1

βkKER(y − xk).

We conjecture that for certain constellations of coefficients βk, nodes xk, and position of
evaluation y, the terms in this sum add up to produce a large error. For example, if the
distances between those xk that lie close to y are about equal to the distance between the
peaks in KER (or an integer multiple thereof), then the peaks of the various translates
KER(y − xk) will coincide, and a large error can result. Of course, whether or not all of
the small errors do add up to give a large error depends on the values of the βk.

It seems plausible that this mechanism is responsible for the artefacts that were
observed in the wavelet decompositions. The distances between the Legendre nodes
change continuously over the interval [−1, 1]. The mechanism described would mean
that in places where the node distances are close to the distance between the peaks
in KER (or an integer multiple thereof), a large error results, whereas in between, the
error is small. This would explain the large oscillations in the error that were observed,
instead of an error that is of fairly uniform magnitude over the whole interval.

Of course, whether or not artefacts occur also depends critically on the values of
the βk — this is the only difference between g

N/2−1
n (θ) and gN−1

n (θ), of which the for-
mer exhibits artefacts while the latter does not. In our application, we have βk ´
wkfn(θk)P

|n|
Nlim+1(xk) for the first sum and βk ´ wkfn(θk)P

|n|
Nlim

(xk) for the second sum.
Inspecting these formulas seems to suggest that artefacts can also occur in gN−1

n (θ) for
some fn(θ), for in choosing fn(θ), we have complete control over the coefficients βk. By
choosing fn(θ) suitably, we could make the coefficients for Nlim = N − 1 exhibit exactly
the same undesirable behaviour that produced the artefacts in the case Nlim = N/2− 1.

Because of this, is does not seem as if the artefacts can be removed through some
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Figure 6.8: “Wavelet component” gN−1
0 (θ) − g

N/2−1
0 (θ) that was obtained by applying step

2 of the spherical filter algorithm to f0(θ) = 1. The NFFT was replaced by an NDFT.
Parameter values were a = 8 and p = 4, . . . , 11, the resolution was N = 1024.
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Figure 6.9: KER, the difference between the regularised kernel KR and the Fourier series
KRF used to approximate it, for a = 8, p = 4, . . . , 7 and N = 1024.
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simple measure. It appears that they are a direct consequence of the oscillations in
the approximation error KER, and it is unlikely that this problem can be fixed without
sacrificing the basic idea of approximating the regularised kernel KR by a Fourier series.
It would be interesting to investigate whether other fast approximate summation algo-
rithms, such as Fast Multipole Methods, produce more satisfying results. If the NFFT
summation algorithm is to be used, however, we have no real remedy to suggest except
to increase a and p.

One fix that was tried was to apply the spherical filter a second time to the already
filtered f̃N−1 and f̃N/2−1, hoping that the same artefacts would occur again. Taking
the difference between the two results would leave only the artefacts, which could then
be subtracted from the wavelet component. Thus, instead of g̃ ´ f̃N−1 − f̃N/2−1, we
computed

g̃ ´ f̃N−1 − f̃N/2−1 −
(

(f̃N−1)N−1 − f̃N−1
)

+
(

(f̃N/2−1)N/2−1 − f̃N/2−1
)

.

This appeared to work well, though we can give no mathematical justification apart
from the observation that, if the spherical filter were being evaluated exactly, f̃N−1 −
(f̃N−1)N−1 and f̃N/2−1 − (f̃N/2−1)N/2−1 would be identical to zero because the spherical
filter is an idempotent operation. This modification almost eliminates the artefacts in
the examples we examined, but it doubles the execution time because the spherical filter
has to be applied twice for both values of Nlim. For this reason, it does not really make
sense to use this modification in practice, because we found that increasing a and p
reduced the artefacts just as well with less increase in execution time.

One small improvement that we can offer over the NFFT summation algorithm as
presented in [PoSt02] is described in the following remark.

Remark 6.1 If the definition of KNE ´ K − KR in the NFFT summation algorithm
is modified to KNE ´ K − KRF , then the Fourier series approximation error KER ´

KR − KRF is eliminated within the near field without incurring additional execution
time; only the precomputation time is increased slightly because KRF is more expensive
to evaluate than KR. ¤

Figure 6.10 shows that the modified KNE reduces the size of the artefacts consider-
ably.

To close this section, we will present results that were obtained by using the modified
KNE combined with increased values for the parameters a, p and m. Figure 6.11 shows
the result of a wavelet decomposition on the same function as in Figure 6.6, the function
ftest rotated around the x1 axis by an angle of π/6. This time, however, the modified
KNE was used, and the NFFT summation parameters were set to a = p = 10 and
m = 7. These combined measures have reduced the magnitude of the error so that it is
no longer visible.

As a final example, consider Figure 6.12. This time, the function ftest was rotated
around the x1 axis by an angle of π/2, causing the discontinuity to run through the
poles. (The parameters were the same as for the last image.) This example illustrates
that discontinuities at the poles are also resolved well by the wavelet decomposition. This
underlines the usefulness of the property of uniform resolution which the band-limited
functions possess.
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Figure 6.10: Effect of modifying KNE (see Remark 6.1). The graph shows the “wavelet
component” of f0(θ) = 1 for the original KNE (dashed) and the modified KNE (solid).
Parameter values were a = p = 8, and the resolution was N = 1024. The NFFT was
replaced by an NDFT.

Figure 6.11: Wavelet component (absolute values) of the function ftest rotated around the
x1 axis by an angle of π/6. The NFFT summation parameters were increased to a = p = 10
and m = 7, and the modified KNE was used. The artefacts are no longer visible. (Grid
resolution is N = 1024.)
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Figure 6.12: Wavelet component (absolute values) of the function ftest rotated around the
x1 axis by an angle of π/2. This example illustrates that discontinuities are resolved equally
well at the poles as on the rest of the sphere. NFFT summation parameters were a = p = 10
and m = 7, and the modified KNE was used.
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7. Conclusion

We have presented a fast algorithm for the spherical filter and for wavelet decompo-
sition on the sphere. The algorithm employs a fast approximate summation scheme,
resulting in a sizeable reduction in execution times at high resolutions compared to the
straightforward approach. As we have proved, the algorithm has a time complexity of
O(N 2 logN), which is a considerable improvement over the O(N 3) complexity of the
straightforward algorithm. Numerical experiments show that the error produced by the
approximate algorithm can be controlled well using various parameters, allowing the
tradeoff between accuracy and execution time to be tuned to the requirements of the
problem at hand. Controlling the accuracy of the algorithm is especially important when
it is used to perform wavelet decompositions because a lot of cancellation occurs in the
calculation of the wavelet component, thus magnifying the numerical errors.

The fast spherical filter algorithm makes use of the fact that the Christoffel-Darboux
formula can be applied when the forward and reverse discrete spherical Fourier trans-
forms are combined. Accelerating the forward or reverse transform alone is more difficult.
Schemes have been proposed which would, in theory, yield O(N 2 log2N) algorithms.
Driscoll and Healy present such an algorithm [DH94], but it suffers from numerical insta-
bility, and modifications designed to stabilise the algorithm (e.g. [HRKM98], [PST98])
appear to increase the computational complexity again. Mohlenkamp [Moh99] presents
two algorithms, one with a complexity of O(N 5/2 logN) and the other with a complexity
ofO(N 2 log2N). Both appear to be numerically stable, but on the grid resolutions tested
by Mohlenkamp (up to N = 2048), the latter does not perform as well as the asymptotic
complexity suggests and is actually slower than the O(N 5/2 logN) algorithm. Because
of the difficulties encountered in developing asymptotically fast spherical transforms,
research is still going on into fast O(N 3) algorithms; see, for example, [SwSp00].

For the spherical filter, however, the last few years have brought several reliable
O(N 2 logN) algorithms. It would be interesting to compare execution times for the al-
gorithms based on Fast Multipole Methods (FMM) ([JA97], [YaRo98]) with the Noneq-
uispaced Fast Fourier Transform (NFFT) summation approach discussed here. In terms
of conceptual complexity and ease of implementation, the NFFT summation approach
seems to be simpler (and more pleasing mathematically) than the rather technical FMM
algorithms.

Both schemes are beginning to rival O(N 3) algorithms on the grid sizes currently in
use. As grid resolution increases in the years to come, O(N 2 logN) algorithms will only
become more attractive.
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A. Determining Nodes and Weights in Gaussian

Quadrature

Gaussian quadrature allows the exact integration of polynomials of degree 2n + 1 by
sampling them at n + 1 points. In this section, we will derive a method for computing
the nodes and weights that occur in Gaussian quadrature. The derivation is based on
[Sto99, Section 3.6] but is more detailed and, in the author’s opinion, easier to follow
because of this.

We will begin by stating, without proof, the principal result of Gaussian quadrature.
We will assume for the rest of this section that w : [−1, 1] → R is a positive weight
function that is continuous on [−1, 1], that pj(x) (j = 0, 1, . . .) are the orthogonal poly-

nomials with respect to the scalar product 〈f, g〉 ´
∫ 1

−1
f(x) g(x) w(x) dx and that the

three-term recurrence they satisfy is given by

βn−1pn−1 + αnpn + γn+1pn+1 = xpn (A.1)

(with p−1(x) ´ 0 and p0(x) ´ 1).

Theorem A.1 Let xj ∈ R (j = 1, . . . , n) be the roots of pn, then there exists a uniquely
determined set of weights wj (j = 1, . . . , n) such that

n∑

j=1

p(xj) wj =

∫ 1

−1

p(x) w(x) dx

for all polynomials p of degree 2n− 1 or less.

(This theorem is proved in [Sto99, Section 3.6].) The roots (or nodes) xj and the
weights wj can be determined by solving an eigenproblem, as we will now show.

Theorem A.2 The roots xj (j = 1, . . . , n) of pn are the eigenvalues of the symmetric
n× n matrix

Ã =













α0

√
β0γ1√

β0γ1 α1

√
β1γ2

√
β1γ2 α2

. . .

. . .
. . .

√

βn−2γn−1
√

βn−2γn−1 αn−1













,

and the weights wj (j = 1, . . . , n) in Theorem A.1 can be obtained through wj =

〈p0, p0〉
(

v
(1)
j

‖vj‖2

)2

, where vj is the eigenvector of Ã for the eigenvalue xj and v
(1)
j is

the first component of vj.
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Proof. The three-term recurrence (A.1) for n = 0, . . . , n−1 yields a system of equations
that can be written as follows in matrix-vector form.













α0 γ1

β0 α1 γ2

β1 α2

. . .

. . .
. . . γn−1

βn−2 αn−1
























p0(x)

p1(x)

p2(x)

...

pn−1(x)












+ γn













0

...

...

0

pn(x)













= x












p0(x)

p1(x)

p2(x)

...

pn−1(x)












.

We will denote the tridiagonal matrix in this equation byA and the vector (pk(x))
n−1
k=0

by p(x). Let x1, . . . , xn be the roots of pn. Setting x = xj (j = 1, . . . , n) in the equation
above yields Ap(xj) = xjp(xj), i.e. the xj are the eigenvalues of A with eigenvectors
p(xj). (The p(xj) are all non-zero because p0(xj) = 1.)

A may be factorised as follows.

A = D−1ÃD =














1
√

β0

γ1 √
β0β1

γ1γ2

. . .
√

β0·...·βn−2

γ1·...·γn−1














·













α0

√
β0γ1√

β0γ1 α1

√
β1γ2

√
β1γ2 α2

. . .

. . .
. . .

√

βn−2γn−1
√

βn−2γn−1 αn−1













·














1
√

γ1

β0
√

γ1γ2

β0β1

. . .
√

γ1·...·γn−1

β0·...·βn−2
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From Ap(xj) = xjp(xj) we have D−1ÃDp(xj) = xjp(xj) and thus ÃDp(xj) =
xjDp(xj), i.e. Dp(xj) is an eigenvector of Ã with the eigenvalue xj. Since Ã is symmet-
ric, its eigenvalues xj are real and its eigenvectors Dp(xj) (j = 1, . . . , n) are orthogonal.
In the following, we will denote Dp(xj) by vj.

We have proved the first part of the theorem— that the roots of pn are the eigenvalues
of Ã. To prove the second part of the theorem, which states how to obtain the weights,
we will now derive a system of equations that has the weights as its unknowns.

Because Gaussian quadrature integrates polynomials up to a degree of 2n−1 exactly,
we have

n∑

j=1

pk(xj) wj =

∫ 1

−1

pk(x) w(x) dx (k = 0, . . . , n− 1),

and we note that the integral is just 〈p0, pk〉, which is zero for k 6= 0 because the
polynomials pk are orthogonal. This gives us

n∑

j=1

p0(xj) wj = 〈p0, p0〉

and

n∑

j=1

pk(xj) wj = 0 (k = 1, . . . , n− 1).

By writing this system of equations in matrix-vector form we obtain










p0(x1) · · · p0(xn)

...
...

...
...

pn−1(x1) · · · pn−1(xn)



















w1

...

...

wn










=









< p0, p0 >

0

...

0









.

We observe that the columns of the matrix contain the vectors p(x1), . . . ,p(xn). Multi-
plying D onto the left side of this equation yields

(v1, . . . ,vn)










w1

...

...

wn










=









< p0, p0 >

0

...

0









,

because Dp(xj) = vj. Since the vj are orthogonal, multiplying vT
j onto the left side of

this equation yields
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vT
j vjwj = 〈p0, p0〉v(1)

j ,

where v
(1)
j is the first component of the vector vj. Since v

(1)
j = p0(xj) = 1, we have

v
(1)
j = (v

(1)
j )2 and thus

wj = 〈p0, p0〉
(v

(1)
j )2

vT
j vj

= 〈p0, p0〉
(

v
(1)
j

‖vj‖2

)2

.

¥
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