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ABSTRACT

Spherical filters have recently been introduced in order to avoid the spherical harmonic transform. Spherical
filtering can be used in a variety of applications, such as climate modelling, electromagnetic and acoustic scat-
tering, and several other areas. However, up to now these methods have been restricted to special grids on the
sphere. The main reason for this was to enable the use of FFT techniques. In this paper we extend the spherical
filter to arbitrary grids by using the the Nonequispaced Fast Fourier Transform (NFFT).! The new algorithm
can be applied to a variety of different distributions on the sphere, equidistributions on the sphere being an
important example. The algorithm’s performance is illustrated with several numerical examples.
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polynomials

1. INTRODUCTION

This paper considers the problem of spherical filtering on nonequispaced grids. The need to filter functions
on the sphere arises in a number of applications. The spherical filter, based on the fast multipole method,
was suggested by Jakob-Chien and Alpert? and improved by Yarvin and Rokhlin.> These algorithms require
O(N?log N) operations for O(N?) grid points. In* we presented an algorithm that avoids the Fast Multipole
Method and uses a fast summation algorithm® that is based on the NFFT. We believe that this algorithm is
conceptually simpler and easier to implement, and the measurements performed in® demonstrate that its running
times are at least as good as those of FMM-type algorithms. An additional advantage of our approach is that
the NFFT builds on the standard (equispaced) Fast Fourier Transform, for which highly optimised libraries
are available (see also®). The asymptotic complexity of the NFFT-based summation algorithm depends on the
distribution of the nodes at which the sum is to be computed. We showed that, for the Legendre nodes used in
the spherical filter, the summation algorithm has a complexity of O(N log N), which results in a total complexity
for the spherical filter algorithm of O(N?1log N).

In this paper, we now generalise the spherical filter to arbitrary grids using the NFFT.

Note that the spherical filter can also be considered as a method for fast approximation of a function on the
unit sphere by a spherical polynomial from the space of all spherical polynomials of degree < N. The spherical
filter algorithm can be used to compute the approximation error of the Ly orthogonal projection on the grid
points in a very efficient way. Furthermore a regridding, i.e. computing values of the projected function on an
arbitrary grid, is very efficient. These algorithms also require only O(N?log N) operations for O(N?) grid points.
One possible application is to compute a spherical wavelet decomposition of the projected function.*

The structure of this paper is as follows. Section 2 presents some basic definitions, including the spherical
harmonics, introduces the concept of band-limited functions, and defines the spherical filter, concluding with a
summary of the complete spherical filter algorithm on arbitrary grids. Section 3 discusses the fast algorithms
that are employed. Section 4 discusses an implementation of the algorithm and presents the results of some
numerical experiments performed on it. Finally, Section 5 summarises the results that have been obtained.
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2. THE SPHERICAL FILTER

We start with several basic definitions.

DEFINITION 2.1. The normalised Legendre polynomials and the normalised associated Legendre functions are
defined as

1 dt k
Py(z) := Zk—ld@(x -1) (xe[-1,1;keNy),
and
PMz) = \/<k n %) EZ;Z;:(l —2?)} d‘fnpk(x) (z € [-1,1];n,k € No, k > n), (2.1)

respectively. For k < n, we set P*(z) := 0. The functions PJ* satisfy the three-term recurrence

P = ap Py + o Pl (2.2)

1
with aff = (%) ’ for k> n and af := 0 otherwise (see e.g.”). Further, the P fulfil the orthogonality

relation

1
/ P (z)P*(z)dx = 0py (neNy;k,l=n,n+1,...).
-1

Throughout this paper, we will be dealing with functions that are defined on the unit sphere S := {x €
R? | [|x||2 = 1}. In particular, we will focus on the space L?(S) of square-integrable functions on the sphere. We
will describe points on the unit sphere by their latitude 8 € [0, 7] and longitude ¢ € [0, 2).

DEFINITION 2.2. The spherical harmonics are functions on the unit sphere defined as
Y20, 9) = P\ (cos6) e, (2.3)

where 8 € [0,7]; ¢ € [0,27); n € Z,k € Ny, k > |n|. The spherical harmonics form an orthonormal basis of
L2(S) with respect to the scalar product

T 2w
(ro)=g- [ [ 0.0 9@ dsmoasa (fge 1))

We will now introduce the concept of band-limited functions and use these to define the spherical filter.
DEFINITION 2.3. A function f € L*(S) is said to be band-limited with bandwidth N if it can be expressed as

N ok
FO.0)=3 > aiYi(0,9)  (af €C).
k=0n=—k
By denotes the set of all band-limited functions with bandwidth N .
For any N, By is a subspace of L?(S).

DEFINITION 2.4. The orthogonal projection of a function f € L*(S) onto By is called the spherical filter with
bandwidth N. The result of this operation is denoted by f~, i.e. if

f= Z Clz Ykna

n€Z,k€Ny,k>|n|



then

N

N6, ¢) = ZZakka)

k=0n=—k
This operation is also referred to as a “triangular truncation”, since the spherical Fourier coefficients in f~ can
be arranged in the shape of a triangle.

The Fourier coefficients

2w
ag =(f,Y{" = % /0 i £(8,¢) PI"(cosB)e "¢ sinf dg g
2w

/ Pl (cos)sind — [ £(8,4)e "% dg d
2m Jo

0

have to be computed from the function values. For convenience, we denote the inner integral, together with the
normalisation constant 5, by f,(#) and thus obtain

2w
n0) = o [ 16,007 49 (24)
T Jo
and
_ / " Pl (cos 0)f (6) sin 6 db. (2.5)
0

Now we approximate this inner product by application of a quadrature formula for the spherical Fourier coeffi-
cients af = (f,Y}") such that a}} ~ a} with

M Ms—-1

ap =Y > wiaf (B bes) Yy " (s, 610, (2.6)

s=0 t=0

using suitable weights w; s and points (05, ¢:s) (s =0,...,M;t =0,...,M; —1). Now we define the approxi-
mation fV of fV by

k

N
o 5(;3:22”"Yk (2.7)
k=0

=—k

Our aim is now to avoid the costly computation of the discrete spherical Fourier coefficients® &7 and compute
values of the function f& on special grids. For this purpose we use the technique of spherical filtering. Up to
now this method has only been applied on the equidistant grids.3 The method is based on the application of
the fast multipole method (FMM). In* we avoid the FMM, use only FFTs (or NFFTs) and provide a complete
complexity estimate. With the help of the NFFT, we can now generalise the spherical filter method and apply
this method to nonequispaced grids for the first time.

Now our algorithm can be viewed as a fast method to construct approximations of a function on the unit
sphere by a spherical polynomial from the space of all spherical polynomials of degree < N.%19 This includes
the Lo orthogonal projection and the hyperinterpolation approximation!® in which the Fourier coefficients are
approximated by a positive weight quadrature rule that integrates exactly all polynomials of a certain degree.
One main advantage of our method is that we can compute the approximation error f — fV on the given points
in a very fast way, as well as computing values of f¥ on other grids.

Note that the main idea of the spherical filter is that the a}} or a}} need never be calculated explicitly. This
means that we combine formula (2.6) and formula (2.7). For this purpose we need



THEOREM 2.5 (CHRISTOFFEL-DARBOUX FORMULA (see e.g.7)).
The sum

N

Sw(@,y) = Y Pi(@) P (y) (2.8)

k=n

possesses the closed form

a1 (PR (@) PR(y) — PR(z) PRy (v) .
Sw(z,y) = B it ey (2.9)

a1 (PR41 (@) PR (2) = PR (@) PRy (2)) if 2=y,

where the o} are the constants from the three-term recurrence (2.2).

The Christoffel-Darboux formula for the case where x = y requires the evaluation of P’, the derivatives of the
normalised associated Legendre functions. A recurrence equation for the PJ'’ can be obtained by differentiating
the three-term recurrence z P! = ap P | + af 1 P4, yielding

PP+ aPl = op Py +ag PR (2.10)

To start the recurrence, we need P?'. We have

1 [2n+1 12
R0 = gy | T o] -
Denoting ¢ := 57— [22HL (2n)!:|1/2 we obtain
PT?I(:E) =c- [g (1 _ 1.2)(n—2)/2 . (—2:6‘)] — —cnx(l _ wz)(n—z)/z_

For the fN in (2.7), we use (2.3), (2.6) and (2.9) to obtain the formula
~ ~ ~ N ~ ~
NG@.) = Z > ap v, 9)
N M o
R IP DI )" (cos B,)e™ "% P (cos B)e™?

N M M,—1 . i -
= 2 (Z (( > wt,sf<6s,¢t,s)e‘"¢t’s) smes,e))) ed. (2.11)

n=—N t=0

In order to compute fN (5, </’;) on a nonequidistant grid we use the NFFT and the fast summation algorithm,
which is also based on the NFFT (see Section 3).

We summarise the fast spherical filter algorithm and show that it has an asymptotic complexity of O(N?log N).
Algorithm (Fast Spherical Filter)

Input: f(0s,615) €C(s=0,..., M;t=0,... ,M;—1)
(function values on a spherical grid)
Output: Nls16r0) €C(0=0,...,87=0,...,5 —1)

(approximate values for fN (6o, 6r0))

Constants: M,N,S €N



ws ER(s=0,... ,M;t=0,...,M;—1)
(weights for quadrature)

O s ER (5=0,...,M;t=0,..., M, —1)
(given grid points)

0,070 ER(0=0,...,8;7=0,...,5, 1)
(grid points for fV)

Precomputation: Forn =0,...,N,s=0,...,M compute Py (cosfs), Py (cosbs), Py'(cosd;)
and P! (cosfy) using the recurrences (2.2) and (2.10).

1. For s =0,... ,M compute

M:—1
'fn(es) . Z wt,sf(esa ¢t,s) e indue (n = - min(Na |_MS/2J)7 s ,min(N, |_(M3 - 1)/2J) (212)
Otzo otherwise

using an NFFTT. Complexity: O(M N log N)

2. Forn = —N,...,N compute

M |n|
s)P, 0
=y f(0) P41 (c056,) (6=0,...,5) (2.13)
= cost, — cosf,
0:s#05
and
Mz |n]
=y fn(65) Py (c056,) (c=0,...,5) (2.14)
= cosH — cos b,
070,

using the NFFT summation algorithm,*® and then set

gn(0,) = af (Pll\?l(cosé,,)(Gl(n,a) + 3 Ful0,) Py (cosds))

s=0
0,=0,
Complexity: O(N(Nlog(N)))
3. For 0 =0,...,S compute
~ ~ ~ N ~ . 7
fN(007 ¢‘r,0) = z gn( d)eln¢T’a (T =0,... ;Ss - 1) (215)
n=—N

using an NFFT. Complexity: O(SN log N)

Note that the reasoning behind the complexity estimate for step 2 is not entirely straightforward (see*). The
overall complexity of the algorithm is O((N + M + S)Nlog(N)).



3. THE FAST ALGORITHMS USED IN THE SPHERICAL FILTER

In this section, we give references to the fast algorithms that are used in the spherical filter.

3.1. THE NONEQUISPACED FFT

The NFFT is used for the fast evaluation of sums of the forms

N/2-1
flw)= D fre i (G=-M/2,...  M/2-1)
k=—N/2
and
M/2—1
hk)= Y h;e i2mhes (k=-N/2,...,N/2—1)
j=—M/2

(w;j € R), known as the NDFT and NDFTY, respectively. The so-called NFFT and its relative, the NFFTY, are
approximative algorithms with only O(N log N + M) arithmetical operations. Further details including error
estimates can be found in.>!!  Moreover, free NFFT software packages are available.®

3.2. A FAST SUMMATION ALGORITHM BASED ON THE NFFT

As stated already in the introduction we use a fast summation algorithm for sums of the form

N
=

where 8, € C, 2y, e R(k=1,... ,N),y; €eR(j=1,...,M).

The kernel K must be in C*, except for the origin, which may exhibit a singularity.® If so, we agree to set
K(0) := 0 so that we will be able to evaluate K for all z € R. The kernel that we will use in our application is
K(z) = 1/z; it was investigated in detail in.* Note that, in the paper cited, we present a complete complexity
estimate for the spherical filter. This complexity estimate can be generalised to other distributions. The accuracy
of the summation algorithms can be controlled using parameters a, p and m, and this is also discussed in.*

4. NUMERICAL EXAMPLE

We will use points that are approximately uniformly distributed over the sphere (see!? and!'3). As a specific
example we use the points with spherical polar coordinates 8;,¢; s (s =0,... ,M;t=0,... , M, — 1), given by

0, =st/M, (s=0,...,M),
Mo =1,My =1,
Z{ 2 - — J, (s=1,...,M —1),
arccos((cos(m/M) — cos? 8,)/ sin” ;)
brs =2m(t+1/2)/M;, (s=0,...,M;t=0,...,M;—1).

The same points are used for 8, and qNST,a. We use the rectangular rule in (2.4) and the Clenshaw-Curtis rule
in (2.5), such that the weights are given by

M
1 w1 M
w =W - = M = —
N VY2 kzzo 1—4k? ( 2 )

o X, 1 ks
n ~
Wt,s = Wy off—g = MMsg a2 cosﬁ (s=1,...,M).




The double prime on the sum indicates that the first and the last term are to be halved.

The spherical filter algorithm and auxiliary algorithms were implemented in C++ using double-precision
arithmetic. The implementation used the FFT library FFTW 2.1.5 and the linear algebra library CLAPACK
3.0. The compiler used was a prerelease of GCC 3.3 (all optimisations turned on). Numerical experiments were
run under Linux 2.4.20 on an AMD Atlon XP 2700+ with 1 GB of RAM.

The algorithm was tested on the following functions:

f1(x) = 110273

fa(x) := 0.1e*1H2t2s
f3(x) = 0.1]|x[]x

fa(x) = 1/|Ix||1

f5(x) := 0.1sin®(1 + [|x[|1)

The functions were taken from.!* The function f; is a polynomial of low degree and the function f, is analytic
over S. The function of fs, f1 and f5 have only C° continuity. In particular, they are not continously differentiable
at points where any component of x is zero.

To test a function which is continuously differentiable, the function fs € C! with

1 if 6 € [0,7/2]

fe(0,9) == { (1+3cos’0)~1/2 if § € (7/2,7]

was used; this function was taken from.? If the function values are interpreted as distances from the origin,

then this function describes a half-sphere that is joined to a half-ellipsoid. It is smooth everywhere except at
the equator. To better test the behaviour of the spherical algorithm at the poles, we rotate the function by 7 so
that the discontinuity passes through the poles.

To give an idea of the error introduced by the approximate algorithms, we tested the spherical filter on
function fg, computing the maximum relative error as

E= 0 ,
[1F ¥ oo
where
fe 0
”fl 00 5=, ,M{I}E%, M1 f( s:¢t,s)

is a discrete approximation to the maximum norm.

We ran the tests with N = M = 512. For the parameters a = p = 5 in the fast summation algorithm and
the NFFT with the truncation parameter m = 3 and Kaiser-Bessel functions, we obtained E =~ 6 - 1073; for
a=p= 8 and m = 6 (a medium precision setting that should be sufficient for many applications), we obtained
E~1.4-1077; and for a = p = 12 and m = 10, we obtained E ~ 1072,

Next, we will use the spherical filter to examine the projection error

ﬂf A_ .)fNﬂoo
| £lloo

for various N and show how the error decreases at different rates as N increases, depending on the smoothness
of the function. For these tests, we use M = 512, a = p=8 and m = 6.

Eproj = )



Figure 1 shows plots of the projection error for the smooth functions f; and fa. The error decreases rapidly
and quickly reaches a constant level where further improvements in the approximation are masked by the error
introduced by the approximate algorithms.

Contrast this to Figure 2, which plots the projection error for the non-smooth functions f3 to fs (note the
different scale on the horizontal axis). As expected, these functions require a much greater N to be represented
faithfully.
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Figure 1. Projection error Epro; for fi and fo.
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Figure 2. Projection error Epo for f3 to fe.

An interesting question is how the performance of the spherical filter on the points we use here compares with
the Gauf3-Legendre setting, where the point density at the poles is much greater. Figure 3 shows the projection
error for the same functions as in Figure 2 but computed using equidistributed points with Gauss-Legendre nodes
and weights in the direction of 8 (see*). It is apparent that the projection errors are virtually the same for both
point sets. The results indicate that the approximately uniformly distributed points we use in this paper give
results comparable to those of using the Gau-Legendre setting while requiring less memory to store.

Note that, for the Gau3-Legendre setting, we used M = 511, since it requires the number of points to be
a power of two, but we believe that this reduction of M by one should not have a significant impact on the



results. Note also that the running times for the two point sets do not differ greatly, in spite of the fact that the
Gaufl-Legendre setting has more points at the poles. This is because the bulk of the running time is consumed
by step 2 of the algorithm, where the complexity is independent of the number of points in the direction of ¢. In
fact, the running time for the Gau-Legendre setting was slightly lower — 21.59 seconds at M = 1023, N = 1024
compared to 22.19 seconds for the approximately uniformly distributed points at M = N = 1024.
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Figure 3. Projection error Eyro;j for f3 to fo, computed at the GauB-Legendre setting as defined in.*

Finally, we present the results of timing tests performed on the spherical filter (for the approximately uniformly
distributed points). The tests were run at a range of resolutions from M = 32 to M = 1024 using N = M in
all cases. The parameters were set to a = p = 8 and m = 6. Figure 4 shows the results of the tests. For
comparison, the dashed line shows a time complexity of O(N?). The results confirm the predicted complexity
of O(N?logN).
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Figure 4. Running times of the spherical filter for various M = N. The parameters used were a = p = 8 and m = 6.
The dashed line shows a time complexity of O(N?) and intercepts the plot at N = 64.



5. CONCLUSION

In this paper we generalised the spherical filters to arbitrary grids. Our algorithm can be viewed as a fast method
to construct approximations of a function on the unit sphere by a spherical polynomial from the space of all
spherical polynomials of degree < N. In'* the authors conclude that the quality of the polynomial interpolation
is critically dependent on the choice of interpolation points if N < 30. Our numerical experiments demonstrate
that the projection errors are virtually the same for the Gau-Legendre grid and the approximately uniformly
distributed grid for greater N.
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