
Electronic Transactions on Numerical Analysis.
Volume 16, pp. 70-93, 2003.
Copyright  2003, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

A FAST ALGORITHM FOR FILTERING AND WAVELET DECOMPOSITION ON
THE SPHERE

�

MARTIN BÖHME AND DANIEL POTTS
�

Abstract. This paper introduces a new fast algorithm for uniform-resolution filtering of functions defined on the
sphere. We use a fast summation algorithm based on Nonequispaced Fast Fourier Transforms, building on previous
work that used Fast Multipole Methods. The resulting algorithm performs a triangular truncation of the spectral coef-
ficients while avoiding the need for fast spherical Fourier transforms. The method requires �������
	���
���� operations
for ��������� grid points.

Furthermore, we apply these techniques to obtain a fast wavelet decomposition algorithm on the sphere. We
present the results of numerical experiments to illustrate the performance of the algorithms.

Key words. spherical filter, spherical Fourier transform, spherical harmonics, associated Legendre functions,
fast discrete transforms, fast Fourier transform at nonequispaced knots, wavelets, fast discrete summation.

AMS subject classifications. 65Txx, 33C55, 42C10.

1. Introduction. The manipulation of functions defined on the surface of the sphere
and the integration of partial differential equations (PDE) on the sphere are important in areas
such as weather forecasting and climate modeling [3, Section 18.7].

Spherical harmonics are popular as a basis set for these applications because they have
a number of useful properties. In particular, the band-limited functions that are obtained
through a so-called “triangular truncation” of the spherical harmonic expansion exhibit the
property of “uniform resolution”; broadly speaking, this means that the level of resolution is
the same all over the sphere [10]. This property is often exploited in the integration of PDEs,
for example; one technique for avoiding instabilities is performing a triangular truncation in
each time step.

Thus, one of the subproblems of integrating PDEs on the sphere is projecting a function
onto the space of band-limited functions. This operation is referred to as the “spherical filter”
[10]. The computational cost of the spherical filter is quite high if implemented in a straight-
forward way — ��������� for ��������� grid points. In this work, we will derive a fast algorithm
that cuts the complexity to ����� � �"!$# ��� . We will also show how the fast spherical filter can
be used to derive a fast wavelet decomposition algorithm.

Since spherical filtering is quite a costly operation, significant effort has been expended
on speeding it up. Jakob-Chien and Alpert [10] presented an ����� ���"!$# ��� algorithm that
is based on Fast Multipole Methods (FMM) (see, for example, [5]) to evaluate the sums that
occur in the spherical filter. This work was extended by Yarvin and Rokhlin [22], who derived
a generalised FMM and applied it to the spherical filter. Swarztrauber and Spotz [20] also
presented optimisations to the spherical filter but took a slightly different approach. They do
not improve on the ����� � � complexity of the straightforward filter algorithm but reduce the
hidden constant while at the same time reducing the memory requirement from ����� � � to
����� � � .

Our algorithm is based on the ideas from [10]. However, we wish to avoid the Fast Mul-
tipole Methods employed there because we feel that they are rather technical and difficult to
implement. Instead, we will use a fast summation algorithm [14] that is based on the Noneq-
uispaced Fast Fourier Transform (NFFT) [17]. We believe that this algorithm is conceptually
simpler and easier to implement, and the measurements performed in [14] demonstrate that

%
Received July 29, 2002. Accepted for publication March 24, 2003. Recommended by Sven Ehrich.�
University of Lübeck, Institute of Mathematics, D–23560 Lübeck, Germany. E-mails:

boehme@informatik.uni-luebeck.de,potts@math.uni-luebeck.de.

70

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 71

its running times are at least as good as those of FMM-type algorithms. An additional ad-
vantage of our approach is that the NFFT builds on the standard (equispaced) Fast Fourier
Transform, for which highly optimised libraries are available (see also [11]).

The asymptotic complexity of the NFFT-based summation algorithm depends on the dis-
tribution of the nodes at which the sum is to be computed. We will show that, for the Legendre
nodes used in the spherical filter, the summation algorithm has a complexity of ����� �"!$# ��� ,
which results in a total complexity for the spherical filter algorithm of ����� � � ! # ��� .

The structure of this paper is as follows. Section 2 presents some basic definitions,
including the spherical harmonics, introduces the concept of band-limited functions, and de-
fines the spherical filter and wavelet decomposition. This section also discusses how the two
transforms can be combined in a way that allows fast summation algorithms to be employed.
Section 3 presents the fast NFFT-based summation algorithm from [14] and adapts it for use
with odd kernel functions. Section 4 summarises the complete spherical filter algorithm and
provides a complexity estimate. Section 5 discusses an implementation of the algorithm and
presents the results of some numerical experiments. Finally, Section 6 gives the conclusions
of the paper.

2. The Spherical Filter and Wavelet Decomposition on the Sphere. We start with
several basic definitions.

DEFINITION 2.1. The normalised Legendre polynomials are defined as��� ��� ��� �� �
	��
 �
 � � ��� ��� � � � ������� � ��������� 	 ���������
DEFINITION 2.2. The normalised associated Legendre functions are given by

(2.1)�! � ��� ��� " # 	!$ ���% �
	 �'& � �
�
	($ & � � � � � � � �*) +

 � � � ��� � ������� � �,�-���.� & � 	 �/� � � 	/0 & �1�

For
	/2 & , we set

� � ��� ���43 . The functions
� �

satisfy the three-term recurrence� 5 � � � �7698 � � �;:=< $ 8 �1>?< � �1>@<
(2.2)

with
8 � �BADC �;: ,E C �1> ,EC � �;:=< E C � ��>@< E;FHG+ for

	/0 & and
8 � �I3 otherwise [20, equation A.3.1]. Further,

the
� �

fulfill the orthogonality relationJ <:K< � � �L� � � M ��� �
 � 69N �;O M � & ����� � 	 �QP 6 & � & $ ��� ���-� ���
Throughout this paper, we will be dealing with functions that are defined on the unit

sphere RS�UT;VS�IW �YX�Z V Z � 6 �*[
. In particular, we will focus on the space \ � �]R � of

square-integrable functions on the sphere. We will describe points on the unit sphere by their
latitude ^_�`� 3 �ba�� and longitude cY��� 3 �d�
a � .

DEFINITION 2.3. The spherical harmonics are functions on the unit sphere defined ase � ��^ � c ��� �gf f� �]h !ji ^ ��k-l ,m �
where ^��n� 3 �ba��.� co�n� 3 �p�
a � � & �Yq � 	 �`� � � 	'0 X & X . The spherical harmonics form an
orthonormal basis of \ � �]R � with respect to the scalar productr�s �utwv � ��*a JYx� J � x� s ��^ � c � t �L^ � c � iQy{z ^
 c
 ^ � s �bt �|\ � ��R � ���

ETNA
Kent State University
etna@mcs.kent.edu

72 Martin Böhme and Daniel Potts

We will now introduce the concept of band-limited functions and use these to define the
spherical filter and the wavelet decomposition on the sphere. We will introduce the forward
and inverse discrete spherical Fourier transforms for transforming from the latitude / longitude
grid to Fourier space and back. And finally, we will combine these two transforms to yield an
algorithm for the spherical filter.

2.1. Definition of the Spherical Filter and the Wavelet Decomposition. We give
some more definitions.

DEFINITION 2.4. A function
s � \ � ��R � is said to be band-limited with bandwidth � if

it can be expressed as

s ��^ � c � 6 ����� �
�
� ��:���� � e � ��^ � c � � �

 � ��� �1�
	 � denotes the set of all band-limited functions with bandwidth � .

For any � ,
	 � is a subspace of \ � ��R � .

REMARK 2.5. Band-limited functions possess the useful property that any rotated ver-
sion of

s � 	 � is also in
	 � (see [10, Section 2.1]). Thus, band-limited functions are

referred to as having uniform resolution, meaning that features are resolved equally well at
all points on the sphere.

DEFINITION 2.6. The orthogonal projection of a function
s �|\ � �]R � onto

	 � is called
the spherical filter with bandwidth N. The result of this operation is denoted by

s �
, i.e. ifs 6 � ���
 O � ����� O ��� f f � � e � �

then s � �L^ � c � 6 ����� �
�
� ��:���� � e � �L^ � c ���

This operation is also referred to as a “triangular truncation”, since the Fourier coefficients
in
s �

can be arranged in the shape of a triangle.
DEFINITION 2.7. Given a band-limited function

s
with bandwidth � � � , we define its

wavelet decomposition as the decomposition
s 6 s � :=< 6 s ��� � :=< $ t , where

s ��� � :K< ��^ � c � 6 ��� �
:=<

���� �
�
� ��:K��� � e � ��^ � c �

(as defined above) is the low-frequency component and

t ��^ � c � 6 � :=<���� ��� �
�
� ��:���� � e � �L^ � c �

is the wavelet component. In practice, to perform the wavelet decomposition, we will computes ��� � :=< and then obtain
t

by
t 6 s � :=< � s ��� � :K< .

Details on spherical wavelets, including an explanation of why the above operation can
be referred to as a wavelet decomposition, are given in [15] and [7]. The underlying wavelets
are called Shannon wavelets.

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 73

2.2. Discrete Spherical Fourier Transform. To apply the spherical filter or the wavelet
decomposition to a function defined by its values on the sphere, the Fourier coefficients �

 �
have to be computed from the function values:

�
 � 6 r]s � e � v 6 ��*a J7x� J � x� s ��^ � c � � f f� �Lh !�i ^ �uk : l �m iQy z ^
 c
 ^6 J x� �gf f� �Lh !�i ^ � iby{z ^ ��
a J � x� s ��^ � c � k : l ,mg
 c
 ^w�

For convenience, we denote the inner integral, together with the normalisation constant
<
� x ,

by � ��^ � and thus obtain

(2.3) � ��^ ��� 6 ��
a J � x� s ��^ � c � k : l ,m
 c
and

(2.4) �
 � 6 J x� �gf f� �Lh !�i ^ ��� ��^ � iQy{z ^
 ^w�

It is well-known that if
s

is a band-limited function, the integrals in (2.3) and (2.4) can
be computed using the DFT and Gauss-Legendre quadrature, respectively. This yields the
following algorithm for the computation of the �

 � .

ALGORITHM 1 (Discrete Spherical Fourier Transform (DSFT)).
Input:

s ��^�� � c�� � � � (� 6 3 � ����� � � � � , 	 6 3 � ���-� �d� � � �)
(
s

is band-limited with bandwidth � � �)
Output: �

 � � � (
	 6 3 � ���-� � � � � , & 6 � 	 � ���-� �)

(Fourier coefficients for
s

)

Constants: � �|��
� ��� � ��W �
� 6 3 � ���-� � � � � �
(nodes and weights for Gauss-Legendre quadrature)^�� �����dh-h !ji ��� ��� 6 3 � ����� � � � � � , c��?� � x� ��	 6 3 � ���-� �d� � � � �
(grid points)

1. For � 6 3 � �-��� � � � � compute

� ��^ � �?� �� � � �
:=<

�
� � � s �L^ � � c � � k : l ,m�� � & 6 � ��� � � � � ����� � � � � �

using an FFT. Complexity: ����� � � ! # ���
2. For

	 6 3 � ���-� � � � � and & 6 � 	 � ����� � 	 compute

�
 � � � :K<�

� � � � � � f f� ����� ��� ��^����
Complexity: ����� � �

It is convenient to split up the inverse operation (computation of
s ��^ � � c � � from Fourier

coefficients �
 �) into two phases as well. This yields the following algorithm (the parameter

��� l � controls how many Fourier terms are included in the sum).

ETNA
Kent State University
etna@mcs.kent.edu

74 Martin Böhme and Daniel Potts

ALGORITHM 2 (Inverse Discrete Spherical Fourier Transform (IDSFT)).
Input: �

 � ��� (
	 6 3 � �-��� � ��� l � , & 6 � 	 � �-��� �)

(Fourier coefficients)

Output:
s ��� � � ��^ � � c � � � � (� 6 3 � ���-� � � � � , 	 6 3 � ���-� �d� � � �)

Constants: � � � � l � �/�^ � � ���ph�h !�i � � �
� 6 3 � ���-� � � � � � , c � � � x� ��	 6 3 � �-��� �p� � � � �
(grid points — the � � are the Gauss-Legendre nodes)

1. For & 6 � � � l � � �-��� � ��� l � and � 6 3 � �-��� � � � � compute

� �L^ � �?� ��� � ����� f f � � �gf f� �L� � �
Complexity: ����� � l � � ���

2. For � 6 3 � ����� � � � � computes ��� � � ��^ � � c � ��� ��� � �� ��: � � � � k l ,m�� � �L^ � � ��	 6 3 � �-��� �p� � � � �
using an FFT. This will require those components of the input vector with indexes
greater than � � l � to be padded with zeros. Complexity: ����� � � ! # ���

It is, of course, possible to apply the Discrete Spherical Fourier Transform to functionss
that are not band-limited. In this case, an inverse transform will not reconstruct the original

data. Instead, one obtains the result of applying a spherical filter with bandwidth � � l � , which
filters out high-frequency components and yields a representation with “uniform resolution”.

In recent years, several fast algorithms for the DSFT and IDSFT have been developed.
Driscoll and Healy present an ����� � �"!$# � ��� algorithm [4], and this algorithm was modified
by several authors (e.g. [9, 16, 19]) to improve its stability. Mohlenkamp [13] presents two
algorithms, one with a complexity of �������

� � � ! # ��� and the other with a complexity of
����� � � ! # � ��� . It appears, though, that asymptotically fast DSFT algorithms still present
some difficulties, e.g. instabilities or high overhead, and so research is still going on into fast
������� � algorithms; see, for example, [20].

2.3. Combining the Middle Steps. In applications such as the wavelet decomposition
and the spherical filter, the forward transform is followed directly by the inverse transform,
which means that the �

 �
need never be calculated explicitly. Jakob-Chien and Alpert [10]

make use of this fact by combining the second step of the forward transform with the first step
of the inverse transform and then applying an FMM to evaluate the resulting sum quickly.

By combining the second step of Algorithm 1 and the first step of Algorithm 2 and
rearranging we obtain (for & 6 � � � l � � ���-� � � � l � and � 6 3 � ���-� � � � �)

� ��^	� � 6 � :=<�
� � � � � � �L^�� �

� � � ����� f f �gf f� �L��� � �gf f� ���
� �1�(2.5)

The inner sum in this formula has a closed form known as the Christoffel-Darboux formula.
THEOREM 2.8 (Christoffel-Darboux Formula). The sum

(2.6) R��L� ��� ��� � :K<���� � � ��� � � � � � �

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 75

possesses the closed form

(2.7) R���� ��� � 6 ���) � ���)� C�� E �)�	� G C�
 E : �)�	� G C�� E �)� C�
 E �� :
 if �
�6 �8 ��� � ��� ��� � � � :=< �L� � � � 	�� :K< �L� � � � ��� ��� if � 6 �
,

where the
8 � are the constants from the three-term recurrence (2.2).

REMARK 2.9. The Christoffel-Darboux formula for the case where � 6 �
requires

the evaluation of
� ��� , the derivatives of the normalised associated Legendre functions. A

recurrence equation for the
� 	�� can be obtained by differentiating the three-term recurrence� � � 6o8 � � �;:K< $ 8 �1>@< � >@< , yielding

(2.8)
�! � $ � �! 	�� 6n8 � �! 	��;:K< $ 8 �1>@< �! 	���>@< �

To start the recurrence, we need
� �� . We have� �L� � 6 �� & ��� � & $ �� � � & � � � < � � � � � � � � � �

Denoting 5 � <
�) ���� � >@<� � � & � � � < � � we obtain� �� ��� � 6 5���� & � � � � � � � C : � E � � �$� � � � � � 6 � 5 & � � � � � � � C : � E � � �

Applying the Christoffel-Darboux formula (2.7) to equation (2.5) yields

� �L^ � � 6 � � � �L^ � � 8 f f� � � � >@< A �gf f �� � � � >@< ��� � � �gf f� � � � ��� � � � �gf f �� � � � ��� � � �gf f� � � � >@< ��� � � F $
� :K<�
� � ��"!� � � � � ��^�� �

8 f f� � � � >@< A � f f� � � � >@< �L��� � � f f� � � � ��� � � � � f f� � � � ���
� � � f f� � � � >@< ���
� � F� � � � � �
Focusing only on the sum # � :K<

� � ��"!� � �-��� , we find

� :K<�
� � ��"!� � � � � ��^ � �

8 f f� � � � >@< A � f f� � � � >?< ���
� � � f f� � � � �L� � � � � f f� � � � �L��� � � f f� � � � >@< �L� � � F� � � � �(2.9)

6n8 f f� � � � >@<%$&' � f f� � � � ���
� � � :K<�
� � ��"!� �

� � � ��^�� � � f f� � � � >?< �L��� �� � � � �
� �gf f� � � � >@< �L� � � � :=<�

� � ��"!� �
� � � �L^ � � �gf f� � � � ��� � ���� � � � (")* �

This alone has not led to a reduction in the asymptotic complexity of the middle steps — we
still have a complexity of ����� � l � ����� : ����� � l � � for the loop & 6 � � � l � � ���-� � � � l � ; �������
for the loop + 6 3 � ����� � � � �

; and ������� for the loop � 6 3 � ����� � � � �
. However, the

evaluation of the sums in (2.3) can be speeded up using fast approximate algorithms. This
was done using Fast Multipole Methods in [10]; we will use a different technique, which we
present next.

ETNA
Kent State University
etna@mcs.kent.edu

76 Martin Böhme and Daniel Potts

3. A Fast Approximate Summation Algorithm. In this section, we will present an
algorithm, from [14], that computes sums of the form

(3.1)
s � ��� � 6 �����@<� !� � � ��� � ��� � � � � ��� 6 �,� ����� ��� � �

where
� � � � , � � � W (

	 6 ��� ���-� � �),
� � � W (� 6 ��� �-��� �	�). The function

�
is the

so-called kernel.
�

must be in
�� , except for the origin, which may exhibit a singularity. If
so, we agree to set

� �]3 �?� 3 so that we will be able to evaluate
�

for all �D�/W . To compute
the sums arising in our application, we will choose

� �L� � 6 ��
 � .
The algorithm presented here is an approximate algorithm that is substantially faster than

evaluating the sum directly. It requires � � � � ! # �
$
�"!$# � <� � � � operations (where � is the

desired accuracy) compared to the ��� � � � operations that would be required for a direct
evaluation.

The algorithm is based on the Nonequispaced Fast Fourier Transform (NFFT), an ap-
proximate algorithm for computing the Discrete Fourier Transform at nonequispaced nodes
(see, for example, [6, 1, 18, 17]). A software-package is available from [11]. We will refer to
the algorithm that computes

s ��� � � 6 ��� �
:K<

�����: ��� �
s � k : l � x �	��� ��� 6 � ��
*�w� ���-� ����
,� � � �

(� � ��W) as the NFFT and to the algorithm that computes

� � 	 � 6�� � � :=<�
� ��:
�
� �
� � k : l � x �	��� �

	 6 � �
*�w� �-��� � �
,� � � �
as the NFFTT. The complexity of both algorithms is ��� +�� �"!$# � +����

$�� � � , where + and�
are constants that control the accuracy of the approximation.

The general idea of the fast summation algorithm is to regularise the kernel and make it
periodic so that it can be approximated well by a Fourier series. Replacing the regularised
kernel by the Fourier series then allows the NFFT to be used to speed up the computation but
has two consequences that must be taken into consideration. Firstly, the Fourier series will
not approximate

�
well near the origin, because of the singularity. For this reason, so-called

near-field corrections have to be applied for values of
��� � � � that are close to zero. Secondly,

since the kernel has been made periodic, the values of
��� � � � have to lie within the period

that spans the origin, which may mean that the � � and
���

have to be scaled to a suitable range.
This will be discussed in more detail later on.

Regularising the kernel. In the following, we will derive
���

, a 1-periodic version of the
kernel that is regularised near 3 and � ��
*� . This regularisation is carried out using a cosine
series for even kernels, a sine series for odd kernels and a Fourier series for other kernels. For
even kernels this was worked out in [14]. Since our application uses the kernel

��
 � , we need
a regularisation for odd kernels.

We will parameterise our regularised kernel by the constant � , which governs the width
of the intervals on which the kernel is regularised. Specifically, the kernel will be replaced
by a sine series on the intervals � � <� � � <� $ � � , � � � � � � and � <

� � � � <� � , where & is the
number of terms that will be used later on in the Fourier series approximation of

� �
. Thus,

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 77

−1 −0.5 0 0.5 1
−30

−20

−10

0

10

20

30

FIG. 3.1. The kernel � ���$�������	� (dotted) and its 1-periodic regularised version (solid). Parameters are
 ���
��� , ���������
� .
on ��� � � <� � <� � , we have

� � ��� � � 6
��� ������ �L� � if ��� � � � � � �
��� ��� � if ��� � � <� � � <� $ � � � � <

� � � � <� �� �L� � otherwise

with

� � ��� ��� 6 !�� �@< � �� iQy z a & �� � � and

� � �L� � � 6
� # !� �?< � �� iby{z x �� � ��� � ��
,� � if � � � <

� � � � <� �# !� �?< � �� iby{z x �� � ��� $ ��
,� � if � � � � <� � � <� $ � � ,

where " is a parameter that controls how smoothly the sine series blends into the kernel. For� �� � � <� � <� � , � � �L� � is continued periodically.
An example of a regularised kernel is shown in Figure 3.1. To demonstrate that the kernel

has been made periodic, two periods are shown.
To determine the coefficients � �� and � �� , we will demand that � � and � � should match

the value and the first " � � derivatives of the kernel at the joins, i.e.

(3.2) � C�# E� A �& F 6 � C�# E A �& F �%$ 6 3 � ���-� � " � � �
and

(3.3) � C�# E�
� �� $ �& % 6 � C�# E # � �� $ �& % �%$ 6 3 � ����� � " � � �1�

From (3.2), we obtain

(3.4)
!�� �@< � ��

a & ��
�
% # � � � � # � � iby{z a �� 6 � C�# E A �& F

ETNA
Kent State University
etna@mcs.kent.edu

78 Martin Böhme and Daniel Potts

for even $ and

(3.5)
!�� �@< � ��

a & ��
�
% # � � � � C�# :K< E � � h !ji a �� 6 � C�# E A �& F

for odd $ ($ 6 3 � ����� � " � �).
Note that the system matrix of this system of equations exhibits a chessboard-like struc-

ture, allowing it to be split into the two systems of equations
� C ! :=< E � � ��
� � � � �� � >@< � � � $ � � � # � � � � # > � 6

�
�a & % � # � C � # E A �& F � $ 6 3 � �-��� ��� � " � � �� � �

and

� ! � � ��
� � � � �� � � � � � � # >?< � � � � # > � 6

�
�a & % � #

>?<
� C � # >?< E A �& F � $ 6 3 � ���-� ���$� " � � �� � �1�

Turning now to equation (3.3), the condition for regularisation around � ��
,� , we obtain

!�� �@< � ��
a & ��

�
% # � � � � # � � iQy{z � a & ��

�

� �� $ �& $ �� % � 6 � C�# E # � �� $ �& %
�

!�� �@< � ��
a & ��

�
% # � � � � # � � iQy z a �� 6 � C�# E # � �� $ �& % �

for even $. Note that this equation has the same left-hand side as equation (3.4). The case for
odd $ proceeds in a similar way, yielding an equation with the same left-hand side as equation
(3.5). The result of this is that we can compute the � �� using the same system matrices as for
the � �� .Approximating

� �
by a Fourier Series. We approximate

� �
by the Fourier series

� ��� �L� ��� � � :=<�M ��: � �
	 M k�l � x M � �

where &�
 � is the desired number of terms in the Fourier series and the Fourier coefficients
are given by

	 M � �& � � :K<�
� ��: � � �

� # �& % k : l � x � M � � P 6 � &
,� � �-��� � &
*� � � �1�
We now split up

�
like this:

(3.6)
� 6 � � � � � � $ � � � � � ��� � $ � ���

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 79

and denote
� � � � by

� ��� (this is the so-called near-field correction) and
��� � � ��� by� � � (this is the error introduced by the Fourier series approximation). Since
���

is smooth,
we expect that

� � � will almost vanish, and so we replace
�

by
� ��� $ � ��� in the sum we

wish to compute:�s � ��� � � 6 �����@< � � � � ��� $ � ��� � � ��� � � � � � � 6 ��� �-��� �	� �

6 �����@< � � � ��� � � � � � � � $ �����@< � � � ��� � � � � � � �1�(3.7)

We denote the first sum by
s ��� � ��� � and the second by

s ��� � ��� � .
With a view to evaluating

s ��� � � � � efficiently, we now return to the question of which
range the � � and

� �
should be constrained to. We note that

� ��� ��� � 6 3 for � �� � <� $ � � <� � � ��� � � � � � � . By requiring
� � � � � � � � <� $ � � <� � � � , we can elimi-

nate all of the terms from the sum # � ���?< � � � ��� � � � � � � � for which
� � � � � �� � � � � � � . If

the � � and
���

are distributed evenly, this means that only a few terms will be left in the sum.
To satisfy the condition

� � � � � � � � <� $ � � <� � � � , we will require X � � X � X � � X�� <� � �� .
If the � � and

� �
do not lie within the required range, they can be scaled by the factor

� � <� � �� 	 ��
 T X � < X � ����� � X � � X � X � < X � ���-� � X � � X [�
Of course, this will require the kernel

� �L� � to be replaced with
� � � � � .

Having seen how to compute
s ��� efficiently, we turn our attention to

s ���
. We have

s ��� � � � � 6 �����@< � � � ��� � � � � � � � 6 �����@< � � � �
:=<

�M ��: � �
	 M k l � x M C�
 � : �
� E

6 � � :=<�M ��: � �
	 M � �����@< � � k : l � x M ���
� k l � x M
 � �

The expression in brackets can be computed efficiently using an NFFTT. We then multiply
with the

	 M and compute the outer sum using an NFFT.
We are now ready to summarise the NFFT-based summation algorithm:
ALGORITHM 3 (NFFT-based Summation).

Input:
� � � � (

	 6 ��� ���-� � �)
(Coefficients for the sum)

Output:
�s � � � � (� 6 ��� ���-� ���)

(approximate values for
s � ��� �)

Constants:
�4� � �|�� � ��W (

	 6 ��� �-��� � �)��� �|W (� 6 �,� �-��� �	�)
(X � � � ��� X�� <� � �� (

	 6 ��� �-��� � � , � 6 �,� �-��� ���))

�
� "��/� (parameters for the regularisation of the kernel)& �|� (number of terms in the Fourier series

� ���
)� �/� � +'��� (parameters controlling the accuracy of the NFFT)

ETNA
Kent State University
etna@mcs.kent.edu

80 Martin Böhme and Daniel Potts

Precomputation: (i) Compute coefficients � �� and � �� (� 6 ��� ���-� � ") for the
regularised kernel by solving the systems of equations
derived from (3.2) and (3.3).

(ii) For
P 6 � &
,� � ����� � &
*� � � , compute

	 M � �& � � :K<�
� ��: � �

� � # �& % k : l � x � M �
using an FFT

(iii) For � 6 �,� ����� ��� , compute

� ��� � ��� � � � �
for those

	 � T �,� ���-� � � [that satisfy X � � � � � X 2 �
1. For

P 6 � &
,� � ����� � &
*� � � , compute

� M � �����@< � � k : l � x M �
�
using an NFFTT. Complexity: ����+ & �"!$# � + & � $ � ���

2. For
P 6 � &
,� � ����� � &
*� � � , compute� M � � M 	 M

Complexity: ��� & �
3. For � 6 �,� ����� ��� , compute

s ��� � � � ��� � � :K<�M ��: � �
� M k l � x M
 �

using an NFFT. Complexity: ��� + & �"!$# � + & � $ � � �
4. For � 6 �,� ����� ��� , computes ��� � � � ��� �� ��� <1O������ O ��� Of
 � : � � f � � �

� � � ��� � � � � � � �
Complexity: ��� �	� � �

5. For � 6 �,� ����� ��� , compute�s � � � �?� s ��� � � � � $ s ��� � � � �
Complexity: ��� � �

The constant � in the complexity estimate for step 4 is the maximum number of � � in an
interval of width

��
 & . Obviously, the more evenly the � � are distributed, the smaller � will
become. The overall complexity is ����+ & � ! # ��+ & � $ � � � $

���
$
�
� � � .

3.1. Error Estimate for the Fast Summation Algorithm. We will now provide an er-
ror estimate for the fast summation algorithm (Algorithm 3) just presented. The error estimate
is based on [14, Section 3.2], but in contrast to the results given there, we estimate the error

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 81

not for the general case of an even kernel but for the special case of the odd kernel
� ��� � 6 ��(�Y� W � ��� 3). Also, our error estimate still contains the coefficients � �� and � �� which

occur in the regularised kernel, whereas the magnitude of these coefficients is also estimated
in [14].

In the following, we will deal solely with the error introduced by Algorithm 3. The
additional error introduced by the NFFT has already been investigated thoroughly, see Section
5 of [14] and the literature cited there. Basically, the error in the NFFT has been shown to
decay exponentially with the parameter

�
.

Let us now examine the approximation error in Algorithm 3. In Section 3, the kernel
�

was split up into three components:

� 6 � ��� $ � � � $ � ���
(see equation (3.6)), where

� ��� was the near-field correction,
� � � was the error introduced

by the Fourier series approximation, and
� ���

was the Fourier series itself. The kernel was
then approximated as

�
 � ��� $ � ��� . By comparing the definition of
s

(3.1) and the
definition of the approximation

�s
(3.7), we see that

X s � � � � � �s � � � � X 6 ����� �����?< � � � � � � � � � � � � ����� � � 6 ��� �-��� �	� � �
and by applying Hölder’s inequality we obtain

(3.8) X s � ��� � � �s � ��� � X � �� � � � � � ���@< �� ! �� � � � � � ��� � � � � � � ���@< ���� �
where

<
!
$ <� 6 �

(
� � " ���). (The " -norm of a vector � 6 �
	 � � � ���@< is defined asZ � Z ! �BA # � ���@< X 	 � X ! F G� for

� � " 2 � and Z � Z � � 	 ��
���@<pO������ O � X 	 � X .)
For " 6 �

we have � 6 � , and so we need to estimate
�� � � � � � ��� � � � � � � ���@< �� � �	 �
� ��
 :=< � � O < � � � X � � � �L� � X . An estimate for this follows from [14] and is given by the following

theorem, proved in [2].
THEOREM 3.1. For the kernel

� ��� � 6 �� (�!�|W , ��� 3), we have

X � � � ��� � X ��� " � � $ &
� " � � � a ! � ! :K< &

��
� � " � � � � &

�
$ A a � F ! !�� �?< � ! � X � �� X $ X � �� X ����

for � �I� � <� � <� � , where � , " and & are the parameters for the NFFT summation algorithm
(Algorithm 3) and � �� and � �� (� 6 ��� �-��� � ") are the coefficients for the regularised kernel� �

which are obtained by solving the systems of equations derived from (3.2) and (3.3).

4. The Fast Spherical Filter Algorithm. In this section, we will summarise the fast
spherical filter algorithm (Algorithm 4) and show that it has an asymptotic complexity of
����� ���"!$# � � . We will do this by proving (in Theorem 4.1) that the NFFT summation al-
gorithm (Algorithm 3) has a complexity of ����� �"!$# � � when used with Legendre nodes.
A separate and unfortunately rather technical proof is necessary for this case because the
complexity analysis for the general case only gives a complexity bound of ����� � � . This is
discussed in detail in Section 4.2.

4.1. Algorithm. Having discussed all of the components of the fast spherical filter al-
gorithm, we are ready to present it in its entirety.

ETNA
Kent State University
etna@mcs.kent.edu

82 Martin Böhme and Daniel Potts

ALGORITHM 4 (Fast Spherical Filter).
Input:

s �L^ � � c � � � � (� 6 3 � ���-� � � � � , 	 6 3 � ���-� �d� � � �)
(function values on the spherical grid)

Output:
�s � � � � ��^ � � c � � � � (� 6 3 � ���-� � � � � , 	 6 3 � ���-� �d� � � �)

(approximate values for
s � � � � ��^ � � c � �)

Constants: � � � � l � ������ � � � ��W �
� 6 3 � �-��� � � � � �
(nodes and weights for Gauss-Legendre quadrature)^ � � ���ph�h !ji ��� �
� 6 3 � ���-� � � � � � , c �?� � x� ��	 6 3 � �-��� �p� � � � �
(grid points)

�
� " � � �/� � + � �

(parameters for the NFFT summation algorithm)

Precomputation: For & 6 3 � �-��� � � � l � , � 6 3 � �-��� � � � �
compute

� � � � � ����� � ,� � � � � >?< �L��� � , � ��� � � � �L��� � and
� 	�� � � � >@< ���
� � using the recurrences

(2.2) and (2.8).
1. For � 6 3 � ����� � � � � compute

(4.1) � ��^ � � � 6 �� � � �
:K<

�
� � � s ��^ � � c � �?k : l ,m�� � & 6 � ��� � � � � ���-� � � � � �

using an FFT. Complexity: ����� � �"!$# ���
2. For & 6 � � � l � � �-��� � � � l � compute

(4.2) � < � & � + ��� 6 � :=<�
� � ��"!� �

� � � ��^ � � �gf f� � � � >@< ��� � ���� � � � � + 6 3 � ���-� � � � � �
and

(4.3) � � � & � + � � 6 � :K<�
� � ��"!� �

� � � ��^�� � � f f� � � � �L��� �� � � � � ��+ 6 3 � ����� � � � � �
using the NFFT summation algorithm, and then set

� ��^	� � � 6n8 f f� � � � >@< A � f f� � � � �L� � � � � < � & � + � $ � � � �L^	� � � f f �� � � � >@< ��� � � �� �gf f��� � � >@< ��� � � � � � � & � + � $ � � � ��^ � � �gf f ���� � � �L� � � � F �
Complexity: � � � � l � �$� +�� �"!$# � +����

$
�
� $

� �"!$# ��� ��� �
3. For � 6 3 � ����� � � � � compute

(4.4)
�s ��� � � ��^�� � c�� � � 6 � � � �� ��: � � � � k l ,m�� � ��^���� ��	 6 3 � �-��� �p� � � � �

using an FFT. Complexity: ����� � �"!$# ���

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 83

The complexity estimates assume that the parameter & for the NFFT summation algo-
rithm is set to � . This seems to be a sensible choice that is also used in [14] for the numerical
experiments.

Note that the reasoning behind the complexity estimate for step 2 is not entirely straight-
forward — it will be given in the next section. The overall complexity of the algorithm is
� � +�� � � ! # � +�� �

$
�
� $

� �"!$# ��� � � � (where � � l � and � have been combined for clarity).
A point that merits discussion is the precomputation of the

� �
and

� 	��
. It is important

to do this as a precomputation, since the time required is ����� �� l � ��� — there are � points
for which to evaluate these functions, � � l � $ �

different values for & , and the evaluation of
the functions for

	 6 � � l � and
	 6 ��� l � $ � requires ����� � l � � applications of the three-term

recurrence. If these values were not precomputed, the time required to evaluate them would
dominate the running time of the algorithm.

Since the values of the
� � are only required for two different values of

	
, it would

seem preferable to use a recurrence over & instead of recurrence (2.2), which runs over
	

. A
recurrence over & does exist (see [12, Chapter 4, Section 3]), but it is unsuitable for numerical
work because it is unstable when applied forwards and prone to underflow when applied
backwards.

4.2. Complexity Estimate. We will now examine the asymptotic complexity of Algo-
rithm 4 and justify the complexity estimate of � � ��� l � � +�� �"!$# ��+����

$
�
� $

� � ! # ��� ��� �
for step 2 of the algorithm.

In this step, the NFFT summation algorithm (Algorithm 3) is applied ����� � l � � times.
The asymptotic complexity for this algorithm is ��� + & � ! # ��+ & � $ � � � $

���
$
�	� � � , and

in our application we have
� 6 � and & 6 � , yielding a complexity of ����+�� � ! # ��+����

$
�
� $

�	� � ��� . The variable � denotes the maximum number of nodes � � in an interval of
width

��
 � and was used in Section 3 to estimate the number of times the near field has to be
evaluated in step 4 of the algorithm.

What value should we assign to this variable? In the spherical filter algorithm, the � �
are Legendre nodes. The distances between Legendre nodes are proportional to

��
 � in the
middle of the interval � � �,�-��� and proportional to

��
 � � near the borders [8, Section 3.1].
Since � is the maximum number of nodes in an interval of width

��
 � , it would appear that
one should set � 6 � , giving a complexity estimate of ����� � � .

However, this estimate is too pessimistic because the node distance of
��
 � � only applies

quite close to the borders of the interval. Over most of the interval, the nodes are spaced
much further apart. As we will show, for the case of Legendre nodes � � , the number of
near-field evaluations performed in step 4 of the NFFT summation algorithm is bounded by
��� � � � ! # ��� , resulting in an overall complexity for the spherical filter of ����� � � ! # ��� . To
prove this, we will introduce the requirement that

� 2 <
�
� ; note that

� is always far less than
this value in practice. To simplify the proof, we will also require � to be an integer multiple
of 4.

THEOREM 4.1. If the NFFT summation algorithm (Algorithm 3) is used with Legen-
dre nodes � � (

	 6 �,� �-��� � � , with � an integer multiple of �), if
� 6 � and

� � 6 � �
(
	 6 ��� �-��� � �) and the parameters � and & satisfy

� 2 <
�
� , then the number of near-field

evaluations required in step 4 of Algorithm 3 is not greater than

� �
� � $ � � �&

#��� � $ ���� � a �{z � � $ �
�*a % �

ETNA
Kent State University
etna@mcs.kent.edu

84 Martin Böhme and Daniel Potts

Proof. In the following, we will use the notation � R to denote the number of elements
of the finite set R .

A near-field evaluation has to be carried out for all � � and � � with X � � � � � X 2 � . We
want to count the number of such (ordered) pairs, and we will call this number
 .

If we introduce an asymmetry between the � � and � � , we can restate the problem as
follows. For all � � , count the � � with � � � ��� � � � � � � $ � � , i.e.

 6 �����@< � � � � �*� � �nA-� � � �& � � � $ �& F�� �
We can split up this problem into three parts,

 < � �����@< � � � � �*� � �9A�� � � � � $ �& F��

 � � �����@< � � � � �*� � � A � � � �& � � � F��

 � � �����@< ��T-� � �*� � 6 � � [6 � �

and we have
 6
 < $
 � $
 � .
The � � are symmetric about the origin, i.e. if � � is a Legendre node, then � � � is also a

Legendre node. (This is obvious from the definition of the
� �

because
���

is either an even or
an odd polynomial.) Because of the symmetry of the � � , the summand that we obtain in
 <
for a certain � � is equal to the summand that we obtain in
 � for � � � . This means that we
have
 < $
 � 6 � �
 � �< $
 � �� � , where

 � �< � �����@<�
� � � �
� � � �*� � � A � � � � � $ �& F��

 � �� � �����@<�
� � � �
� � � �*� � � A � � � �& � � � F�� �

(Since we required � to be even, we have � � �6 3 for all
	

; this makes things easier, because
if there were an � � 6 3 , we would have to take care of the fact that it is symmetric to itself.)

If we consider that � $ � � , we see that
 � �� can also
be written as

 � �� 6 ��
� �@< � � � � �,� � 2 3�� � � �nA-� � � � � $ �& F�� �

If � � 2 3 , then � � � � � � � � � $ � � is only possible if � � 2 3 , and so we can add this

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 85

additional constraint without changing
 � �� :

 � �� 6 ��
� �?<� � � � �

� � � �,� � 2 3�� � � �oA-� �,� � � $ �& F��
� ��
� �?<� � � � �

� � � �,� � �oA-� �,� � � $ �& F�� 6
 � �< �
From
 < $
 � 6 � �
 � �< $
 � �� � and
 � �� �
 � �< we obtain the estimate

 < $
 � � � �
 � �< $
 � �< � 6 � �����?<� � � � �
� � � �*� � �oA-� � � � � $ �& F�� �

and assuming that the � � are ordered we have

(4.5)
 < $
 � � � ��� �����@< � � � � �*� � �9A�� � � � � $ �& F�� �
Before continuing further, we need the following inequality, which gives us an estimate

for the location of the � � :
(4.6) � � � � h !ji 	 � <

��
$ <
�
a � � � � � h !ji 	

�
$ <
�
a � � �

	 6 �,� �-��� � ���

(see [8, equation 3.1.1]).
Let us now turn to the problem of estimating how many � � lie in the interval ��� � � � � $ � � .

Let 5$� 	 � denote the smallest index � for which � ��>�� 0 � � $ � . If we constrain ourselves to	 � �
� , then our requirement

� 2 <
�
� implies that such an index always exists, i.e. that 5 � 	 �

is well-defined. We can see this if we consider that

� � 0 � h !�i � � ��
,�
�
$ ��
,� a 6 � h !�i � � ��
 � � ���� $ ��
 � � ���

a
by equation (4.6), which implies

� � 0 � h !ji � � ��
��� $ ��
�� a 6 � h !�i �� a 0 � h !�i �� a 6 �
� �

because �
0 � . On the other hand, � � � 3 because of

	 � �
� , and so � � 0 <

�
�
0 � � $ � .

By the definition of 5$� 	 � is it clear that the � � in the interval ��� � � � � $ � � are just those
for � 6 	 $ �,� ���-� � 	 $ 5 � 	 � � � , which means that there are exactly 5 � 	 � � � such � � . We
will construct an upper bound

�5 � 	 � 0 5 � 	 � (
	 6 �,� ����� � � �) for 5 � 	 � , and in this way we

immediately obtain an upper bound for the number of � � in ��� � � � � $ � � .
We set

(4.7)
�5 � 	 ��� 6 �� � 	 y z # � � � � � � � >@<� � � �KA iby{z � �;: G+� �

>@< a F :K< $ <
� % for

	 6 �,� ���-� � � �	 y z � �
�
� � � � � >@<� $ <

� � for
	 6 � � $ ��� ���-� � � � ,

ETNA
Kent State University
etna@mcs.kent.edu

86 Martin Böhme and Daniel Potts

and we will show that this is an upper bound for 5 � 	 � . Note that
<
� � �5$� 	 � � �

� for
	 6�,� ���-� � � � ; this property will be needed in the following.

Claiming that
�5$� 	 � 0 5 � 	 � is equivalent to claiming

(4.8) � �1>��� C � E 0 � � $ �&
because 5 � 	 � was defined as the smallest � for which � ��>�� 0 � � $ � . We will now investigate
under which conditions inequality (4.8) is satisfied. This inequality holds if

� h !ji # 	!$ �5 � 	 � � <
��

$ <
�

a % 0 � h !ji # 	
�
$ <
�
a % $ �&

(because of inequality (4.6)), and this is equivalent to

h !�i # 	!$ �5 � 	 � � <
��

$ <
�

a % � h !�i # 	
�
$ <
�
a % � � �& �

With h !�i � 8 � � h !�i � � � 6 � � iQy{z A � >��� F iQy z A � :��� F , this is equivalent to

� iQy z # � 	 $ �5 � 	 � � <
�� � $ � a % iQy z # �5 � 	 � � <

�� � $ � a % 0 �&
and this is satisfied if � iby{z # � 	!$ �5 � 	 � � <

�� � $ � a % � � �a � �5 � 	 � � <
�� � $ � a 0 �&

because iQy{z ��� � 0 �
�
�x � for 3 � � � x � and

<
� � �5 � 	 � � �

� . The above is equivalent to

(4.9)
�5 � 	 � 0 �& � � � $ �� � � # iby{z � 	!$ �5$� 	 � � <

�� � $ � a % :K< $ �� �
We will now show that

�5 � 	 � satisfies
�5 � 	 � 0 5 � 	 � , and we can do this either directly or

by showing that
�5 � 	 � satisfies inequality (4.9), which implies

�5 � 	 � 0 5 � 	 � . We will consider
two cases.
Case 1

	 6 �,� ���-� � � �
(This corresponds to the first case in (4.7), the definition of the

�5 � 	 � .)
Assume first that

�5 � 	 � 6 �
� . By inequality (4.6) we have

� � � � h !�i � �
�
$ <
�
a � � h !�i a � 6 � �

� � �
and we know by the symmetry of the � � that � ��� � >@< 0 3 . Thus � � $ � � � <

�
�
$<

�
�
6 3 � � ��� � >@< , so by setting � 6 �

�
$ � � 	 we have � �1>�� 0 � � $ � and thus5 � 	 � � � � �

�
6 �5 � 	 � .

Assume conversely that
�5 � 	 � 6 � � � � >@<� � � � A iQy{z � �;: G+� �

>@< a F :K< $ <
� . Because

	 � � �
and

�5 � 	 � � �
� , we have

� 	_$ �5 � 	 � � � and thus iQy{z � �;: G+� �
>@< a �Siby{z � �1>��� C � E : G+� �

>@< a
.

This means that
�5 � 	 � satisfies inequality (4.9).

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 87

Case 2
	 6 � � $ ��� ���-� � � � .
(This corresponds to the second case in (4.7).)
Again, assume first that

�5 � 	 � 6 �
� . By the symmetry of the � � we know that � � � 3 ,

and by inequality (4.6) we have

� � ��� � >?< 0 � h !ji � �� $ <
��

$ <
�
a 0 � h !�i �*a� 6 �

� � �
Thus � � $ � � <

�
� � � � ��� � >@< , so by setting � 6 � �� $ � � 	 we have � �1>�� 0 � � $ �

and thus 5$� 	 � � � � � �� $ � � �
� � $ � � 6 �

�
6 �5 � 	 � .

Assume conversely that
�5 � 	 � 6 � � � � >?<� $ <

� . Because
� � $ � � 	 � �

� and<
� � �5 � 	 � � �

� , we have
�
�
$
�� � � 	 $ �5 � 	 � � � �� and thus

<
�
�
6 iQy{z � x � � �iby{z � �1>��� C � E : G+� �

>@< a
. This means that

�5 � 	 � satisfies inequality (4.9).
We have thus proved that

�5 � 	 � is an upper bound for 5 � 	 � . Remembering that 5 � 	 � � � is the
number of � � in �L� � � � � $ � � , we have:

(4.10) � � � � �*� � �nA-� � � � � $ �& F�� � �5 � 	 � � �
� �� � � � � � >@<� � � ��A iby{z � �;: G+� �

>@< a F :K< � <
� for

	 6 �,� ����� � � �� � � � >@<� � <
� for

	 6 � � $ �,� ���-� � � � .

Using this, we can now estimate
 < $
 � (see equation (4.5)):

 < $
 � � � ��� �����@< � � � � �,� � �oA�� � � � � $ �& F�� � � �
 M $
 # �
where

 M � ��� �����@< �
�& � � � $ �� � � � # iQy{z � 	 � <

�� � $ � a % :K< � ����
and

 # �
��� ����� ��� � >@< � �& � � � $ �� � �� � �

It is obvious that
 # 6 � � � � � � � >@<� � <
� � 6 � � C � � >@< E<�� � � �

. Turning to
 M , we see that

 M 6 � �
� � $ � �� � � & $' # iQy{z � �� � $ � a % :K< $ ��� �����

�

# iQy z � 	 � <
�� � $ � a % :K< (* � � �

and we can estimate # iQy{z ��� � $ � a % :K< � a��� � � � � $ �
�*a 6 � � $ �

� � �
using iby{z � 0 �

�
�x � for 3 � � � x � . (We have � � �� �

>@< a � <� a because �
0 � .)

ETNA
Kent State University
etna@mcs.kent.edu

88 Martin Böhme and Daniel Potts

To estimate the sum R � # ��� ����
� A iby{z � �;: G+� �

>@< a F :K< , we note that it is the lower sum for an

integral: �
a� � $ � R � J ���.+�� G � ++ ��� G x���� ����+ �iby{z �
 � � J � �

���� ���,+ �iQy{z �
 �6 � �{z 	 � z � � � � �� � ���� ����+ 6 �{z 	 � z a � � � z 	 � z �*a
� �

$ �� �{z 	 � z a � � �{z �,a
� �

$ � � � z �� $ �{z � � $ ��,a 6 � z � � $ �
�,a �

With this, we obtain

 M � � �
� � $ � �� � � & # � � $ �

� � � $ � � $ ��
a � z � � $ �
�,a % � � �6 � �

� � $ � � �� � � & # �
� � � $ ��
a �{z � � $ �

�,a % � � �

and thus

 < $
 � � � �
 M $
 # � � � �
� � $ � � �� � &

�
� � � $ ��
a �{z � � $ �

�*a % $ � � � � � $ � �� & � �

� � �
� � $ � � �&

�

$ �
�
$ ���� �
a �{z � � $ �

�,a % � �6 � �
� � $ � � �&

#��� � $ �� � � a � z � � $ �
�,a % � ���

In all, we have

 6
 < $
 � $
 � 6
 < $
 � $ � � � �
� � $ � � �&

�� � $ �� � �
a � z � � $ �
�,a % �

If we set & 6 � , as was done in the spherical filter algorithm, then Lemma 4.1
tells us that step 4 of the NFFT summation algorithm (Algorithm 3) has a complex-
ity of ��� � � �"!$# ��� . This implies an overall complexity for the NFFT summation of
� � +�� �"!$# � +����

$
�
� $

� �"!$# ��� � � .
Since step 2 of the fast spherical filter (Algorithm 4) calls the NFFT summation ����� � l � �

times, it has a complexity of � � � � l � � ��+�� � ! # � +�� �
$
�
�Y$

� �"!$# ��� ��� � , as stated in Section
4.1.

5. Implementation and Numerical Experiments. In this section, we present an im-
plementation of the fast spherical filter algorithm. Numerical experiments will be performed
to test its accuracy and speed.

5.1. Implementation. The spherical filter algorithm and the auxiliary algorithms were
implemented in C++ using double-precision arithmetic. The linear algebra library CLAPACK
3.0 available from
http://www.netlib.org
was used to solve the eigenproblem that occurs in the computation of the Gauss-Legendre
nodes and weights and to solve the system of equations that occurs in the NFFT summation

http://www.netlib.org

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 89

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1

1e01

4 5 6 7 8 9 10 11 12
er

ro
r

a=p

FIG. 5.1. Predicted maximum error (dashed) and actual maximum error (solid) for the NFFT summation
algorithm (N=1024).

algorithm (Algorithm 3). The FFT library FFTW 2.1.3 available from
http://www.fftw.org
was used to evaluate the FFTs that occur in the various algorithms. The compiler used was
GCC 2.95.2 (all optimisations turned on). Numerical experiments were run under Linux
2.2.14 on a 550 MHz Pentium III with 256 MB of memory.

5.2. Numerical Experiments. We will first examine the errors that are generated by the
approximate algorithms. Besides testing the spherical filter as a whole, we also performed
tests on the NFFT summation algorithm in isolation to assess the accuracy of the error analy-
sis that was carried out in Section 3.1. To test the algorithm under the same conditions under
which it is used in the spherical filter, we set

� 6 � and & 6 � and used Legendre nodes
for the � � . We also replaced the NFFT with an NDFT to make sure we were measuring only
the errors occurring in the summation algorithm itself, since these are the errors that were
estimated in Section 3.1. The coefficients

� �
were set to

� � � 3 if
	 �6 �
,� and

� ��� � � �
.

This was intended to minimise the estimation error from Hölder’s inequality in equation (3.8)
and to allow us to focus on the accuracy of the estimate for X � � � �L� � X , which is the core part
of the error analysis and the place where the parameters � and " come into play.

Figure 5.1 shows the predicted and actual maximum errors for � 6 � 3 � � and � 6 " 6� � ����� ���;� . Both errors decay exponentially, but the predicted error is too pessimistic by a
factor of about

� 3 � and does not decay quite as quickly the actual error.
Next, we will examine the influence of the parameters � , " and

�
on the accuracy of the

spherical filter algorithm in its entirety. In [14], the authors recommend setting � 6 " 6 �
for " ��� and � 6 " ,

� 6 � for " � � .
Experiments were performed to assess whether these recommendations are also valid

in the context of the spherical filter. The relative error between the exact solution and the
approximate solution was computed as

� � Z�� � � � � � �
�
� � � � Z��Z�� � � � � Z � �

where Z � Z � is the Frobenius norm, �
��� � � � � s ��� � � �L^ � � c � ��� � :K<� � � O � � :=<� � � is the solu-

tion obtained by computing the sums in step 2 of Algorithm 4 exactly, and
�
�
� � � � �� �s � � � � �L^ � � c � � � � :K<� � � O � � :=<� � � is the approximate solution as computed by Algorithm 4. The

input data for the spherical filter were random values taken from � 3 ����� , the grid resolution
was � 6 � �;� , and the error was averaged over ten runs with different input data.

http://www.fftw.org

ETNA
Kent State University
etna@mcs.kent.edu

90 Martin Böhme and Daniel Potts

0
2

4
6

8
10

12

a
0

2
4

6
8

10
12

p

1e-10

1e-08

1e-06

1e-04

1e-02

0
2

4
6

8
10

12

a
0

2
4

6
8

10
12

m

1e-10

1e-08

1e-06

1e-04

1e-02

FIG. 5.2. Relative error � in the result of the fast spherical filter algorithm. Left: ��� ��� �����
� , ��� �
� ,
� ��� �
� . Right: �	� �
����� �
� with � � � , � �
� �
� .

0.001

0.01

0.1

1

10

100

1000

10000

10 100 1000

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

problem size (N)

0.01

0.1

1

10

100

1000

100 1000

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

problem size (N)

FIG. 5.3. Left: Execution times of the exact algorithm (plus signs) and the approximate algorithm (crosses).
The dashed lines show time complexities of ����� ��� and � � ��� � ; they intercept the plots at � � �
��� . Right:
Execution times for the individual steps in the fast spherical filter (Algorithm 4). The solid line plots the time taken
by step 2, the dashed line plots the time for steps 1 and 3 combined.

Figure 5.2 (left) shows the error on a logarithmic scale for
� � �

� " � �;�
, with

� 6 �;�
and + 6 �

to keep the error from the NFFT small. The behaviour of the error with varying �
and " agrees well with the theoretical prediction about the behaviour of the NFFT summation
algorithm. The figure supports the recommendation in [14] to set � 6 " .

Figure 5.2 (right) shows the error for
� � �

� � � � �
with " 6 � . For fixed � , the error

decreases exponentially in
�

, but only up to about
� 6 � � � ; therefore, we recommend

setting
� 6 � � � , since higher values do not seem to lead to higher precision.

Next, we will examine the execution time of Algorithm 4 compared to the algorithm that
is obtained by computing the sums in step 2 of Algorithm 4 exactly. For the approximate
algorithm, we set � 6 " 6 �

and
� 6 � , which, according to the results above, results in

a relative error of about
� � � 3 : � . Figure 5.3 (left) shows the execution times for the exact

algorithm and the approximate algorithm for different values of � . The two dashed lines
show time complexities of ����� � � and ����� � � . The ����� � � time complexity of the exact
algorithm is obvious, whereas the execution times of the approximate algorithm grow only
slightly faster than ������� � . For this reason, though the exact algorithm is faster for small � ,
the execution times are about equal for � 6
 � , and for large � , the approximate algorithm
is significantly faster — 142 seconds for � 6 � 3 � � compared to 1902 seconds for the exact
algorithm.

Finally, we will compare the individual times required by the three steps in Algorithm
4. Steps 1 and 3 compute FFTs, whereas step 2 uses the NFFT summation algorithm to

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 91

evaluate the Christoffel-Darboux formula. All three steps have an asymptotic complexity of
����� ���"!$# � � , but we are of course also interested in the hidden constant. Figure 5.3 (right)
shows two plots, one for the time required in step 2 (solid) and the other for the time required
in steps 1 and 3 combined (dashed). While both the FFT and the NFFT summation algorithm
show the same asymptotic behaviour, the latter is substantially more expensive to compute —
the times differ by a factor of about 40.

One small improvement that we can offer over the NFFT summation algorithm as pre-
sented in [14] is described in the following remark.

REMARK 5.1. If the definition of
� ��� � � � � � in the NFFT summation algorithm

is modified to
� ��� � � � � ��� , then the Fourier series approximation error

� � � �� � � � ��� is eliminated within the near field without incurring additional execution time;
only the precomputation time is increased slightly because

�����
is more expensive to evaluate

than
� �

.

5.3. Wavelet Decomposition. As remarked in Section 2.1, a wavelet decomposition on

the sphere can be computed using the spherical filter. The low-frequency component is simply�s � :K<
, and the wavelet component is

�t 6 �s � :K< � �s ��� � :K< .
Since the wavelet component usually has quite a small magnitude compared to the low-

frequency component, a lot of cancellation occurs in the subtraction
�s � :=< � �s ��� � :=< . This

can lead to numerical problems since a small relative error in
�s � :=<

or
�s ��� � :K< causes a much

larger relative error in the wavelet component
�t
. Special care should thus be taken in choosing

parameters for the approximate algorithms to guarantee sufficient accuracy.
To test the wavelet decomposition, the function

s��
���
� �L^ � c � � � �

if ^g�'� 3 �Qa
*�
�
� � $ � h !�i � ^ � :K< � � if ^g� � a
*�w�ba��

was used; this function was taken from [15]. If the function values are interpreted as distances
from the origin, then this function describes a half-sphere that is joined to a half-ellipsoid. It
is smooth everywhere except at the equator; this discontinuity should show up in the wavelet
component.

A wavelet decomposition was carried out on the function
s �
���
�

rotated around the � < axis
by an angle of

a

. (A grid resolution of � 6 � 3 � � was used, and the NFFT summation

parameters were set to � 6 " 6 � 3 and
� 6 �

. The modifications discussed in Remark 5.1
were applied.) The corresponding wavelet component is shown in Figure 5.4 (left).

As a second example, consider Figure 5.4 (right). This time, the function
s �
���
�

was ro-
tated around the � < axis by an angle of

a
,�
, causing the discontinuity to run through the

poles. (The parameters were the same as for the last image.) This example illustrates that
discontinuities at the poles are also resolved well by the wavelet decomposition. This under-
lines the usefulness of the property of uniform resolution which the band-limited functions
possess.

6. Conclusion. We have presented a fast algorithm for the spherical filter and for
wavelet decomposition on the sphere. The algorithm employs a fast approximate summa-
tion scheme, resulting in a sizeable reduction in execution times at high resolutions compared
to the straightforward approach. As we have proved, the algorithm has a time complexity
of ����� � � ! # ��� , which is a considerable improvement over the ����� � � complexity of the
straightforward algorithm. Numerical experiments show that the error produced by the ap-
proximate algorithm can be controlled well using various parameters, allowing the tradeoff
between accuracy and execution time to be tuned to the requirements of the problem at hand.

ETNA
Kent State University
etna@mcs.kent.edu

92 Martin Böhme and Daniel Potts

FIG. 5.4. Wavelet component (absolute values) of the function
���������

rotated around the �	� axis by an angle of
 ��� (left) and
 � � (right). The NFFT summation parameters were set to � ��� ���
� and � ��� , and the modified����� was used. (Grid resolution is � ���
����� .)

The algorithm is based on previous work by Jakob-Chien and Alpert [10] and Yarvin
and Rokhlin [22]. The Fast Multipole Methods (FMM) used in these approaches were re-
placed by a fast summation algorithm based on the Nonequispaced Fast Fourier Transform
(NFFT). It would be interesting to compare execution times for the FMM-based spherical
filter algorithms with the NFFT summation approach discussed here. In [14], a performance
comparison showed the NFFT-based summation algorithm to be slightly faster than the FMM
algorithm it was compared with. For this reason, we would expect the spherical filter algo-
rithm presented here to offer similar performance to FMM-based algorithms. In terms of
conceptual complexity and ease of implementation, the NFFT summation approach seems to
be simpler (and more pleasing mathematically) than the rather technical FMM algorithms.

Performance measurements show that the algorithm presented here behaves as its
����� � � ! # ��� complexity predicts. This makes it faster than the straightforward ����� � � al-
gorithm for �

0
 � . Of course, more efficient ����� � � algorithms exist, and these may still
have a slight performance advantage; for a comparison, see [21]. However, as grid resolution
increases, ������� � ! # ��� algorithms will become more and more attractive.

Acknowledgments. The authors thank the referees for their very helpful comments and
suggestions.

REFERENCES

[1] G. BEYLKIN, On the fast Fourier transform of functions with singularities, Appl. Comput. Harmon. Anal., 2
(1995), pp. 363 – 381.

[2] M. BÖHME, A fast algorithm for filtering and wavelet decomposition on the sphere. Diplomarbeit, Universität
zu Lübeck, Report B-02-08, 2002.

[3] J. P. BOYD, Chebyshev and Fourier Spectral Methods, Dover Press, New York, second ed., 2000.
[4] J. DRISCOLL AND D. HEALY, Computing Fourier transforms and convolutions on the 2–sphere, Adv. in

Appl. Math., 15 (1994), pp. 202 – 250.
[5] A. DUTT, M. GU, AND V. ROKHLIN, Fast algorithms for polynomial interpolation, integration and differen-

tiation, SIAM J. Numer. Anal., 33 (1996), pp. 1689 – 1711.
[6] A. DUTT AND V. ROKHLIN, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput., 14

(1993), no. 6, pp. 1368 – 1393.
[7] W. FREEDEN, T. GERVENS, AND M. SCHREINER, Constructive Approximation on the Sphere, Oxford Uni-

versity Press, Oxford, 1998.
[8] D. FUNARO, Polynomial Approximation of Differential Equations, Springer–Verlag, Berlin, 1992.
[9] D. HEALY, P. KOSTELEC, S. S. B. MOORE, AND D. ROCKMORE, FFTs for the 2-sphere – Improvements

and variations, J. Fourier Anal. Appl., 9 (2003).

ETNA
Kent State University
etna@mcs.kent.edu

A fast algorithm for filtering and wavelet decomposition on the sphere 93

[10] R. JAKOB-CHIEN AND B. K. ALPERT, A fast spherical filter with uniform resolution, J. Comput. Phys., 136
(1997), pp. 580 – 584.

[11] S. KUNIS AND D. POTTS, NFFT, Softwarepackage, C subroutine library. (2002)
http://www.math.uni-luebeck.de/potts/nfft.

[12] W. MAGNUS AND F. OBERHETTINGER, Formeln und Sätze für die speziellen Funktionen der mathematis-
chen Physik, Springer, Berlin, 1943.

[13] M. J. MOHLENKAMP, A fast transform for spherical harmonics, J. Fourier Anal. Appl., 5 (1999), pp. 159 –
184.

[14] D. POTTS AND G. STEIDL, Fast summation at nonequispaced knots by NFFTs, SIAM J. Sci. Comput., (to
appear).

[15] D. POTTS, G. STEIDL, AND M. TASCHE, Kernels of Spherical Harmonics and Spherical Frames, in Ad-
vanced Topics in Multivariate Approximation, F. Fontanella, K. Jetter, and P.-J. Laurent, eds., World
Scientific Publ., Singapore, 1996, pp. 287 – 301.

[16] , Fast and stable algorithms for discrete spherical Fourier transforms, Linear Algebra Appl., 275
(1998), pp. 433 – 450.

[17] , Fast Fourier transforms for nonequispaced data: A tutorial, in Modern Sampling Theory: Mathe-
matics and Applications, J. J. Benedetto and P. J. S. G. Ferreira, eds., Boston, 2001, Birkhäuser, pp. 247
– 270.

[18] G. STEIDL, A note on fast Fourier transforms for nonequispaced grids, Adv. Comput. Math., 9 (1998),
pp. 337 – 353.

[19] R. SUDA AND M. TAKAMI, A fast spherical harmonics transform algorithm, Math. Comp., 71 (2002), no.
238, pp. 703 – 715, (electronic).

[20] P. N. SWARZTRAUBER AND W. F. SPOTZ, Generalized discrete spherical harmonic transforms, J. Comput.
Phys., 159 (2000), pp. 213 – 230.

[21] , A performance comparison of associated Legendre projections, J. Comput. Phys., 168 (2001), pp. 339
– 355.

[22] N. YARVIN AND V. ROKHLIN, A generalized one-dimensional fast multipole method with application to
filtering of spherical harmonics, J. Comput. Phys., 147 (1998), pp. 549 – 609.

http://www.math.uni-luebeck.de/potts/nfft

