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Abstract: Organic Computing is beginning to provide computer systems with organic
and biological properties. We believe these systems will benefit from user interfaces
that integrate the user more tightly with the system and optimize the way the user
absorbs information. To this end, we propose gaze-contingent interactive displays that
monitor and guide the user’s gaze to make interaction with the system more effective
and enjoyable.

A vital prerequisite for such a system is the ability to predict one or several salient
locations that the user is likely to attend to in a dynamic display, with the goal of then
modifying the display to influence the user’s direction of gaze. In this paper, we present
a structure-tensor-based saliency measure and a novel algorithm for extracting salient
locations from saliency maps by using the mechanism of selective lateral inhibition.
We assess the quality of the extracted locations by comparing them to the locations
actually attended by test subjects.

1 Introduction

Organic Computing [Org] promises to simplify the process of configuring, maintaining
and interacting with computer systems. Providing a computer system with organic and
biological properties brings its behaviour closer to that of the human who interacts with
it. We believe this is an excellent opportunity for applying new interaction technologies to
fuse the user-computer system into an organic whole.

The display is an important part of most human-computer interfaces. So far, displays have
been passive – they do not react to the way they are viewed, nor can they influence the
way they are viewed. We propose the concept of a gaze-contingent interactive display that
works in conjunction with an eye-tracker to adjust itself to the way it is being viewed and
guide the user’s gaze to optimize the way in which the user absorbs information.

The potential uses for such gaze-contingent displays are far-reaching. They include auto-
mobile applications, where the driver’s gaze could be directed automatically towards an
obstacle when sensors detect the danger of a collision; training applications in fields where
a lot of visual information has to be absorbed and processed in a short amount of time (e.g.
flight simulators, radiology); and reading-support systems that could increase the speed
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and reduce the fatigue of reading as well as support persons with impaired vision [Ita].

If a system is to influence the user’s direction of gaze, it must be able to predict one or
several locations where the gaze will fall and then enhance or suppress the stimuli at those
locations depending on the desired direction of gaze. In this paper, we will present a
new method, based on the mechanism of selective lateral inhibition, for extracting salient
locations from a saliency map. We apply this method to various saliency measures based
on the structure tensor and assess the quality of the extracted locations by comparing them
to the locations actually attended by test subjects in two test videos. Note that our approach
takes dynamic aspects of the scene into account. While a lot of work has been done
on computing saliency in static images (e.g. [IK01]), only a few specialized algorithms
exist for dynamic saliency (e.g. [BMS02]). To our knowledge, no comprehensive study of
dynamic saliency has been performed.

Section 2 describes the saliency measures and the salient location extraction algorithm.
Section 3 presents the results obtained on two test video sequences. Section 4 summarizes
our findings and discusses avenues for future research.

2 Method

2.1 Saliency Map Generation

Our approach to saliency is based on the concept of intrinsic dimensionality and is imple-
mented using the structure tensor J, which is defined based on the image-intensity function
f(x, y, t):

J = w ∗
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where subscripts indicate partial derivatives and w is a spatial smoothing kernel that is
applied to the products of first-order derivatives. The intrinsic dimension (iD) of f is n if
n eigenvalues λi of J are non-zero. However, we derive the iD from the invariants of J,
which are

H = trace(J) = λ1 + λ2 + λ3

S = M11 + M22 + M33 = λ1λ2 + λ2λ3 + λ1λ3

K = det(J) = λ1λ2λ3,

where Mij are the minors of J obtained by eliminating row 4−i and column 4−j of J. The
iD is at least 1 if H 6= 0, at least 2 if S 6= 0, and 3 if K 6= 0. We will use these invariants
as saliency measures because the information at a location (x, y, t) is less redundant if
the iD is higher. The invariants of J are chosen since they are a straightforward method
for estimating the iD. To extract salient locations on different spatial and temporal scales,
we use a 4-level spatio-temporal Gaussian pyramid and compute the saliency measures on
each level. Such a pyramid is constructed from the image sequence by successive blurring
and subsampling.
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2.2 Salient location extraction

In previous work [BDM03, BKBM], we extracted salient locations from the saliency map
by applying a threshold of 0.5 of the maximum saliency in the map. For each connected
region with saliency values above the threshold, we extracted one salient location by deter-
mining the location with maximum saliency. The robustness of this approach proved to be
unsatisfactory. For example, if a small region in the saliency map has values substantially
higher than the rest of the map, all of the map except for the high-saliency region will be
suppressed.

For this reason, we developed a new, more robust approach, based on the mechanism of
“selective lateral inhibition”. The idea is that it does not make sense to have two salient
locations generated closer together than a certain distance. Therefore, when a location
has been extracted, we attenuate the saliency values of points around the location using a
Gaussian kernel to inhibit the generation of further salient locations close to the existing
location.

The following algorithm uses the mechanism of selective lateral inhibition to extract n

salient locations from the image in the order of decreasing saliency:

S1 = S
for i = 1 . . . n do

(xi, yi) := argmax
(x,y)

Si(x, y)

Si+1(x, y) :=











Si(x, y) · G(x − xi, y − yi) xi − W < x < xi + W and

yi − W < y < yi + W

Si(x, y) otherwise
end for

where S is the saliency measure (one of H , S or K), G(x, y) = 1−e−
x
2+y

2

2σ2 is an inverted
radial Gaussian and W is the width of a window chosen such that G ≈ 1 at the edges of
the window. We thus repeatedly find the point with maximum saliency and then attenuate
the saliency values around this point. The extracted locations are then just the (xi, yi).

3 Results

The quality of the salient locations was evaluated by comparing them to the locations
attended by test subjects on two video sequences. The first sequence (30 seconds, 25 fps,
360× 288 pixels) is synthetic, showing a square that moves from top left to bottom right.
In addition, two other squares pop in and out at different moments. The second sequence
(15 seconds, 25 fps, 352× 288 pixels) shows traffic flowing across an intersection.

The monitor used had an image size of 40 by 30 cm at a viewing distance of 50 cm,
spanning a horizontal field of view of about 44 degrees. Eye movements were recorded
at 240 Hz using a commercial videographic eye tracker. Recordings were made for four
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subjects (one recording each) on the first sequence and six subjects (three recordings each)
on the second sequence. In all cases, we show averages of the results for all subjects.

We extracted saccades from the eye movements made by the test subjects and, for each
saccade, computed the distance between the saccade target and the closest salient location.
To obtain these locations, the L most salient locations over all levels of the spatio-temporal
pyramid were extracted from the most recent video frame prior to the start of the saccade.
Of course, there is a certain delay between a stimulus and the saccade induced by it, and
our model takes this into account through the temporal filtering in the pyramid.

Figure 1 plots the average squared error (distance between saccade target and closest
salient location), normalized by dividing by the average squared saccade length. We plot
this error for various values of L. As an aid to assessing the salient locations generated
by the saliency measures H , S and K, we also plot the errors obtained using locations
distributed randomly over the image. The parameters in the salient-location extraction
algorithm were set to σ = 35 pixels and W = 100 pixels.
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Figure 1: Average relative error for the H , S and K saliency measures and random locations on the
synthetic sequence (left) and traffic scene (right). The horizontal axis plots L, the number of salient
locations.

We observe that for small L, the three saliency measures perform significantly better than
random locations. With increasing L, this difference decreases because the random loca-
tions begin to achieve a good coverage of the whole image, making it likely that one of the
random locations will lie close to the saccade target.

Comparing the three saliency measures H , S and K, we note that H tends to produce the
worst salient locations. On the synthetic sequence, S performs best, whereas on the traffic
sequence, K performs best. Note in particular that on the traffic sequence the H and S

measures start out with a very high error, becoming better than the random locations for
an L of 5 to 8, whereas the K locations are better than the random locations from the
start. This is because the sequence contains some high-frequency static content (a line
of trees), to which the H and S measures assign the highest saliency. The moving cars,
which the majority of saccades go to, only have salient locations generated for them after
several locations have been generated for the trees. This explains the sharp drop in both
curves when the first salient locations are generated for the moving cars. The K measure,
in contrast, is more sensitive to motion and assigns the highest saliency to the moving
cars. This explains the good performance of the K measure from the start. Based on these
results, we conclude that the S and K measures yield good salient locations.
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4 Conclusions and Outlook

We have presented three saliency measures and a salient location extraction algorithm
based on the mechanism of selective lateral inhibition and validated them against locations
actually attended by observers watching test videos. Our results show that the model
generates good predictions of where an observer will look in a dynamic scene.

Of the three structure-tensor-based saliency measures presented (H , S and K), we have
shown that S and K give better results than the H measure. This confirms that the higher
the intrinsic dimension, the higher the saliency. To obtain a definite result on the relative
quality of the S and K measures, we intend to perform more experiments on a greater
number of higher-resolution video sequences.

The next step then is to use the saliency information to suppress or enhance features in the
image in order to guide the user’s gaze along a given path. We believe that this type of
gaze-contingent interactive display will bring a new quality to human-machine interaction
and visual communication.
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