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ABSTRACT We present a model for predicting eye movements of an observer viewing dynamic scenes.
Supervised-learning techniques are used to tune the model for a particular observer. The approach builds
on earlier work [3], adding a saccade detector that is used to switch between two different algorithms for sac-
cade and inter-saccade prediction, respectively. This separation yields a significant improvement in prediction
quality. The predictor for saccade targets operates on a list of salient locations. These are obtained by evaluat-
ing the intrinsic dimension of the image using the structure tensor. Prediction of eye movements between two
saccades uses a model that operates on a limited history of locations attended in the past. Both models learn by
minimizing the quadratic prediction error using gradient descent. Our work is motivated by applications that
involve gaze-contingent interactive displays on which information is displayed as a function of gaze direction.
The approach therefore differs from standard approaches in two ways: (i) we deal with dynamic scenes, and (ii)
we provide means for adapting the model to a particular observer.

1 INTRODUCTION

Vision is a highly active process [9, 11, 12]. Our eyes
are constantly scanning the environment to centre
the fovea – the highest-resolution part of the retina
– over targets of interest. This sequence of eye move-
ments is called the scan-path [11]. Its shape depends
both on visual features of the scene and on search
strategies. These search strategies are mostly sub-
conscious and may vary among individuals.

For the purposes of this paper, we will distinguish
between the following three types of eye movements,
although there are several more [8]: (i) Saccade: the
eyes move rapidly to centre the fovea over a target
of interest; (ii) Fixation: eye movement is inhibited
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to keep the gaze on a target of interest; (iii) Smooth
Pursuit: the eyes track a moving object to keep it in
the same relative position on the fovea.

Work on modelling and predicting eye movements
has typically been carried out on static scenes [6];
only a few authors propose models for dynamic
scenes, e.g. [5]. We are interested in the latter prob-
lem because our research is motivated by applica-
tions that involve gaze-contingent displays and the
guiding of eye movements [1, 2]. Also, we believe that
top-down and random components have a greater in-
fluence on the scan-path for static scenes than for
dynamic scenes.

A gaze predictor trained for a particular individ-
ual by using supervised-learning techniques was first
described in [3]. This predictor consists of two com-
ponents. The first performs a prediction based on a
history of previously attended points, and the sec-



ond uses a list of salient features in the image that
have the potential to attract the observer’s attention.
These two components are then combined linearly to
obtain the predicted gaze location.

In this paper, we add a saccade detector to our
model and use it to switch between the two com-
ponents of the predictor instead of combining them
linearly. Our motivation for this is that fixation and
smooth pursuit on one hand and saccades on the
other are two separate processes with quite distinct
properties. The quality of our predictions should
therefore improve if we model these two processes
separately. Our results show that this is indeed the
case.

In addition, we discuss the suitability of structure-
tensor-based saliency information for saccade predic-
tion.

The layout of this paper is as follows. Section 2
describes the saccade detector and the two compo-
nents of the eye movement predictor as well as the
method used to extract salient points from an image
sequence. Section 3 presents the results obtained on
three test video sequences. Section 4 summarizes our
findings and discusses issues for future research.

2 METHOD

Our model for eye movements consists of three
components: two predictors for saccadic and non-
saccadic eye movements, which we will refer to as
the S predictor and NS predictor, and a saccade de-
tector that switches between the two predictors.

SACCADE DETECTION

We detect that a saccade has started when the speed
of the eye movement exceeds 160 degrees per sec-
ond. Since the eye has already travelled a certain
distance at this point, we search backwards in time
to find the first point where the speed exceeded a
lower threshold of 20 degrees per second and define
this to be the actual starting point of the saccade.
The end of a saccade is detected when the speed falls
back below 20 degrees per second. Using two sepa-
rate thresholds in this way makes the detector more
robust than methods that use a single threshold.

THE NS (NON-SACCADIC) PREDICTOR

The NS predictor is active in the time between two
saccades and uses a history of N locations attended

in the past to predict the gaze point in the next time
step. The predicted location X̂t = (x̂t, ŷt) is defined
by

X̂t = Xt−1 + At−1Pt−1.

Xt−1 is the location in the previous time step; Pt−1 =
(Xt−2−Xt−1, Xt−3−Xt−1, . . . , Xt−N −Xt−1)

T is the
history of locations attended in the past, relative to
the last known location Xt−1. The (N − 1) × 2 ma-
trix Pt−1 is mapped by the 1× (N − 1) matrix At−1

to a displacement vector that defines the shift of the
gaze point from the previous to the current time step.
The matrix At−1 is updated continuously using su-
pervised learning in each time step, i.e. we use an
incremental learning strategy.

In the case where the last saccade ended less than
N time steps ago, the gaze point history contains
a number of samples taken during the saccade and
a number of samples taken after the saccade ended.
The predictor is thus being fed with data generated
by two different processes, and our experience is that
this causes it to make unsatisfactory predictions.

For this reason, we apply the following modifica-
tion: Let tse be the time step when the last saccade
ended, i.e. Xtse

is the first sample that was classified
as not belonging to the saccade. If tse > t − N , we
set Pt−1 = (Xt−2−Xt−1, . . . , Xtse

−Xt−1, . . . , Xtse
−

Xt−1) – the samples from time steps before tse are
replaced by Xtse

.

Our learning procedure is as follows: We start with
A = (0, . . . , 0) and apply the following update rule
in each time step:

At = At−1 + εePT

t−1,

where ε is the learning rate and e = Xt − X̂t is the
prediction error. The learning rate is the distance by
which the algorithm walks down the error function
in the direction of the gradient ePT

t−1. We have ex-
perimented with different constant learning rates as
well as with rates that were decremented exponen-
tially. The best results, however, were obtained by
estimating the optimal learning rate in each iteration
and weighting this value with a constant α. In this
case, the learning rate depends on the current error
and is defined by

ε = α
ePTPeT

|PTPeT|
2
.

This expression is found by a line-search method that
minimizes the error on the current input.



THE S (SACCADIC) PREDICTOR

The S predictor is used when the saccade detector
detects the start of a saccade. It is fed with the gaze
position Xtss

at the start of the saccade and a number
of salient candidate locations extracted from the M

most current video frames. L candidate locations are
extracted per frame to give a total of M ·L locations.
Their positions relative to Xtss

are stored in the (M ·
L) × 2 matrix C = (XC

1 − Xtss
, . . . , XC

M ·L − Xtss
)T.

The predicted location X̂tse
for the end of the saccade

is given by

X̂tse
= Xtss

+ BC.

B is a 1×(M ·L) matrix that is updated continuously
using the same learning rule as the NS predictor,
i.e. once we know the point Xtse

where the saccade
actually ended, we update B using the rule

Bnew = B + εeCT,

where, again, ε is the learning rate and e = Xtse
−

X̂tse
is the prediction error. As before, the learning

rate is given by

ε = β
eCTCeT

|CTCeT|
2
,

where β is a constant that weights the learning rate.

EXTRACTION OF SALIENT FEATURES

As described in a previous paper [3], our approach
to saliency is based on the concept of intrinsic di-
mensionality that was introduced for images in [13]
and shown to be useful for modelling attention with
static images in [14]. The intrinsic dimension of a
signal at a particular location is the number of di-
rections in which the signal is locally non-constant.
It fulfils our requirement for an “alphabet” of image
changes that classifies a constant and static region
with low saliency, stationary edges and uniform re-
gions that change in time with intermediate saliency,
and popping regions that have spatial structure with
high saliency. We also note that i2D regions of im-
ages and image sequences (those regions where the
intrinsic dimension is at least 2) have been shown to
be unique, i.e. they fully specify the image [10].

The evaluation of the intrinsic dimension is pos-
sible within a geometric approach [4] and is imple-
mented here by using the structure tensor J, which
is well known in the computer-vision literature (see
e.g. [7]).

Based on the image-intensity function f(x, y, t),
the structure tensor J is defined as

J = w ∗





f2
x fxfy fxft

fxfy f2
y fyft

fxft fyft f2
t



 ,

where subscripts indicate partial derivatives and w
is a spatial smoothing kernel that is applied to the
products of first-order derivatives. The intrinsic di-
mension of f is n if n eigenvalues of J are non-zero.
However, we do not need to perform the eigenvalue
analysis of J since it is possible to derive the intrinsic
dimension from the invariants of J, which are

H =
1

3
trace(J) = λ1 + λ2 + λ3

S = |M11| + |M22| + |M33| = λ1λ2 + λ2λ3 + λ1λ3

K = |J| = λ1λ2λ3,

where Mij are the minors of J obtained by elimi-
nating row 4 − i and column 4 − j of J. The λi

are the eigenvalues of J. Since J is a positive def-
inite matrix, the intrinsic dimension is at least 1 if
H is non-zero, at least 2 if S is non-zero, and 3 if K

is non-zero. Currently, we use only the invariant S

for saliency. This seems the simplest choice because
S 6= 0 indicates an intrinsic dimension of at least 2,
suppressing regions of dimension less than 2, which
are redundant.

Candidate locations are obtained from S(x, y, t) by
applying a threshold θ. For each connected region
with S-values above the threshold, we determine the
location with maximum S and use it as a candidate
location.

To extract salient features on different spatial
and temporal scales, we construct a 4-level spatio-
temporal Gaussian pyramid from the image se-
quence. The saliency measure S is computed on
each level, yielding one list of candidate locations
per level. We then combine the candidates from all
levels, sort them by maximum saliency and retain
only the L highest-saliency locations.

3 RESULTS

The model was trained and tested on recordings of
eye movements that were made for three test video
sequences. The first one is synthetic, showing a
square that moves from top left to bottom right. In
addition, two other squares pop in and out at differ-
ent moments. The sequence runs for 30 seconds at
25 frames per second and has a resolution of 360 by



288 pixels. The second sequence is a movie trailer
showing real-life scenes; it runs for 80 seconds at 30
frames per second and has a resolution of 320 by
240 pixels. The third sequence shows traffic flowing
across an intersection; it runs for 15 seconds at 25
frames per second and has a resolution of 352 by 288
pixels.

The sequences were displayed on a monitor with
an image size of 40 by 30 cm at a viewing distance
of 50 cm, thus spanning a horizontal field of view of
about 44 degrees. Eye movements were recorded at
240 samples per second using the commercial video-
graphic eye tracker iViewX produced by SensoMo-
toric Instruments GmbH.

For each test sequence, recordings were made for a
number of test subjects: four subjects (one recording
each) for the first sequence; five subjects (one record-
ing each) for the second sequence; and six subjects
(three recordings each) for the third sequence. Un-
less stated otherwise, we show averages of the results
for all subjects, thus reducing the influence of out-
liers and variations among individuals.

NS PREDICTOR

As a baseline for evaluating the NS predictor, we
used a simple model defined by

X̂t = Xt−1,

i.e. the predicted gaze location for the current time
step is just the actual gaze location in the previous
time step. We also compared the NS model to the
M2 model described in [3]. M2 is mostly identical
to NS except that it does not prevent the mixing of
saccadic and non-saccadic data in its history buffer
since it does not contain a saccade detector.

In all tests, the constant α, which scales the learn-
ing rate, was set to α = 0.001. For the size of the his-
tory buffer N , we tested a range of values between 2
and 100; at 240 samples per second, this corresponds
to a range of approximately 8 to 400 milliseconds.

Figure 1 shows the average squared prediction er-
ror for the three models. On the first sequence, we
note that NS performs better than M1 for all history
lengths, with decreasing error for increasing history
length. On the second sequence, NS and M1 show
approximately the same error, independent of the
history length. This is because the first sequence
induces smooth pursuit movements in the test sub-
jects, whereas the subjects typically performed only
saccades and fixations on the second sequence. On
the third sequence, where the traffic flow provoked

smooth pursuit movements, we again see an im-
provement relative to M1 that increases with history
length.

Comparing NS and M2, we find that for small
N , they show roughly similar results, but for larger
N , the performance of M2 starts to degrade quite
rapidly. This shows that avoiding the mixing of sac-
cadic and non-saccadic data in the history buffer is
critical for achieving accuracy and robustness, pro-
viding a strong argument for the separation of the
two predictors. The strength of this effect increases
with the size of the history buffer.

Figure 4 shows the cumulated error over time rela-
tive to M1 for a single subject (M. B.) on the first se-
quence. The plot shows certain time intervals where
the NS error decreases steadily relative to M1, and
others where it remains constant. The phases that
show a steady decrease correspond to smooth pur-
suit movements made by the test subject. This
shows that NS has an advantage over M1 primarily
for smooth pursuit movements, whereas both models
perform similarly on fixations. This is to be expected
because the prediction that M1 makes is just an ide-
alized description of a fixation; the small errors that
it makes are due to small random movements that
the eyes make even during a fixation.

S PREDICTOR

To evaluate the S predictor, we computed the ratio
between the average squared prediction error and the
average squared saccade length. A ratio of less than
1 means that, on average, the predictions moved in
the right direction relative to the starting point of
the saccade.

As an aid for assessing the results, we also com-
puted the errors made by three other predictors. The
first simply chooses a random point in the image
as the predicted saccade target. Of course, we do
not expect this predictor to perform well, but we
include it as a baseline reference. The second predic-
tor chooses the location with the maximum saliency
among the M · L candidate locations. The third, a
hypothetical “ideal” predictor, always picks the can-
didate location that lies closest to the actual end
point of the saccade. The benefit of this “ideal” pre-
dictor is twofold: First, it gives us a bound for the
best prediction result we can expect on the available
information if we assume a predictor that selects one
of the candidate locations, without any averaging be-
tween locations. Second, it gives us a tool for evalu-
ating the quality of the candidate locations generated
by our saliency measure.
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Figure 1: Squared prediction error for the M1 (solid), M2 (dotted) and NS (dashed) predictors on the three
test sequences (synthetic sequence, movie trailer and traffic scene, from left to right). The horizontal
axis plots the history length in milliseconds.
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Figure 2: Ratio of the average squared prediction error and average squared saccade length for the three se-
quences (synthetic sequence, movie trailer and traffic scene, from left to right), for the S predictor
(dots), the “ideal” predictor (pluses), the “maximum saliency” predictor (crosses) and the random
predictor (solid line). The horizontal axis plots L, the number of salient features per frame; M , the
number of video frames from which features were extracted, was set to 1.
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Figure 3: Relative prediction error as in Figure 2 for the S predictor (dots), the “ideal” predictor (pluses), the
“maximum saliency” predictor (crosses) and the random predictor (solid line). The horizontal axis
plots M , the number of video frames; L = 10 salient features were extracted from each frame.



For all results presented here, the constant β,
which scales the learning rate, was set to β = 0.05;
we found that this value gave the best results. The
threshold θ for the saliency was set to 0.5 of the max-
imum in the current frame.

Figure 2 shows the results for the various predic-
tors for different numbers of features L extracted
from a single video frame. For all three sequences,
the S predictor achieves a relative error of less than
1 for large L, showing that, on the average, the pre-
dictions moved in the right direction relative to the
saccade starting point. The relative errors of 0.2 to
0.5 achieved by the “ideal” predictor show the po-
tential for improvement that exists with the given
saliency information.

The “maximum saliency” predictor yields results
comparable to the S predictor on the synthetic se-
quence but performs badly on the two natural se-
quences. We believe this is because the synthetic
sequence produces only a few salient candidate loca-
tions per frame, so that the most salient location has
a good chance of being the right choice. The natural
sequences, on the other hand, produce more candi-
date locations, and apparently there are more criteria
than magnitude of saliency alone that drive the sac-
cade target selection process. Note that the “max-
imum saliency” predictor actually performs worse
than the random predictor on the traffic sequence.
This is because the sequence contains some high-
frequency static content (a line of trees), to which
the S measure assigns the highest saliency, whereas
the majority of saccades go to the moving cars. The
“maximum saliency” predictor thus produces sys-
tematically wrong predictions, whereas the random
predictor “guesses right” from time to time.

Figure 3 shows the results for a varying number
of video frames M , with a constant number of fea-
tures L = 10 extracted from each frame. While the
“ideal” predictor shows the expected decrease in the
error with increasing M , the error for the S predictor
remains relatively constant. We conclude that the S
predictor does not learn the relative significance of
salient features with different “ages” effectively.

4 CONCLUSIONS AND

OUTLOOK

Using a saccade detector to switch between separate
predictors for saccadic and non-saccadic eye move-
ments improves prediction results significantly. The
rationale is that saccadic and non-saccadic eye move-
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Figure 4: Cumulated NS error over time relative to
M1 for a single subject on the first se-
quence. The horizontal axis plots elapsed
time in seconds.

ments are two distinct processes that should be mod-
elled separately.

Our current implementation of the saccade pre-
dictor allows several candidate locations to be mixed
or averaged together to give the predicted location.
This is reasonable if there are several candidate loca-
tions that lie close together; but in other cases, where
the candidate locations lie far apart, the mixing ef-
fect is not desirable. Indeed, the results of the pre-
dictor are not yet satisfactory – the predictor moves
in the right direction the majority of the time but
often underestimates saccade length due to the mix-
ing effect. With an average error of about 0.8 of the
average saccade length, we have covered only twenty
percent of the way to a perfect predictor.

Of course, the processes that determine saccade
targets in the human optical system probably do not
involve a linear mixing of candidate locations but
rather a selection of one of these locations. For this
reason, we see the current model only as a first step
and intend to experiment with other predictors that
select one of the candidate points as the most likely
saccade target, based on criteria such as the distance
to the candidate locations and the magnitude of the
S measure. We have demonstrated the potential of
this kind of predictor using an “ideal” predictor that
always picks the candidate location that is closest
to the actual saccade target. The good results ob-
tained using this “best case” analysis also demon-
strate the suitability of our saliency measure for gen-
erating candidate locations (note that the L ≤ 30
candidate locations selected in each frame represent
less than 0.04% of the possible pixel locations).

The saccade predictor that we present in this pa-
per predicts a saccade target given that we know a



saccade is taking place. Ultimately, though, we want
to be able to predict that a saccade will take place
before it starts. To do this, a predictor will need
to be able to respond to temporal transients in the
saliency measure, i.e. it needs to know the absolute
magnitude of the saliency measure for the candidate
locations. The predictor we have used so far only
knows the relative saliency of the candidates (implic-
itly, through their position in the candidate vector).

Finally, we are interested in training a model to
predict higher-level strategies and phenomena such
as inhibition-of-return (a bias that tends to inhibit
saccades to recently attended locations). To do this,
we suggest providing the model with a list of the last
few fixations and the durations for which they were
held.

We conclude that the nonlinear decoupling of pur-
suit and saccade predictors allows for a good pre-
diction during pursuit based on a linear model. For
saccade prediction, however, the nonlinear saliency
measure combined with a linear combination rule re-
mains unsatisfactory and may be improved by using
a nonlinear selection rule.
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