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Email: {boehme, haker, martinetz, barth}@inb.uni-luebeck.de

Abstract— We present a facial feature detector for time-of-flight
(TOF) cameras that extends previous work by combining a nose
detector based on geometric features with a face detector. The
goal is to prevent false detections outside the area of the face.
To detect the nose in the image, we first compute the geometric
features per pixel. We then augment these geometric features with
two additional features: The horizontal and vertical distance to
the most likely face detected by a cascade-of-boosted-ensembles
face detector. We use a very simple classifier based on an axis-
aligned bounding box in feature space; pixels whose feature
values fall within the box are classified as nose pixels, and
all other pixels are classified as “non-nose”. The extent of the
bounding box is learned on a labeled training set. Despite its
simiplicity, this detector already delivers satisfactory results on
the geometric features alone; adding the face detector improves
the equal error rate (EER) from 22.2% (without face detector)
to 10.4% (with face detector). (Note when comparing with our
previous results from [1] and [2] that, in contrast to this paper,
the test data used there did not contain scale variations.)

I. INTRODUCTION

In previous work, we have shown that the time-of-flight (TOF)
camera, a novel type of image sensor that delivers a range
map that is perfectly registered with an intensity image, can
be used to implement a detector for a prominent facial feature,
the nose, by combining a set of geometric features with a very
simple bounding-box classifier [1]–[3].
While this simple approach already yields satisfactory results,
it has its limitations, particularly if distance variations cause
the apparent size of the nose in the image to change, which
influences the values of the geometric features. To cope with
this, the detector has to accept a larger range of feature values
as “nose”, and this increases the number of false detections.
One way of coping with this problem is to modify the
geometric features to be scale-invariant by computing them
on the reconstructed surface of the object instead of on the
image [3], but this approach is not computationally efficient
enough to run at camera frame rates on current hardware.
In this paper, we will examine a different approach. To
improve the robustness of the detector to false detections, we
will augment it with a fast face detector based on a cascade
of boosted ensembles. This approach to face detection was
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originally described by Viola and Jones [4] and has since
gained enormous popularity for a wide range of applications.
As we have shown in [5], the Viola-Jones face detector, which
in its original formulation operates on intensity images, can
be extended to work on the combined range and intensity
data of a TOF camera. This not only increases the detection
performance but also reduces the running time of the face
detector.
An obvious way of combining the face detector with the nose
detector would be to reject any pixels that do not fall within
a detected face. However, this would have the disadvantage
that if the face is not detected (a false negative), the result
of the nose detector is always rejected, even if it is correct.
For this reason, we use a slightly different approach: For each
frame, we try to find a face; if no face is found, we determine
the most likely position of the face by taking the subregion
of the image that generated the strongest response in the face
detector. Then, for each pixel, we compute the horizontal and
vertical distance to the center of the face and use these values
as two additional features in addition to the geometric features.
The idea is that the nose is generally close to the center of the
face, i.e. pixels that are far away from the center of the face
should probably not be classified as “nose”.
We then apply a very simple bounding-box classifier to these
features. To train this classifier, we determine the minimum
and maximum feature values that are obtained for labeled nose
pixels in a set of training data. In this way, we define an axis-
aligned bounding box in feature space. To detect the nose in
new images, we compute the feature values for each pixel;
if they lie within the bounding box, the pixel is classified as
“nose”; otherwise, it is classified as ”non-nose”.
Once the location of the nose has been identified, it can be
used to implement a head tracker. The nose has already been
identified by several other authors as an important feature for
head tracking [6], [7], and we have already used the previous
version of our nose detector to implement a head tracker [2].
The rest of this paper is structured as follows: We will
first define the geometric features and present an overview
of the Viola-Jones face detector. We will then describe the
simple bounding-box classifier. Finally, we will evaluate the
performance of our nose detector on a database of face images
and quantify the improvement in detection performance that
is obtained using the face detector.



Fig. 1. Sample detection results on test images (top: intensity image, bottom: range map). The square indicates the detected face, the pixels marked in white
indicate detected nose pixels. The second image shows an example of false detections (on the chin).

II. METHOD

A. Geometric Features

The geometric features that we use for the nose detection
task, known as the generalized eccentricities, are related to
Gaussian curvature. We will briefly review their definition
here; for more detail, see [1].
We will define the generalized eccentricities on a special type
of surface known as the Monge patch or 2-1/2-D image. Such
surfaces have the property that the surface points (x, y, z) can
be defined by a function f of x and y, with z = f(x, y).
Because the TOF camera delivers both an intensity value
per pixel, we can define two such surfaces, where f(x, y)
is either the range or the intensity value corresponding to
a pixel position (x, y). (For more details on the geometrical
interpretation of images for image analysis, see [8] and [9].)
The generalized eccentricities εn, n = 0, 1, 2, . . . are now
defined as

ε2n = (cn(x, y) ∗ l(x, y))2 + (sn(x, y) ∗ l(x, y))2 , (1)

where cn and sn are filter kernels corresponding to transfer
functions Cn and Sn defined in terms of polar coordinates ρ
(spatial frequency) and θ (orientation):

Cn = inA(ρ) cos(nθ),

Sn = inA(ρ) sin(nθ),
(2)

where A(ρ) is a radial filter tuning function. If we set this to
A(ρ) = (2πρ)2, the generalized eccentricities ε0 and ε2 can be
used to distinguish between six basic surface types (see [9] for
details). In practice, A(ρ) is combined with a low-pass filter
to reduce the sensitivity of the features to noise.
In a TOF range map, background regions can contain a
relatively high amount of noise because they return little

light. To avoid unwanted spatial filter responses in these
regions, a threshold computed using Otsu’s method [10] was
applied to the intensity data to segment the foreground from
the background; the background was then set to a fixed
value in both the range map and the intensity image. This
prevents false detections on the background; the face detector
will additionally prevent false detections on the rest of the
foreground, such as the person’s torso.

B. Face Detector

Viola and Jones [4] introduced an approach to face detection
(also known as a cascade of boosted ensembles) that is
computationally efficient while achieving good classification
performance. The Viola-Jones face detector is based on a
cascade structure (see Fig. 2); early stages in the cascade
require little computation but can only identify subregions in
the image that are easily classified as nonfaces. These nonfaces
are rejected immediately, while all other subregions (true faces
and “hard” nonfaces) are passed on to the subsequent stages
in the cascade. The cascade stages become progressively more
sophisticated and are able to reject more and more nonfaces
until all that is left (ideally) are the faces. Because most
subregions in an image are very dissimilar to a face, the
average number of stages that are processed per subregion
and hence the average computational cost are low.
Each of the stages of the cascade consists of a classifier
trained using the AdaBoost algorithm on a set of features (so-
called Haar-like features) that can be evaluated quickly and in
constant time, independent of the size of the feature, using a
data structure known as an integral image.
The Viola-Jones face detector originally operates on intensity
images; as we have shown in [5], the detector can be extended
to use both intensity and range features on the data from a TOF
camera, and this detector has better classification performance
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Fig. 2. Cascade structure of the Viola-Jones face detector

and lower running time than a detector operating on either
type of data alone. In this paper, we will therefore use this
extended face detector based on intensity and range data.
One way of integrating the face detector with the nose detector
based on the geometric features would be to reject any
noses that fall outside the detected face region. However, this
approach has two disadvantages: (i) The nose is expected to
lie near the center of the face, so if a nose is detected near the
border of the face region, this is most likely a false detection
that we would like to be able to identify as such. (ii) If no face
is detected in the current frame (a false negative), a potentially
correct nose detection is always suppressed.
For these two reasons, we use an alternative approach. We
always find the most likely face subregion in the image by
choosing the subregion that passed the largest number of
stages in the cascade. In the case of a false negative, it is
still likely that the true face passed more cascade stages than
all nonface subregions. If more than one subregion passed the
same maximum number of stages, we use the decision value
of that stage to break ties.
When the most likely face has been found, we compute two
additional features for each pixel: The horizontal and vertical
distance of that pixel to the center of the detected face. Because
the nose will always lie at a similar position relative to the
center of the face, this will help the classifier to ignore false
detections that occur far from the center of the face.

C. Bounding-Box Classifier

The classifier is based on the features ε0 and ε2 (see Section II-
A), evaluated on both the range map and the intensity data,
as well as the horizontal and vertical distance from the center
of the detected face (see Section II-B). Because the feature
space spanned by ε0 and ε2 has a radial structure (see [9]),
we convert these features to polar coordinates r and φ before
passing them on to the classifier. For each pixel, we obtain
a feature vector F = (F1, . . . , F6), which contains the values
of r and φ for the range and intensity data as well as the
horizontal and vertical distance from the center of the face.
On a set of training images, we compute the feature vectors
obtained on the nose pixels (which were hand-labeled in the
images). For each feature, we compute the minimum and
maximum values Fmin j and Fmax j of that feature across
all of these nose pixels. In this way, we obtain vectors Fmin

and Fmax that define an axis-aligned bounding box in feature
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Fig. 3. ROC curves of detection rate versus false positive rate for the
combined nose detector (geometric features and face detector) and for the
detector based only on geometric features (no face detector). Detection rate
and false positive rate are evaluated on a per-image basis, i.e. an image is
counted as a detection if the nose is identified correctly and as a false positive
if at least one non-nose pixel is falsely classified as “nose”. Strictly speaking,
therefore, the curves are not standard ROC curves, but they represent the
information one is interested in for this application: How accurately does the
detector give the correct response per image.

space. A pixel is classified as “nose” if its feature values fall
within this bounding box and “non-nose” otherwise.
To control the tradeoff between false-positive rate and false-
negative rate, we can scale the box around its center, obtaining
new bounding box limits

F̂min = Fcentre − αFhalfwidth,

F̂max = Fcentre + αFhalfwidth,
(3)

where Fcentre = Fmin+Fmax
2 , Fhalfwidth = Fmax−Fmin

2 , and α
is the parameter that controls the scaling of the box.
We use this simple classifier because it can be evaluated
quickly and still yields relatively good results. We would
expect a more sophisticated classifier, such as an SVM, to
be superior; however, we are mainly interested in the effect of
the face detector on classification performance, and this effect
should remain fundamentally the same independent of the type
of classifier that is used.



III. RESULTS

The nose detector was evaluated on a database of images that
were acquired with a MESA SR3000 TOF camera [11]. The
images showed the head and upper torso of nine subjects; head
pose varied between images, and the images were taken with
the subjects at two different distances from the camera (60 cm
and 90 cm).
Because the face detector requires a much larger set of training
images, it was trained beforehand on a separate set of 5412
faces and 3486 nonface images [5]. This face detector was
then used to compute the face position features for the nose
detector.
The bounding-box classifier for the nose detector was then
trained on three of the subjects and tested on the remaining
six subjects (see Fig. 1 for some examples of detections on the
test set). We determined detection rate and false positive rate
on a per-image basis, i.e. an image is counted as a detection
if the nose is identified correctly (within five pixels from the
hand-labeled position) and as a false positive if at least one
non-nose pixel is falsely classified as “nose”. We believe that
this gives more meaningful and easily interpreted results than
computing these rates per pixel. Note that, by this definition,
an image can count as both a detection and a false positive.
Fig. 3 shows the ROC (receiver operating characteristic) curves
for the combined classifier (using both the geometric features
and the face detector) as well as for a classifier that used
only the geometric features. The combined classifier achieves a
markedly better classification performance, with an equal error
rate (EER) of 10.4%, compared to the EER of 22.2% for the
classifier that did not use the face detector. Also, note that the
detection rate for the classifier without the face detector drops
off quickly as the false positive rate is reduced below the EER
point; in contrast, the detection rate for the combined classifier
remains almost constant as the false positive rate reduces and
only drops off once the false positive rate reduces below
2%. This shows how the face detection component makes
the combined nose detector much more robust against false
positives. The combined classifier is at a slight disadvantage
for very high false positive rates, but this is a regime that is
not very interesting for practical applications.
A C++ implementation of the combined detector running on a
2.66 GHz Intel Core 2 Duo requires 18.8 ms per frame, which
is equivalent to just over 50 frames per second. The detector
is thus easily able to run at camera frame rates on current
hardware, making it suitable for interactive applications.
One possible application is for human-machine interaction;
for example, we have demonstrated how a TOF-camera-based

head tracker can be used for text entry [2]. Another application
is in the car, where a head tracker could be used to monitor
where the driver is looking and to trigger an alert if the driver’s
attention leaves the road for too long.

IV. CONCLUSION

We have shown how an existing nose detector based on
geometric features can be made substantially more robust
against false positives by combining it with a face detector.
In this combined detector, the face detector and the geometric
features play two complementary roles: The face detector
achieves a rough localization of the face and makes the
detector robust against false positives that occur far away
from the expected position of the nose; the geometric features
allow a precise localization of the nose within the face region.
Despite its increased complexity, the combined detector still
runs at camera frame rates on contemporary hardware.
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