A Software Framework for Simulating Eye Trackers

Martin Bohme* Michael Dorr'

Mathis Graw?*

Thomas Martinetz} Erhardt Barth¥

Institute for Neuro- and Bioinformatics
University of Liibeck, Germany

Abstract

We describe an open-source software framework that simulates
the measurements made using one or several cameras in a video-
oculographic eye tracker. The framework can be used to compare
objectively the performance of different eye tracking setups (num-
ber and placement of cameras and light sources) and gaze estima-
tion algorithms. We demonstrate the utility of the framework by
using it to compare two remote eye tracking methods, one using a
single camera, the other using two cameras.

CR Categories: 1.4.9 [Image Processing and Computer Vision]:
Applications; J.4 [Social and Behavioral Sciences]: Psychology

Keywords: eye tracking, gaze estimation, optical simulation

1 Introduction

Research on eye tracking has brought forth a host of different tech-
niques [Duchowski 2003]. Even if we restrict ourselves to video-
oculography, there are still many different approaches, which differ
in terms of the number and placement of cameras and light sources,
the image processing algorithms employed to find various features
in the image, and the gaze estimation algorithms used to determine
the point of regard or line of sight from these features (see e.g. Mo-
rimoto and Mimica [2005] for a review).

Eye tracking methods described in the literature usually report the
average accuracy of the system. However, it can be difficult to de-
termine why system A performs better than system B: Is it due to a
superior hardware setup (more light sources, more cameras, higher
image resolution or quality)? Is it due to more accurate image pro-
cessing? Is it due to a better gaze estimation algorithm or more
extensive calibration? Or is it simply due to the test procedure —
maybe the users of system B moved their heads more or covered a
greater range of gaze angles than those of system A?

If two systems have similar accuracy, is this because all of their
respective components perform equally well? Or could we obtain a
superior system by combining, say, the image processing of system
A with the gaze estimation of system B?

Say we have an existing system and wish to explore ways of im-
proving its performance — should we maybe add more light sources?
Or simply change the position of the existing light sources?

*e-mail: boehme @inb.uni-luebeck.de
te-mail: dorr@inb.uni-luebeck.de
fe-mail: grow @informatik.uni-luebeck.de
8¢-mail: martinetz@inb.uni-luebeck.de
Ye-mail: barth@inb.uni-luebeck.de

© ACM, 2008. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Eye Tracking Research & Applications
2008, Savannah, Georgia, 26-28 March 2008.
http://doi.acm.org/10.1145/1344471.1344529

In this paper, we argue that simulation is an ideal tool for answering
these and similar questions. While simulation has been used before
in eye tracking (see e.g. Shih, Wu and Liu [2000]), it has usually
had the role of a stopgap that is used to publish results before one
has been able to build the actual hardware. We believe simulation
is not just a second-class substitute for hardware but that it can be a
powerful tool for answering questions, such as those raised above,
that are difficult or impossible to investigate in hardware.

We will present a simulation framework based on an optical model
of the eye (see Section 2), which is used to determine the coordi-
nates of relevant features (pupil contour and corneal reflexes) in the
camera image. These features can then be used by a gaze estimation
algorithm to compute point of regard or line of sight. Standardized
tests over a defined range of head positions and gaze targets can
be run, and comparisons can be made with other gaze estimation
algorithms or hardware setups.

The framework is written in MATLAB (www .mathworks.com),
an interpreted language for numerical computing that facilitates
experimentation and allows gaze estimation algorithms to be ex-
pressed concisely. The source code is freely available at our web-
site, and we hope to encourage other researchers to use the frame-
work in their work and to expand it to suit their needs. For details
on obtaining and using the framework, see Section 3.

We demonstrate the simulation framework by using it to imple-
ment two approaches to remote eye tracking: a single-camera and
a two-camera approach (see Section 4). We investigate the two ap-
proaches individually to see how their accuracy is influenced by
factors such as camera noise or recalibration procedures as well
as comparing the two approaches (Section 5). To our knowledge,
such an analysis and comparison of different eye tracking methods
by simulation has not so far been published in the literature.

2 What the Framework Models

Most videographic eye trackers use the following processing steps:
image acquisition, using one or several cameras; image analysis, to
determine the position of relevant features in the image; gaze esti-
mation, where the point of regard or line of sight is computed from
the observed feature positions; and, optionally, a tracking compo-
nent that tracks the change in position of the image features from
frame to frame.

In the simulation framework, we have chosen not to simulate the
image analysis step explicitly. That is, instead of computing the
image seen by each camera (using 3D rendering algorithms) and
then extracting the position of relevant features from the image, we
directly compute the positions where these features will lie in the
camera image given the spatial positions of the eye, camera, and
lights. We simulate the effect of finite camera resolution and of
inaccuracies in the image analysis algorithms by perturbing each
image feature by a random offset.

Our main reason for leaving out the image analysis step is to in-
crease the speed of the simulation: Rendering and analyzing a full
camera image for every test condition would certainly not be prac-
ticable in a pure MATLAB implementation. Also, we believe that

hcornea

cornea

iris

Figure 1: Eye model used in the simulation framework. The mean-
ing of the various parameters is explained in Section 2.1.

gaze estimation is where most of the problems lie that are particu-
lar to eye tracking; in contrast, the image analysis step usually uses
proven existing techniques.

We will now describe in detail how the individual components of
the system are modelled. We will also describe the simplifications
we have made, i.e. which aspects of the system are not modelled.

2.1 Eye

To specify the relative positions of the components of the eye, we
use an eye coordinate system, whose origin lies at the centre of
rotation of the eyeball. Within this coordinate system, we model
the following components:

Cornea This is modelled as a spherical cap with a radius of
Tcornea, @ Centre of curvature Ccornea lying on the optical axis of
the eye, and a cap height of hcornea (see Figure 1). (The numerical
values for these parameters and others that follow are taken from
the standard eye in Boff and Lincoln [1988, Section 1.210].)

The corneal surface plays a role in two effects that are relevant for
eye tracking:

Reflection The cornea acts as a spherical mirror in which reflections
of the light sources — the so-called corneal reflexes (CRs) or glints —
are observed. Reflection at the surface of the cornea follows the law
of reflection (angle of incidence equals angle of reflection [Forsyth
and Ponce 2002], see Figure 2):

c—X 1-x

n = -n
lle =]l (1= x|

where 1 is the position of the light source, c is the position of
the camera (from where the reflection is observed), x is the po-
sition on the corneal surface where the ray is reflected, and n =

X=Ceornea__ jg the surface normal at x. In addition, c, 1, x, and
[[x—ccorneall2

Ccornea Must be coplanar. Together with the constraint that x should
lie on the surface of the cornea, i.e. ||X — Ccorneal|2 = Tcornea, ON
the half-sphere facing c, x is uniquely determined.

We find x by noting that it is constrained to the half-circle formed
by intersecting the corneal half-sphere facing ¢ with the plane given
by c, L, and ccornea. We use a one-dimensional root-finder to find
the solution for x that satisfies the reflection equation under these
constraints.

Figure 2: Reflection of a ray from the light source 1 at a point x on
the surface of the cornea towards the camera c. n: surface normal;
Ccornea- Centre of corneal curvature.

Figure 3: Refraction of a ray from the pupil boundary point b at a
point x on the surface of the cornea towards the camera c. n: sur-
face normal; Ccornea: centre of corneal curvature; 61,03 angles
of incident and refracted ray with the surface normal.

After the point of reflection x has been found, we check to see if
it actually lies within the boundaries of the cornea (i.e. within the
spherical cap). If not, no CR is generated.

Refraction The observed image of the pupil is distorted by refrac-
tion at the corneal surface (see Figure 3). This is governed by
Snell’s law [Forsyth and Ponce 2002]:

n1sinf; = nysinfs,

where 6 is the angle between the incident ray and the surface nor-
mal, 0 is the angle between the refracted ray and the surface nor-
mal, and n1 and no are the indices of refraction of the two materials.

Given a point b on the pupil border, we wish to find the location x
on the corneal surface where an incident ray from b is refracted in
such a way that it passes into the camera at c. Similar to the case of
reflection, we note that ¢, b, Ccornea and x are coplanar and that x
must lie on the half-sphere facing c, giving a unique solution for x.
Again, we use a one-dimensional root finder to find x; if the point
of refraction that is found does not lie within the boundaries of the
cornea, no image is generated for the pupil border point.

Pupil The pupil boundary is modelled as a circle of radius 7pupil
lying in a plane perpendicular to the optical axis with its centre at
Cpupil On the optical axis.

Visual axis Because the fovea is displaced temporally and
slightly upwards from the optical axis, the visual axis, i.e. the line
connecting the fixated point and the fovea via the nodal points, is
displaced relative to the optical axis. We denote the horizontal and
vertical angle of this displacement by ctfovea and Btovea. In our eye
model, we assume that there is only one nodal point and that it is co-
incident with Ccornea; this is sufficiently accurate for our purposes.

Rotation of the eyeball (Listing’s law) When the eye is rotated
out of the primary position (which coincides approximately with
the position where the eye is looking straight ahead), it undergoes a
certain amount of torsion. The exact amount of torsion is governed
by Listing’s law, which states that the torsion of the eyeball will be
that which is obtained by rotating around an axis that is perpendic-
ular to both the visual axis in the primary position and to the visual
axis in the new position [von Helmholtz 1910; Haustein 1989].

This is important because the eye is not rotationally symmetric
around the optical axis; as stated above, the fovea is offset from the
optical axis, and hence torsion will affect the relative orientation of
the optical and visual axes.

Mathematically, Listing’s law may be stated as follows:
vo - wW=vy -w=0,

where vy is the visual axis in the primary position, v is the visual
axis in the rotated position, and w is the direction of the axis around
which the rotation takes place.

Limitations of the model Because of the complex form and
function of the eye, an eye model must almost necessarily make
certain simplifications. The most important properties of the eye
that are relevant for eye tracking but are not captured in our model
are the following:

Limbus The limbus, i.e. the boundary between the cornea and the
sclera, is currently not modelled as an image feature.

Cornea shape The true shape of the cornea is closer to an ellipsoid
than to a sphere [Atchison and Smith 2000]; in spite of this, we
have used a spherical model in our current implementation because
it simplifies the optical calculations. However, users are cautioned
that this simplification may favour gaze estimation algorithms that
likewise model the cornea as a spherical surface, thus underestimat-
ing their gaze error; conversely, the framework may actually over-
estimate the gaze error for algorithms that use a more sophisticated
ellipsoidal cornea model (e.g. [Beymer and Flickner 2003]).

Refraction at the posterior cornea surface The cornea and the aque-
ous humour have slightly different refractive indices (Boff and Lin-
coln [1988] give values of 1.376 and 1.336, respectively). Because
of this, refraction occurs at the boundary between these two media,
additionally distorting the image of the pupil as viewed from the
outside. We do not model this effect because it is comparatively
small compared to the refraction at the air-cornea interface.

Occlusion by eyelids In real eye trackers, the eyelids may, in certain
situations, hide parts of the pupil boundary or of the limbus, or they
may obscure the CRs. This is an important effect, but it is hard to
model realistically because there are a number of factors affecting
eyelid position: the normal eyelid opening angle may vary between
individuals and between races; bright lighting may lead to squint-
ing; and vertical eye movements are accompanied by movements
of the eyelids, particularly the upper lid (a phenomenon known as
lid-eye coordination [Straube and Biittner 2007]). For this reason,
the framework does not currently model eyelids.

Pupil shape The pupil is not precisely circular in shape; further-
more, when the pupil contracts or expands, its shape may change,
and its centre may shift [Charlier et al. 1994]. None of these effects
are modelled in the simulation framework.

2.2 Cameras

The framework models cameras using the pinhole camera
model [Forsyth and Ponce 2002]. Each camera has two parame-
ters: The (horizontal and vertical) resolution in pixels, and the focal
length, i.e. the distance between the pinhole and the image plane.
By a convention that is common in computer vision (see e.g. Trucco
and Verri [1998]), we measure the focal length in pixels.

Pan-and-tilt cameras are simulated; however, camera movement
happens instantaneously, i.e. we do not simulate latency, inertia,
maximum pan and tilt speeds, and so on.

Image acquisition and image analysis are simulated by projecting
relevant feature points (points on the pupil contour and CRs) onto
the image plane. If a feature point falls outside the boundaries of
the simulated image sensor, it is marked as invalid. To simulate the
combined effects of finite image resolution, finite signal-to-noise
ratio, residual errors after camera calibration, and inaccuracies in
the image analysis step, each point can be perturbed by a random
vector. We call this random perturbation the feature position error.

Since many gaze estimation algorithms use the pupil centre as an
image feature, this point is also determined by fitting an ellipse to
the (perturbed) pupil boundary points in the image using the algo-
rithm of Halif and Flusser [1998] and taking the centre of the ellipse
as the pupil centre. (Note that because of perspective foreshorten-
ing, this point is not identical to the projection of the true pupil
centre — which cannot, of course, be observed directly — onto the
image plane.)

Limitations of the model The simulated camera does not ex-
hibit any lens distortion or other imperfections; an implementation
of the simulated algorithms on real cameras will often require the
internal parameters of the camera to be calibrated (see e.g. Forsyth
and Ponce [2002]). Furthermore, the simulated camera has infinite
depth of field; in reality, depth of field is one of the limiting factors
for head movement tolerance in remote eye trackers.

2.3 Lights

All lights are simulated as point light sources that radiate in all di-
rections.

Limitations of the model The simulation does not account for
the fact that real light sources have spatial extent and that the ap-
parent shape of the light source can change depending on the di-
rection from which it is viewed. In real systems, this effect means
that, when the light source is viewed from different directions, the
centroid of the light source, as determined by the image analysis
algorithms, can shift relative to the idealized point position of the
light source.

3 Using the Framework

The MATLAB source code for the simulation framework can
be downloaded at http://www.inb.uni-luebeck.de/
tools—-demos/et_simul.zip. The framework comes with
comprehensive documentation, so we will only briefly demonstrate
its use here.

function et = interpolate_calib(et, calib_data)
% Calculate pupil-CR-vector for each calib. point
for i=l:size(et.calib_points, 2)
pcr = calib_data{i}.camimg{1l}.pc—- ...
calib_data{i}.camimg{1l}.cr{1l};
X(:,1) = [1 pcr(l) pcr(2) pcr(l)xpcr(2)]1’;
end

% Find least-squares solution for coefficients of
% interpolation function
et.state.A=et.calib_points/X;

function gaze = interpolate_eval (et, camimg)
% Calculate pupil-CR-vector
pcr = camimg{l}.pc-camimg{1l}.cr{1l};

o

% Evaluate interpolation function
gaze=et.state.Ax[1 pcr(l) pcr(2) pcr(l)*pcr(2)]1’;

Figure 4: Implementation of a simple eye tracker with bilinear in-
terpolation.

The framework uses a pseudo-object-oriented style, i.e. MATLAB
structures are used to represent the various entities in the system
(eyes, lights, cameras), and methods are implemented as functions
that take the object they operate on as their first argument. The
name of a method starts with the name of the class of objects it
operates on (e.g. eye_look_at ()); methods that create objects
(“constructors”) have the suffix _make (e.g. eye_make ()).

An eye tracker is represented by a MATLAB structure that contains
the camera(s), the light source(s), and the positions of the calibra-
tion points. The eye tracking algorithms are implemented as a pair
of functions: (i) the calibration function, which is supplied with
the positions of the image features observed for each calibration
point and uses these to calibrate the eye tracker; and (ii) the gaze
estimation function, which is supplied with observed image feature
positions and uses these to compute the gaze position.

As an example, Figure 4 shows the calibration and evaluation func-
tion for a very simple eye tracker with one camera and one light
source that uses the pupil-CR difference vector technique (see e.g.
Morimoto and Mimica [2005]) with a bilinear interpolation func-
tion similar to the biquadratic function used for recalibration in
Section 4.4. Note how the built-in matrix and vector features of
MATLAB allow the algorithm to be expressed concisely.

4 Simulated Methods

We will use the simulation framework to simulate and compare two
different approaches to remote eye tracking. The first is a single-
camera method by Hennessey, Noureddin, and Lawrence [2006],
and the second is a multi-camera method by Shih, Wu, and
Liu [2000]; for brevity, we will refer to these methods as “Hen-
nessey’s method” and “Shih’s method”.

Unfortunately, we do not have the space to describe both methods
in detail, so we will only give the general principles; the reader is
referred to the original publications for a full description.

4.1 Hardware setup

One advantage of using a simulation is that we can use the same
hardware setup for both methods (except, of course, for the number
of cameras). This eliminates any influence that the setup might have
on the accuracy of the eye tracking.

The hardware setup is shown in Figure 5. We simulate a typical

Hennessey’s method Shih’s method

12 12
screen screen 1
11 1
é C1 C2
System component Coordinates
Screen rz=-0.2...0.2,
y =10.05...0.35,
z=0
Lights 1, = (0.2,0.05,0)
1, = (0.2,0.3,0)
Camera (Hennessey’s method) | ¢ = (0,0,0)
Cameras (Shih’s method) c1 =(—0.2,0,0)
C2 = (07 07 O)
Eye position volume (0,0.35,0.55) £ (&, %, 4)
w=025h=02d=02

Figure 5: Hardware setup and positions of system components (co-
ordinates in metres). The coordinate system is right-handed, with
the screen in the x-y-plane and the z-axis pointing towards the user.

human-computer interaction setup, where we wish to measure gaze
positions on a computer screen. The screen has a size of 40x30 cm,
corresponding approximately to the usable area of a 19-inch LCD
display. Two light sources are mounted on one of the vertical edges
of the screen (this is the setup used by Hennessey et al.). Depending
on the eye tracking method, one or two cameras are mounted below
the screen; each camera has a resolution of 1280x1024 pixels and a
focal length of 2000 pixels. This yields a wider field of view than
the cameras used in the two original papers; we made this modifi-
cation because it allows us to test the head movement tolerance of
the systems over a greater range of head positions.

Note the asymmetric camera placement for Shih’s method. This
is to ensure that the CRs remain visible across the whole range of
head positions and gaze directions. We will discuss this issue in
more detail in Section 5.

We define an eye position volume, i.e. an area within which we wish
to be able to track a user’s eye. This volume is box-shaped and is
centred around a point at a perpendicular distance of 55 cm from
the top centre of the monitor. The dimensions (width, height, and
depth) of the volume are 25x20x20 cm. Assuming an interocular
distance of 7 cm, this eye position volume allows head movements
of 18x20x20 cm if we wish to track both eyes. (However, all results
presented in the following are for a single eye only.) All simulated
cameras are oriented with their optical axes pointing towards the
centre of the eye position volume.

The table in Figure 5 gives the precise positions of the individual
system components. All positions are given in a right-handed coor-
dinate system that has its origin below the centre of the screen, with
the screen lying in the x-y-plane.

4.2 Hennessey’s method

Hennessey’s method uses a single camera and two or more light
sources. From the position of the CRs in the image, the method
computes the position of the corneal sphere in space; to obtain a
unique solution, the radius of corneal curvature needs to be known,
for which a population average is used. Then, for a number of pupil
contour points in the image, the method traces the corresponding
light rays back into space and refracts them at the corneal surface;
these refracted rays are then used to find the pupil centre by exploit-
ing the additional criterion that all points on the pupil contour are
a distance of 7ps = /rﬁ + rf, from the corneal centre, where rq
is the distance between the corneal centre and the pupil centre (set
to a population average), and 7, is the radius of the pupil (obtained
using the major axis of an ellipse fit to the pupil image, the distance
of the eye from the camera, and the camera model). The corneal
centre and pupil centre determine the optical axis of the eye, which
is intersected with the screen to find the point of regard. A recali-
bration procedure (see Section 4.4) is then used to correct for any
remaining errors (due for example to the offset between the optical
and visual axes or the use of population averages for the parameters
of the eye).

4.3 Shih’s method

Shih’s method uses two or more cameras and two or more light
sources. It exploits two geometrical properties of the multi-camera
setting to determine the direction of the optical axis without need-
ing any subject-dependent eye parameters. These two properties
are: (i) For each camera, the position of the CRs in the image con-
strains the possible positions of the cornea centre to a line in space.
By intersecting the lines obtained for two or more cameras, the ex-
act position of the cornea centre in space can be determined. (ii)
For each camera, the position of the cornea centre in space (now
known) together with the position of the pupil centre in the image
constrains the possible positions of the pupil in space to a plane.
Intersecting the planes obtained for two or more cameras yields a
line; because each of the planes also contained the corneal centre,
this line is the optical axis of the eye. As for Hennessey’s method,
we intersect with the screen to determine the point of regard, then
use a recalibration procedure to correct for any remaining errors.

4.4 Recalibration procedures

As noted above, the raw gaze estimates for both methods contain
residual errors on the order of several degrees, due for example to
the offset between the optical and visual axes, which neither method
takes into account explicitly.

These errors may be corrected by asking the subject to fixate a num-
ber of calibration targets; the difference between the known gaze
direction and the gaze direction estimated by the system is stored
and is used to correct subsequent measurements.

We refer to this type of procedure as a recalibration procedure be-
cause it takes an existing gaze estimate and applies a correction to
it. In this paper, we will compare three different types of recalibra-
tion procedure:

Weighted offsets The first recalibration procedure is the one
used by Hennessey et al.; for clarity, we will refer to it as the
“weighted offsets” procedure because we will also use other recal-
ibration procedures with Hennessey’s eye tracking method.

The weighted offsets procedure is based on the actual and estimated
gaze positions in screen coordinates. In the original paper, the cor-

ners of the screen are used as calibration targets, but the technique
can be used for calibration points at arbitrary positions.

We will refer to the calibration targets (or actual gaze positions) as
gi,t = 1,...,n, and the corresponding estimated gaze positions as
gi. We denote the error at each calibration point by e; = g; — &;.

In the subsequent measurement phase, we correct a raw gaze esti-
mate gest as follows: We first compute the distance d; of gest from
the estimated gaze position for each calibration point:

di = ||@est — &ill2, i=1,...,n.

We then obtain the corrected gaze estimate gcorr by adding a
weighted combination of the errors e; to gest:

n
Bcorr = Lest + Z wi€;,

=1
where the weights w; are inversely proportional to the distances d;:

1

W; = ——

d; Z;’L:I %

If any d; should be zero, we set the corresponding w; to one and
the remaining w; to zero.

Screen coordinate interpolation This method constructs a bi-
quadratic interpolation function that maps Zest = (Test, Yest) tO
Lcorr = (Icorh ycorr) as follows:

1

Test

Teorr) _ (@11 Qi2 ai3 a4 Qais Q16 Yest

Yeorr a21 Q22 G23 A4 (25 (26 Test Yest
2
Test
2
yest

where the parameters ai1,...,a2s are chosen using least squares
estimation on the calibration data.

Eye angle interpolation This method works in a similar way to
screen coordinate interpolation but acts on eye rotation angles in-
stead of screen coordinates. Theoretically, this type of recalibration
should compensate better for the angular offset between the visual
and optical axes than a recalibration in screen coordinates.

5 Experiments

Visibility of CRs As the eye rotates, the position of the CRs rela-
tive to the border of the cornea changes. Beyond a certain rotation
angle, a CR will move off the cornea. When this happens, the reflex
either moves onto the sclera or becomes invisible; in both cases, the
reflex becomes unsuitable for eye tracking (a scleral reflex does not
have the same properties as a corneal reflex because of the different
curvature of the sclera).

Because of this, we wish to validate that both CRs remain on the
cornea for all gaze directions and eye locations the eye tracker is
designed for. Consider Figure 6, which visualizes the visibility of
the CRs in the cameras of the Shih setup for two different head po-
sitions. The x- and y-axis of each plot correspond to the coordinates
of the gaze target. For each point in the plot, the shading indicates
how many CRs are visible when the eye fixates that location (white:
no glint visible; light grey: one glint visible; dark grey: two glints
visible). The rectangular inset marks the boundaries of the screen;

Eye position (0, 0.35, 0.55)
camera c1

camera Ca

-0.2
0.25 05 -05 -0.25 0 0.25 0.5

Eye position (0, 0.25, 0.45)
camera ci camera cz

-0.2 -0.2
05 -05 -0.25 0 0.25 0.5

-05 -0.25 0.25

Figure 6: Visibility of CRs as a function of gaze position in the Shih
setup (white: no CR visible; light grey: one CR visible; dark grey:
two CRs visible). The rectangular inset marks the boundaries of the
screen. (Note: Camera cz is identical to the single camera of the
Hennessey setup.)

to ensure that gaze tracking is possible across the whole screen, two
glints must be visible for all gaze positions within the screen.

Several factors affect CR visibility. First, compare the top row
(where the eye is at the centre of the eye position volume) to the
bottom row (where the eye is lower and closer to the screen). As
the eye moves closer to the screen, the region where two CRs are
visible shrinks. This is because the CRs move further apart on the
cornea, and hence the eye can rotate less before one of the CRs
moves off the cornea. As the eye moves down, the region where
two CRs are visible likewise moves down. This is because, as the
eye moves, the same gaze target requires different eye rotation an-
gles, thus moving the CRs closer to or further away from the border
of the cornea.

Now compare the two columns of Figure 6, corresponding to the
two cameras: The CR visibility region for camera cs is shifted to
the right compared to camera c;. This illustrates the reason for
the asymmetric placement of the cameras: For a camera positioned
a little further right than c2, one of the CRs would no longer be
visible when the user gazes at the top left corner of the screen.

Though we have only shown the results for two eye positions, we
have validated that both CRs remain visible for a finely spaced grid
of positions spanning the eye position volume. Because camera c2
of the Shih setup is identical to the single camera of the Hennessey
setup, this result holds for both setups.

Comparison of recalibration procedures We will now com-
pare the different recalibration procedures from Section 4.4 in terms
of accuracy and head movement tolerance. Figure 7 shows the gaze
estimation error of Hennessey’s method with the different recali-
bration procedures. To test the head movement tolerance, we varied
the distance of the observer from the screen; at each position, we
swept the gaze across a grid of screen positions and recorded the
mean gaze estimation error. The eye tracker was calibrated using a

—6— weighted offsets
—— screen coord. interpolation
—=a— eye angle interpolation

gaze error (deg)

0.45 0.5 0.55 0.6 0.65
distance (m)

&

gaze error (deg)

050 —6— weighted offsets
—— screen coord. interpolation
—=a— eye angle interpolation

0.45 0.5 0.55 0.6 0.65
distance (m)

Figure 7: Comparison of recalibration procedures for Hennessey’s
method. Top: without feature position error. Bottom: With feature
position error (noise level 0.5 pixels).

nine-point calibration pattern with the eye at the centre of the eye
position volume (distance z = 0.55 m).

We tested two different levels of feature position error: No error
(upper plot) and uniformly distributed error with a maximum mag-
nitude of 0.5 pixels on both coordinate axes (lower plot).

In the zero-error case, it is evident that all recalibration procedures
produce the smallest error at or near the calibration position. Mov-
ing away from this calibration position, the error for “weighted
offsets” and “screen coordinate interpolation” increases quickly to
reach more than one degree at z = 0.45 m. In contrast, the “eye
angle interpolation” procedure is affected much less by head move-
ment; this is to be expected, because most of the residual error be-
fore recalibration is due to the offset between the visual axis and the
optical axis, which is captured well by this type of recalibration.

Compare these results to the case with feature position error in
the lower plot. Not surprisingly, the gaze estimation error for all
methods has increased substantially; however, the relative order of
the recalibration procedures has also changed. In the presence of
feature position error, weighted offsets recalibration performs bet-
ter than the two interpolation techniques. It appears that weighted
offsets is more robust towards inaccuracies in the calibration data,
which are now also affected by noise.

Note that there are two effects at work that influence how the error
changes with distance. The first is the same that we observed in
the zero-error case: The recalibration error tends to be smallest at
the calibration position. The second effect is that as the distance of
the eye from the camera increases, the image of the eye becomes
smaller, so that a given feature position error in pixels leads to a
higher gaze error in degrees. Depending on the amount of feature
position error, one or the other of these effects will dominate.

As these results show, a method that is superior in theory (i.e. under
a zero-error assumption) may not always perform as well in prac-
tice. When error is present, weighted offsets recalibration seems to
be a good choice, at least compared to the alternatives tested here.
For this reason, we will use weighted offsets recalibration in all
further experiments, both for Hennessey’s and for Shih’s method.

18—
e 161
SR
3 1.4 —e— calibration pos. (0, 0.35, 0.55)
- 12r —<— new pos. (0, 0.25, 0.45)
o
£ 1r
[
° 0.8
© 0.6
(o)}

0.4 M

0.2r

0
-0.2 -0.1 0 0.1 0.2
relative error in rcornea and rq
351
—o— calibration pos. (0, 0.35, 0.55)
37 —<—new pos. (0, 0.25, 0.45)

D250
°
= 2r
<
© 15¢
()
<
S 1T

0.5

-0.2 -0.1 0 0.1 0.2
relative error in Tcornea

Figure 8: Effect of inaccuracies in the eye model parameters of
Hennessey’s method. Top: The parameters rcornea and rq of the
simulated eye are varied by the same ratio relative to the values
assumed by Hennessey’s method. Bottom: Only Tcornea IS varied
while rq is fixed at the assumed value.

Effect of inaccuracies in eye model parameters Hennessey’s
method uses population averages for two parameters of the eye:
The corneal curvature radius 7cornea and the distance rq between
corneal centre and pupil centre. An obvious question is how devia-
tions of the actual values for a specific user from the assumed values
will affect gaze estimation accuracy, and how well the recalibration
procedure can compensate for this.

Eysteinsson et al. [2002] found the standard deviation of 7cornea to
be about 0.6 mm, which corresponds to around 8%. Assuming a
normal distribution, this means that around 99.7% of the adult pop-
ulation have a corneal curvature that lies within 24% of the mean.

Assuming that rq has a similar distribution, we varied both param-
eters of the simulated eye from 25% below their assumed values to
25% above. Figure 8 shows the effect of this on the gaze estima-
tion error, both at the calibration position and at the new position
(0,0.25,0.45). (The feature position error was set to zero.)

The upper plot shows the effect of varying both parameters in uni-
son, which we believe is reasonable because most of the variation
should be due to differences in the size of the eyeball as a whole.
While parameter changes do have an effect, this is quite small com-
pared to the effect of head movement.

Because the relative deviation of both parameters will not be ex-
actly the same, we have also investigated the effect of varying just
one parameter. The results of varying only rcornea are shown in the
lower plot of Figure 8. (Varying only rq has a similar effect, so we
omit the corresponding plot.) Now, the effect on gaze estimation er-
ror is stronger and reaches almost two degrees for +25% of relative
parameter change. However, it is probably not realistic for rcornea
to change this much without r4 changing at all; for smaller changes
of £10%, gaze error increases by only about half a degree.

In summary, the use of population averages for the eye parameters
in Hennessey’s method seems justified because it is not a major
source of error compared to other factors such as head movement
or feature position error.

121

—6— Hennessey
t| —— Shih

gaze error (deg)
(o2}

0O 01 02 03 04 05 06 07 08 09 1
feature position error (deg)

Figure 9: Gaze estimation error of Hennessey’s and Shih’s method
as a function of feature position error.

251

N
T

gaze error (deg)
o =
Q - @&
I
LS @
>
=3
[}
&
2

0 . .)
0.45 0.5 0.55 0.6 0.65
distance(m)

Figure 10: Gaze estimation error of Hennessey’s and Shih’s
method as a function of eye position (feature position error 0.2 pix-
els).

Comparison of Shih’s and Hennessey’s methods We now
compare the gaze estimation accuracy of Shih’s and Hennessey’s
methods. In the tests that follow, we set the parameters 7cornea and
rq of the simulated eye to 15% and 5% below the values assumed
by Hennessey’s method. This is intended to simulate the deviations
that might be observed in a typical user; setting the parameters to
the precise values assumed by Hennessey’s method would put it at
an unfair advantage compared to Shih’s method.

Figure 9 shows the effect of various amounts of feature position
error on both methods. (Gaze estimation was performed at the
calibration position.) We note that the gaze estimation error for
both methods increases in an approximately linear fashion with fea-
ture position error. Interestingly, Hennessey’s method, which uses
only one camera, performs substantially better than Shih’s method,
which uses two. We speculate that the eye model parameters used
by Hennessey’s method may be the reason for this; even though the
values assumed for these parameters were not identical to the values
in the simulated eye, they still constitute additional prior knowledge
that provides a strong constraint on the position of the cornea and
pupil centre.

What is also apparent is that the high gaze estimation accuracies
achieved by current systems (half a degree to one degree) require
precise image analysis; according to the plot, to achieve an accuracy
of one degree, Hennessey’s method requires the position of image
features to be determined to within about 0.2 pixels. (Note that
these results cannot be compared directly to the accuracies reported
by Hennessey et al. because we used a simulated camera with a
larger field of view.)

Figure 10 shows the effect of head movement on the two methods
at a fixed feature position error of 0.2 pixels. Both methods com-
pensate for head movements fairly well, though slightly stronger
deviations are apparent towards the front of the eye position volume
for Hennessey’s method and towards the back for Shih’s method.

6 Discussion and Outlook

We hope this paper has shown how simulation of eye trackers al-
lows us to answer questions that are difficult or impossible to ana-
lyze on a physical implementation. Simulation allows us to get at
ground truths that we do not know in the real world; to manipulate
parameters that are hard to control in the real world; and to make
changes to the simulated hardware and algorithms and evaluate the
effects of these changes with ease. This ease of experimentation
may in turn prompt us to ask questions that we might never con-
sider if we had only the physical implementation to work with.

Another thing that simulation allows us to do is to compare dif-
ferent eye tracking methods under otherwise identical conditions.
We have performed such a comparison in this paper and obtained
a somewhat surprising result: The single-camera method of Hen-
nessey et al. [2006] is substantially more robust to feature position
error than the multi-camera method of Shih et al. [2000].

Of course, mathematical analysis is another important tool for un-
derstanding the properties of individual eye tracking methods as
well as the eye tracking problem in general; as examples of the
kind of insights that can be obtained through rigorous mathemat-
ical analysis, we cite the work of Guestrin and Eizenman [2006]
and Shih et al. [2000]. However, to remain tractable, a mathemati-
cal analysis must make certain simplifications; of course, the same
applies to simulation, but simulation can account for a range of fac-
tors with relative ease that would be much more difficult to grasp
analytically — an obvious example for this is camera noise.

That said, there are quite a number of factors of interest that are not
currently simulated in our software, such as the non-spherical shape
of the cornea, occlusion of the eye by the eyelids, or the effects of
glasses and contact lenses.

So how realistic is the simulation in its present form? We have no
definite answer to this, but if anything, the simulated results are
probably slightly optimistic, i.e. they underestimate the gaze error
that would be made by a real implementation. Given that the sim-
ulation already requires fairly low feature position errors to obtain
the kind of gaze accuracies achieved by existing eye tracker imple-
mentations, we are fairly confident that the simulation models the
major factors that affect gaze error in real systems.

An issue that we have sidestepped entirely in this paper is image
analysis. We have assumed throughout that features in the image
can be localized with a certain degree of accuracy; it would cer-
tainly be worthwhile to examine how different factors (camera res-
olution, signal-to-noise ratio, algorithms employed etc.) influence
this accuracy. Such an investigation would use synthetic eye im-
ages generated using 3D rendering software and post-processed to
introduce noise, model the effect of lens distortion, and so on. The
coordinates of the image features extracted by the image analysis
routines could then be compared against the known ground truth.

We encourage researchers to download our software, experiment
with it, apply it to their own eye tracker systems, make additions
and improvements to the underlying simulation framework, and to
share those improvements with the community in the spirit of open-
source software.

Acknowledgements

Our research has received funding from the European Commis-
sion within the project GazeCom (contract no. IST-C-033816) and
(for travel support) the Network of Excellence COGAIN (contract
no. IST-2003-511598) within the Information Society Technologies
(IST) priority of the 6th Framework Programme. This publication

reflects the views only of the authors; the the European Commis-
sion cannot be held responsible for any use which may be made of
the information contained therein.

References

ATCHISON, D. A., AND SMITH, G. 2000. Optics of the Human
Eye. Butterworth Heinemann, Oxford, UK.

BEYMER, D., AND FLICKNER, M. 2003. Eye gaze tracking using
an active stereo head. In Proceedings of Computer Vision and
Pattern Recognition (CVPR), vol. 2, 451-458.

BorF, K. R., AND LINCOLN, J. E. 1988. Engineering Data
Compendium: Human Perception and Performance. AAMRL,
Wright-Patterson AFB, OH.

CHARLIER, J. R., BEHAGUE, M., AND BUQUET, C. 1994. Shift
of the pupil center with pupil constriction. Investigative Oph-
thalmology and Visual Science 35, 4, 1278.

DucHowsKI, A. T. 2003. Eye Tracking Methodology: Theory
and Practice. Springer, New York.

EYSTEINSSON, T., JONASSON, F., SASAKI, H., ARNARSSON,
A., SVERRISSON, T., SASAKI, K., STEFANSSON, E., AND
THE REYKJAVIK EYE STUDY GROUP. 2002. Central corneal
thickness, radius of the corneal curvature and intraocular pres-
sure in normal subjects using non-contact techniques: Reykjavik
eye study. Acta Ophthalmologica Scandinavica 80, 11-15.

FORSYTH, D. A., AND PONCE, J. 2002. Computer Vision: A
Modern Approach. Prentice Hall.

GUESTRIN, E. D., AND EIZENMAN, M. 2006. General theory
of remote gaze estimation using the pupil center and corneal re-
flections. IEEE Transactions on Biomedical Engineering 53, 6,
1124-1133.

HALIR, R., AND FLUSSER, J. 1998. Numerically stable direct
least squares fitting of ellipses. In Proceedings of the 6th Inter-
national Conference in Central Europe on Computer Graphics,
Visualization and Interactive Digital Media (WSCG’98), vol. 1,
125-132.

HAUSTEIN, W. 1989. Considerations on Listing’s Law and the
primary position by means of a matrix description of eye position
control. Biological Cybernetics 60, 6, 411-420.

HENNESSEY, C., NOUREDDIN, B., AND LAWRENCE, P. 2006.
A single camera eye-gaze tracking system with free head mo-
tion. In Proceedings of Eye Tracking Research & Applications
(ETRA), 87-94.

MoRrIMOTO, C. H., AND MIMICA, M. R. M. 2005. Eye gaze
tracking techniques for interactive applications. Computer Vision
and Image Understanding 98, 1, 4-24.

SHIH, S.-W., WU, Y.-T., AND L1U, J. 2000. A calibration-free
gaze tracking technique. In Proceedings of the 15th International
Conference on Pattern Recognition, 201-204.

STRAUBE, A., AND BUTTNER, U. 2007. Neuro-Ophthalmology:
Neuronal Control of Eye Movements. Karger, Basel, Switzer-
land.

TRuccCO, E., AND VERRI, A. 1998. Introductory Techniques for
3-D Computer Vision. Prentice Hall.

VON HELMHOLTZ, H. 1910. Handbuch der physiologischen Optik,
3rd ed. Voss, Hamburg, Leipzig.

