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ON THE BOUNDEDNESS OF AN ITERATION INVOLVING
POINTS ON THE HYPERSPHERE

THOMAS BINDER AND THOMAS MARTINETZ

Abstract. For a finite set of points X on the unit hypersphere in R
d we

consider the iteration ui+1 = ui +χi, where χi is the point of X farthest from
ui. Restricting to the case where the origin is contained in the convex hull of
X we study the maximal length of ui. We give sharp upper bounds for the
length of ui independently of X . Precisely, this upper bound is infinity for
d ≥ 3 and

√
2 for d = 2.

1. Introduction and overview

Throughout this paper we will assume that d ≥ 2. By Rd we denote d-dimensional
Euclidean space, equipped with the standard scalar product 〈·, ·〉 and induced
norm || · ||. Moreover Sl(r) denotes the l-dimensional sphere of radius r, and
Sl := Sl(1). These spheres are always considered as embedded in R

d. Let
X = {x1, . . . , xn} ⊆ Sd−1 ⊆ R

d be a finite set on the unit hypersphere. With-
out mentioning this each time, we assume that the linear space spanned by the
elements of X equals Rd, i.e. d cannot be reduced. Consider the iteration

u0 := 0, ui+1 := ui + χi,

where i ∈ N0 and χi is the element of X which is farthest away from ui (which
happens to be argminx∈X〈x, ui〉). In case there are several elements of X at
maximal distance, just choose any of them. Due to this ambiguity there are
many iterations (ui)

∞
i=0 for a particular set X . By U(X) we denote the set of

vectors occurring in any of these iterations. Let

u∗(X) := sup { ‖u‖ | u ∈ U(X)}
be the greatest length reached during any of these iterations. The question which
values u∗(X) can take is simple and intriguing; it was brought up in connection
with the rate of convergence of an iterative approach of computing the smallest
enclosing ball of a point set, as described in the following.

Let Ỹ ⊆ R
d be a finite set of points. Then the smallest enclosing ball SEB(Ỹ ) of

Ỹ exists and is unique [Wel91]. We assume that Ỹ has at least two elements. By
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c ∈ R
d and R ∈ R

+ we denote center and radius of SEB(Ỹ ), respectively. Bădoiu
and Clarkson [BC03] introduced the following approximation of c:

c0 := 0, ci+1 := ci +
1

i+ 1
(ξi − ci), (1)

where i ∈ N and ξi is the element of Ỹ farthest away from ci. This approximation
(ci)

∞
i=0 is related to the iteration (ui)

∞
i=0 by Rui = i(ci − c) which implies ui+1 =

ui +
ξi−c
R

. The set X̃ connected to (ui)
∞
i=0 is given by

X̃ :=
{ 1

R
(y − c)

∣

∣ y ∈ Ỹ
}

. (2)

Unlike X the set X̃ can contain also points in the interior of the unit hypersphere.
Martinetz, Madany and Mota [MMM06] show that after a finite number of steps

all ξi will lie on the boundary of SEB(Ỹ ), i.e. ξi ∈ Y for all i ≥ i0, where Y ⊆ Ỹ

consists of all points on the surface of SEB(Ỹ ). This clarifies the correspondence.

While the approximation is extremely easy to use, the question of convergence
needs to be answered. In [BC03] it is shown that for i ∈ N

‖c− ci‖
R

≤ 1√
i
. (3)

[MMM06] aims at proving faster convergence than (3). In particular:

Theorem 1 ([MMM06], Theorem 2). Let Ỹ ⊆ R
d be a finite set with at least two

elements, and let X̃ be given by (2). Consider the approximation (1) of SEB(Ỹ ).
Then for all i ∈ N

‖c− ci‖
R

≤ u∗(X̃)

i
,

where the definition of u∗ has been extended to sets X̃ with points on or in the

interior of the unit hypersphere in a straightforward manner.

In view of Theorem 1, a finite value of u∗ or even a uniform upper bound inde-
pendent of X is desirable. Before stating our results on the latter, we need some
preparations.

The connection between (ci)
∞
i=0 and (ui)

∞
i=0 is further illustrated by

Proposition 2. For a finite set X ⊆ Sd−1 ⊆ R
d the following statements are

equivalent.

(i) SEB(X) = Sd−1,

(ii) The origin 0 ∈ R
d is contained in conv(X),

(iii) δ(X) ≥ 0, where

δ(X) := − max
‖u‖=1

min
x∈X

〈x, u〉.
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Proof. (i)⇐⇒(ii) is due to R. Seidel (cf. Lemma 1 in [FGK03]). (ii)⇐⇒(iii)
follows from the fact that a point p ∈ R

d lies in the convex hull of X if and only
if minx∈X〈x− p, u〉 ≤ 0 for all unit vectors u. �

X is called 0-balanced if 0 6∈ conv(X). For 1 ≤ b ≤ d − 1 the set X is called
b-balanced, if 0 is a point on the boundary of conv(X) and is contained in a
b-dimensional face, but not in a (b − 1)-dimensional face of conv(X). If 0 is an
inner point of conv(X), then X is called d-balanced or balanced. Having the same
balance property is an equivalence relation on all sets X under consideration.

Note that δ(X) is strictly positive if and only ifX is d-balanced, and Proposition 2
characterizes all sets X that are not 0-balanced.

Theorem 3. Let X be a finite set of unit vectors in R
d.

(i) If X is 0-balanced, then u∗(X) = ∞.

(ii) If X is b-balanced for 0 < b ≤ d, then u∗(X) <∞.

Proof. Again, (ii) is shown in [MMM06]; it remains to prove (i). Since conv(X)
is compact, there is a point T ∈ conv(X) which is closest to the origin. Let

ǫ := |OT |. Clearly ||χj|| ≥ ǫ for all j ∈ N0, therefore ||ui|| = ||∑i−1
j=0 χj || ≥ iǫ is

an unbounded sequence for i ∈ N0. �

For 0 ≤ b ≤ d we define

u∗∗d,b := sup { u∗(X) |X ⊆ Sd−1 ⊆ R
d finite and b-balanced}.

Our goal is to compute u∗∗d,b for all possible d and b.

Theorem 4. For d = 2 we have u∗∗2,0 = ∞, while u∗∗2,1 = u∗∗2,2 =
√
2.

Clearly, for d = 2, X = {x1, x2}, x1 = (0, 1), x2 = (1, 0) the iteration u0 = 0,
u1 = x1, u2 = x1 + x2 is valid and ‖u2‖ =

√
2. This manifest example represents

one inequality of the proof of Theorem 4; the missing inequality is shown in
Section 2.

Theorem 5. For d ≥ 3 we have u∗∗d,b = ∞ for all 0 ≤ b ≤ d.

Proof. For any dimension d we have u∗∗d,0 = ∞ from Theorem 3 (i). For 1 ≤ b ≤
d − 2 the assertion follows from the example discussed in Proposition 13 below.
For b = d and b = d− 1 use Proposition 15 (ii) and (iii), respectively. �

Although the balance property of X is a suggesting geometric property, it does
not seem to give a finer prediction for u∗(X) than δ(X). In the balanced case,
0 < δ(X) determines a finite upper bound for u∗(X) as shown in [MMM06],
namely

‖ui‖ ≤ 1

2δ(X)
+ 1, i ∈ N0.
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With respect to the faster convergence we have an immediate result for d = 2:

Corollary 6. Let Ỹ ⊆ R
2 be a finite set with at least two elements. Assume that

all elements of Ỹ lie on the boundary of SEB(Ỹ ). Then ‖c− ci‖ ≤
√
2R
i

for all

i ∈ N.

2. Proof for d = 2

Let e1, e2 denote the canonical orthonormal basis of R2. Each xj ∈ X , 1 ≤ j ≤ n

can be written as
xj = cos(φj) e1 + sin(φj) e2 = [1;φj],

where [r̃; φ̃] indicates a point in standard polar coordinates on R
2. Similarly, for

j ∈ N we write

χj = cos(ψj) e1 + sin(ψj) e2 = [1;ψj],

uj = λj
(

cos(αj) e1 + sin(αj) e2
)

= [λj;αj ].

All argument angles are real numbers taken modulo 2π. The freedom in rotation is
fixed as follows. Assume that x1, . . . , xn are numbered counterclockwise, starting
at φ1 = 2π − φ, ending at φn = π + φ, such that there is a gap with angle size
π − 2φ between the two neighboring elements x1, xn of X is symmetric about
the e2-axis. We call this a parametrization of X with base gap of size π − 2φ,
where φ ∈ [0, π

2
). The choice of φ indicates that we restrict to the balanced cases.

Define φ̄ := π
6
− φ. For W ⊆ R

2 and k = 1, . . . , n let Tk(W ) denote the set
obtained by translation of W by xk. The set T is defined by

T :=
{

[r̃; φ̃] ∈ R
2
∣

∣ r̃ ∈ (1,
√
2 ] and φ̃ ∈

(π

2
− φ̄,

π

2
+ φ̄

)}

.

Moreover, we define three subsets of R2 by

R := {[r̃; φ̃] | r̃ > 0 and φ̃ ∈ (π − φ, 2π + φ)},
Q := {(a, b) | |a| tanφ ≤ b ≤ |a| tanφ+ λmin},
P := {u ∈ R

2 | ‖u‖ ≤ 1} \ (R ∪Q).
Here λmin :=

√
3

2 cosφ
is the length of the intersection of Q with the e2-axis. Figure 1

gives an illustration of this situation; [FIG] gives an animated version where φ
varies in time.

Lemma 7. Let X be a finite subset of S1 ⊆ R
2, parametrized as above. Suppose

that φ ∈ [0, π
6
), i.e. the size of the base gap is greater than 2

3
π. Define the set V

by

V := P ∪ Tn(P+) ∪ T1(P
−) ∪ Q ∪ R,

where P+, P− denote the elements of P with non-negative and non-positive e1-

coordinate, respectively. Then uj ∈ V for all j ∈ N0.
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Figure 1. An arbitrary set X ⊆ S1 ⊆ R
2 given in base gap

parametrization. Only x1 and xn are displayed, the remaining el-
ements of X are above x1 and xn. Recall that φ + φ̄ = π

6
. R is

the open set bounded from above by the lower dashed lines. Q is
the closed set between the dashed lines. The set P is given by the
central hatched area. For small values of φ, T1(P

−) \ (Q ∪ R) and
Tn(P+) \ (Q ∪R) are nonempty.

e1

e2

x1xn

T1(P
−)Tn(P+)

T

P = P+ ∪ P−
Q

R

φ
φφ

φ

φ̄φ̄

Proof. Clearly u0 ∈ V . By induction, assume that uj ∈ V for some j ∈ N. The
proof is complete if all of the following claims are shown to be true.

(a) If uj ∈ Q, then uj+1 ∈ Q ∪R.
(b) If uj ∈ P , then uj+1 ∈ Tn(P+) ∪ T1(P

−).
(c) If uj ∈ R, then uj+1 ∈ P ∪Q ∪R.
(d) If uj ∈ Tn(P+), then uj+1 ∈ P ∪Q ∪ R.
(e) If uj ∈ T1(P

−), then uj+1 ∈ P ∪Q ∪R.

If uj ∈ P ∪ Q, then x1 or xn is chosen in the next step of the iteration, i.e.
χj ∈ {x1, xn}. Therefore, (b) is trivial. Also (a) is true since T1(Q) and Tn(Q)
have no parts above Q. If (d) is true then (e) holds by symmetry. Hence it
suffices to show (c) and (d).
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Claim (c). Suppose that uj ∈ R is arbitrarily fixed. If αj ∈ (π+φ, 2π−φ), then
from Figure 1 it is clear that translation of the part of R with such argument αj
by an arbitrary unit vector stays inside P ∪Q ∪R.
Otherwise, αj ∈ [−φ, φ) or αj ∈ (π−φ, π+φ], where the second part follows from
the first by symmetry. Restricting to α := αj ∈ [−φ, φ) and setting λ := λj > 0,
ψ := ψj ∈ [π + 2α− φ, π + φ] we can write

uj+1 = (λ cosα + cosψ)e1 + (λ sinα + sinψ)e2.

The range of ψ follows since the center of the interval of possible values for ψ is
α+ π, it extends by π+ φ− (α+ π) = φ−α to both sides. We continue to work
on two cases.

(c.i) The e1-coordinate of uj+1 is non-negative. In this case sin(ψ − φ) ≤
√
3
2

and λ sin(φ− α) ≥ 0. Since equality does not hold simultaneously,

0 < λ sin(φ− α) + sin(φ− ψ) +

√
3

2
.

Expanding and rearranging the trigonometric terms, substituting λmin =√
3

2 cosφ
(which denotes the length of the intersection of Q with the e2-axis)

and dividing by cos φ > 0 we get

(λ sinα + sinψ)− λmin < tanφ (λ cosα + cosψ).

This shows that uj+1 falls below the line bounding Q from above. Hence
uj+1 ∈ Q ∪R.

(c.ii) The e1-coordinate of uj+1 is negative, i.e. λ < − cosψ
cosα

. If we knew the
inequality

cosψ

cosα
≥ 2 cos(ψ − α), (4)

then λ ≤ −2 cos(ψ−α) would follow using the inequality for λ. We would
arrive at

‖uj+1‖2 = 1 + λ2 + 2λ cos(ψ − α) ≤ 1,

which would show that uj+1 ∈ P ∪ Q ∪ R. Hence we are left with (4).

First consider the case α ≥ 0. Then 2 cos(ψ − α) < −
√
3 and

cosψ

cosα
≥ − 1

cosα
> − 2√

3
,

hence (4) is true for this case. Now restrict to the case when α < 0. Then
2 cos(ψ − α) < −1 and

cosψ

cosα
≥ −cos(π + 2α− φ)

cosα
> −1,

hence (4) is true.
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Claim (d). From the assumption there is some v = [λ; δ] ∈ P+ with
√
3

2 sin(δ−φ) ≤
λ ≤ 1 and δ ∈ [π

2
− φ̄, π

2
] such that

uj = Tnv = (λ cos δ − cosφ)e1 + (λ sin δ − sinφ)e2.

We are done if we show that x1 is chosen for the next step of the iteration, i.e.
χj = x1. In this case

uj+1 = λ cos δe1 + (λ sin δ − 2 sinφ)e2.

uj+1 has a smaller e2-coordinate than the original point v ∈ P+, hence uj+1 ∈
R ∪Q ∪ P+. We are left with the mentioned claim and show that the argument
angle αj of uj satisfies αj ≤ π − φ. From

λ sin(φ+ δ) ≥
√
3

2

sin(φ+ δ)

sin(δ − φ)
≥

√
3

2
> sin 2φ

we get

(λ cos δ − cosφ) sinφ ≥ − cosφ(λ sin δ − sinφ).

Since λ sin δ − sinφ > 0 and sin φ ≥ 0 division by these terms does not change
the type of inequality. We obtain

cotαj =
λ cos δ − cos φ

λ sin δ − sin φ
≥ − cotφ = cot(π − φ),

which proves the desired fact. �

Lemma 8. In the situation of Lemma 7 we have V ∩ T = ∅.

Proof. By construction (P ∪Q∪R)∩T = ∅. By symmetry it is therefore enough
to show that Tn(P+)∩T = ∅. As before, let u = [λ; δ] ∈ P+, where δ ∈ [π

2
− φ̄, π

2
]

and
√
3

2 sin(δ−φ) ≤ λ ≤ 1. Then

Tnu = (λ cos δ − cosφ)e1 + (λ sin δ − sinφ)e2.

Starting with

λ cos(δ − φ̄) ≤ cos(δ − φ̄) ≤
√
3

2
≤ cos(φ− φ̄),

expanding and dividing by λ sin δ − sin φ > 0 and by cos φ̄ > 0 we get

cot arg Tnu =
λ cos δ − cosφ

λ sin δ − sin φ
≤ − tan φ̄ = cot

(π

2
+ φ̄

)

,

which shows that the argument angle of Tnu is greater or equal than π
2
+ φ̄.

Therefore Tnu 6∈ T , which proves the assertion. �
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Proof of Theorem 4. Again, the set A2,1 from Example 10 below shows that u∗∗2,1 ≥√
2. Moving e1 slightly away from e2 turns A2,1 into a balanced set and shows

that also u∗∗2,2 ≥
√
2. Hence it suffices to prove u∗∗2,1, u

∗∗
2,2 ≤

√
2. Contrarily, we

assume that there exists an iteration such that λi >
√
2 for some fixed i ∈ N.

Without loss of generality we may assume that i is the smallest such index, in
particular λi−1 ≤

√
2.

The angle γj ∈ [0, π] between uj and χj is defined for all j ∈ N since without loss
of generality we may assume uj 6= 0. Now observe that

π

2
+ φ =

1

2
(2π − (π − 2φ)) ≤ γj ≤ π

for all j ∈ N. A simple computation yields

λ2j = 1 + 2λj−1 cos γj−1 + λ2j−1. (5)

Hence
2λi−1 cos γi−1 = λ2i − λ2i−1 − 1 > 2− 2− 1 = −1,

and

−1

2
< − 1

2λi−1
< cos γi−1 ≤ cos

(π

2
+ φ

)

= − sinφ,

since from (5) we also have 1 < λi−1. Therefore

π

2
+ φ ≤ γi−1 ≤

2

3
π and 0 ≤ φ <

π

6
.

In other words there is a gap greater than 2
3
π between two neighboring elements of

X . In a second step of the proof we will explore possible ranges of αi−1. Clearly,
the angle between ui−1 and x1, xn is less or equal than 2

3
π. Therefore exactly one

of the following cases holds.

Case 1. αi−1 ∈ (π
2
− φ̄, π

2
+ φ̄), where φ̄ := π

6
− φ. Hence ui−1 ∈ T but also

ui−1 ∈ V from Lemma 7. This contradicts Lemma 8.

Case 2. αi−1 ∈ (3
2
π − ¯̄φ, 3

2
π + ¯̄φ), where ¯̄φ := π

6
+ φ. We can restrict the range

of αi−1 further by adding the above condition not only for x1 and xn, but for all
elements of X . Doing so we get that

{

2
3
π > αi−1 − φj, if π ≥ αi−1 − φj , and

4
3
π < αi−1 − φj, if π < αi−1 − φj.

Let k = 1, . . . , n − 1 be the greatest index satisfying π < αi−1 − φk. Since k is
maximal we have π ≥ αi−1 − φk+1. We get φk+1 − φk >

2
3
π, which shows that

there must be a second gap which is greater than 2
3
π. After a rotation of the

coordinate system and renumbering the elements of X we may apply Lemma 8
again and obtain a contradiction.

The indirect assumption must have been wrong in Cases 1 and 2, hence both
u∗∗2,1, u

∗∗
2,2 ≤

√
2. �
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3. Examples

This section provides examples illustrating that the situation is more complicated
in dimension d ≥ 3. All examples are unique up to rotation of Rd.

Example 9. For l ≥ 1 we describe the operation of choosing l + 1 equidistant
points x0, . . . , xl ∈ Sl−1 ⊆ R

l. Equidistant means that the value s of the scalar
product does not depend on the chosen pair of points. Since all vectors have unit
length, the constant scalar product equals cosα for some α ∈ [0, π]. By recursion
on l suppose x̃1, . . . , x̃l have been found in the next lower dimension l − 1, with
scalar product s̃. Set

x0 = (0, 0, . . . , 0, 1), x1 = (x̃1 cosα, sinα), . . . , xl = (x̃l cosα, sinα).

We demand

sinα = 〈x0, x1〉 = s = 〈xi, xj〉 = sin2 α + 〈x̃i, x̃j〉 cos2 α,

which leads to s = s2 + (1− s2)s̃. Solving this equation gives s = s̃
1−s̃ . It is easy

to see that the recursion produces the values

−1,−1

2
,−1

3
,−1

4
, . . .

for s. Hence, when denoting the scalar product of dimension l by sl, we get
sl = s = −1

l
. Knowing s it is also clear that x0+. . .+xd = 0 since x̃1+. . .+x̃d = 0.

In low dimensions, equidistant points are just two points on the real line (l = 1),
a regular triangle in a circle (l = 2), or a tetrahedron in a 2-sphere (l = 3).

Clearly, the set X of d + 1 equidistant points is balanced in Sd−1 ⊆ R
d. The

problem of finding u∗(X) in this case was approached by a computer experiment

only. We checked d = 2, . . . , 12 and found that u∗(X) = a(d)
d
, where a is the

integer sequence

0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, . . .

starting at index d = 0. Obviously, ui may take only a certain finite number of
values on the lattice

{

d+1
∑

i=1

kixi
∣

∣ ki ∈ N0

}

,

all of which are close to the origin. For example, there are 3 possibilities for d = 1
and 7 for d = 2. The sequence a has relations to other fields and problems [ATT].

Note also that a(d) < d
√
d, or equivalently u∗(X) ≤

√
d. The latter inequality

was an ad-hoc conjecture for a general set X , which turned out to be true only
in dimension d = 2.
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Example 10. For 1 ≤ m ≤ d consider the following set X = Ad,m consisting of
n = d+m points. As before, let ei ∈ R

d be the vector with all zero components
except the ith which is 1. Then define

Ad,m := {e1, e2, . . . , ed,−e1,−e2, . . . ,−em}.
Proposition 11. Let X = Ad,m be as in Example 10.

(i) Ad,m is m-balanced,

(ii) u∗(Ad,m) ≥
√
d−m+ 1.

Proof. (i) is clear from the definition; the origin is contained in the m-dimensional
face of conv(Ad,m) spanned by ±e1, . . . ,±em. For (ii) observe that there is an
iteration such that ui = em+1 + em+2 + . . .+ em+i for 1 ≤ i ≤ d−m. �

It is likely that equality holds in (ii), but we do not need this stronger assertion.

Example 12. The following construction of X = Bd,b(ǫ, φ) depends on the di-
mension d, some integer 1 ≤ b ≤ d− 2, some real numbers ǫ > 0 and 0 < φ < π

2
,

where the value of φ is uncritical. For c := d− b, 2 ≤ c ≤ d− 1, we have the or-
thogonal decomposition R

d = R
b⊕R

c. The subspaces contain unit hyperspheres
Sb−1 ⊆ R

b and Sc−1 ⊆ R
c.

In Sc−1 choose c+1 points x0, x1, . . . , xc as follows. Fix any direction v ∈ Sc−1 and
consider the linear hyperplane V which is perpendicular to v. In Sc−2 = V ∩Sc−1

choose c equidistant points x̄1, . . . , x̄c as described in Example 9. Then let

xi := cos(ǫ) x̄i + sin(ǫ) v

for i = 1, . . . , c. Note that x1, . . . , xc are equidistant in Sc−2(cos ǫ) := (V +
sin(ǫ)v) ∩ Sc−1. The remaining point x0 is given by

x0 := − cos(φ) x1 + sin(φ) v.

In Sb−1 choose b + 1 equidistant points xc+1, . . . , xd+1, which makes a total of
n = d+ 2 points in X .

Proposition 13. For d ≥ 3 and X = Bd,b(ǫ, φ) the following statements are

true.

(i) X is b-balanced,

(ii) for any large M > 0 there is an ǫ > 0 such that u∗(X) ≥
√
M .

Proof. (i) is clear from the definition; the origin is contained in the b-dimensional
face spanned by xc+1, . . . , xd+1. Note that x1 + . . .+ xc = c sin(ǫ)v and

σ := 〈xi, xj〉 = 〈x̄i, x̄j〉 cos2 ǫ+ sin2 ǫ = 1− c

c− 1
cos2 ǫ
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since 〈x̄i, x̄j〉 = − 1
c−1

for all 1 ≤ i, j ≤ c. From now on we suppose that ǫ is
sufficiently small such that

− 1

c− 1
< σ < 0. (6)

We also have

〈x0, xi〉 =
{

− cosφ + sinφ sin ǫ; i = 1,
−σ cosφ + sinφ sin ǫ; 1 < i ≤ c.

To prove (ii), we show that the iteration which starts with x0 and adds points
from {x1, . . . , xc} as long as possible is feasible. More precisely,

u0 = 0, u1 = x0, u2 = x0 + x1, . . . , uc+1 = x0 + x1 + · · ·+ xc.

In general for i = 0, 1, . . . we can write

uic+1 = x0 + (i− 1)(x1 + x2 + . . .+ xc),

uic+2 = x0 + (i− 1)(x1 + x2 + . . .+ xc) + x1,

...

uic+c = x0 + (i− 1)(x1 + x2 + . . .+ xc) + (x1 + x2 + . . .+ xc−1),

u(i+1)c+1 = x0 + i(x1 + x2 + . . .+ xc). (7)

In what follows we fix 0 ≤ i ≤ k and 0 ≤ j ≤ c− 1 arbitrarily, and consider step
s := (i+ 1)c+ j + 1 of the iteration (7). In other words, we want to control the
iteration up to and including step (k + 1)c+m+ 1, where 0 ≤ m ≤ c− 1.

(a) To be able to choose xj+1 in step s we must have

〈us, xj+1〉 ≤ 0.

(b) Also, to make the choice of xj+1 work, the scalar product with all other
vectors must be at least as big as the one from (a), or

〈us, xl+1〉 ≥ 〈us, xj+1〉
for all 0 ≤ l ≤ c− 1.

(c) The point x0 must not come into play, which is the case when

〈us, x0〉 ≥ 0.

(d) By construction we have
〈us, xr+1〉 = 0

for c ≤ r ≤ d.

Let us now analyze these conditions. There is nothing to show for (d). For (c)
we compute

〈us, x0〉 =
{

1 + ic sin ǫ sinφ; j = 0,
1− cos φ+ ic sin ǫ sinφ− (j − 1)σ cosφ+ j sin ǫ sinφ; 0 < j ≤ c− 1.
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From this expression it is clear that (c) is always satisfied. Looking at (a) and
(b) and observing that 1 + (c− 1)σ = c sin2 ǫ we compute

〈us, xj+1〉 =
{

i c sin2 ǫ− cosφ + sinφ sin ǫ; j = 0,
i c sin2 ǫ+ jσ − σ cosφ + sinφ sin ǫ; 0 < j ≤ c− 1

and for l 6= j

〈us, xl+1〉 =







ic sin2 ǫ +(j − 1)σ + 1− cosφ + sinφ sin ǫ; 0 = l < j,

ic sin2 ǫ +(j − 1)σ + 1− σ cosφ + sinφ sin ǫ; 0 < l < j,

ic sin2 ǫ +jσ − σ cos φ + sinφ sin ǫ; l > j.

From these expressions (b) is immediately clear; one just has to compare the
varying terms and to use (6). It remains to analyze Condition (a). For j = 0 it
can be expressed as

i ≤ cosφ− sinφ sin ǫ

c sin2 ǫ
, (8)

for j > 0 note that we have a set of c−1 inequalities, whose “sharpness” increases
with j, cf. (6). Therefore it suffices to take the last condition (j = c− 1) which
reads

i ≤ σ(cos φ− (c− 1))− sin φ sin ǫ

c sin2 ǫ
. (9)

In the second and last part of the proof, the assertion is brought into play. Assume
the length

√
M is reached in step (k + 1)c+m+ 1, i.e.

‖u(k+1)c+m+1‖2 ≥M. (10)

For arbitrary k and 1 ≤ m ≤ c− 1 we have

‖u(k+1)c+m+1‖2 = 1 + (kc+ 2m)kc sin2 ǫ+
(

1 + (m− 1)σ
)

(m− 2 cosφ) +

2(kc+m) sin ǫ sinφ,

while for m = 0 we get the simpler expression

‖u(k+1)c+1‖2 = 1 + k2c2 sin2 ǫ+ 2kc sin ǫ sin φ. (11)

Assuming m = 0 (to use the advantages of the simpler form) and inserting (11)
into (10) we get an inequality which is quadratic in k:

k2 + k
2

c

sin φ

sin ǫ
+

1−M

c2 sin2 ǫ
≥ 0.

Solving the inequality gives

k ≥
√

sin2 φ− 1 +M − sinφ

c sin ǫ
. (12)

To finish the proof, we must put together (8) and (12) as well as (9) and (12).
For the first pairing, solve

√

sin2 φ− 1 +M − sinφ ≤ cosφ− sin φ sin ǫ

sin ǫ
.
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Isolating M yields

M ≤ cos2 φ

(

1 +
1

sin2 ǫ

)

.

For small ǫ, the right-hand side becomes arbitrarily large, which finishes this part
of the proof. For the remaining pairing, one has to solve

√

sin2 φ− 1 +M − sinφ ≤ σ(cosφ− (c− 1))− sinφ sin ǫ

sin ǫ
.

Isolating M again gives

M ≤ σ2(cosφ− (c− 1))2

sin2 ǫ
+ cos2 φ,

which with small ǫ again has an arbitrarily large right-hand side. �

Example 14. The following construction of a point set X = Cd(ǫ, µ, φ) depends
on the dimension d ≥ 3, on real numbers ǫ ≥ 0, µ > 0 and 0 < φ < π

2
, where

the value of φ is uncritical. Pick any unit vector v ∈ R
d which determines a

hyperplane V of R
d. In Sd−2 ⊆ V choose d equidistant points x̄1, . . . , x̄d as

described in Example 9. Then define

xi := cos(ǫ)x̄i − sin(ǫ) v

for i = 1, . . . , d. The two remaining points are given by

xd+1 = − cos(µ)x̄1 + sin(µ) v,

x0 = cos(φ)x̄1 + sin(φ) v.

Finally let X := {x0, x1, . . . , xd, xd+1}.

Proposition 15. For d ≥ 3 the following statements are true.

(i) Cd(ǫ, µ, φ) is d-balanced for ǫ > 0, and (d− 1)-balanced for ǫ = 0,

(ii) for any large M > 0 there is an ǫ > 0 such that u∗(Cd(ǫ, 3ǫ,
π
6
)) ≥

√
M ,

(iii) for any large M > 0 there is a µ > 0 such that u∗(Cd(0, µ,
π
6
)) ≥

√
M .

Proof. (i) is immediately clear from the definition, in particular for ǫ = 0 the
origin is contained in the (d− 1)-dimensional face spanned by x1, . . . , xd. We are
left with (ii) and (iii) which are shown simultaneously. Consider the following
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finite piece of an iteration for Cd(ǫ, µ, φ). Start with u0 = 0, and let

u1 = x0,

u2 = x0 + xd+1,

u3 = x0 + x1 + xd+1,

...

u2k−1 = x0 + (k − 1)(x1 + xd+1),

u2k = x0 + (k − 1)(x1 + xd+1) + xd+1,

u2k+1 = x0 + k(x1 + xd+1).

The following conditions (a)–(c) are sufficient for the iteration to work as above,
up to step 2k + 1.

(a) We must have 〈ul, x0〉 ≥ 0 for all 1 ≤ l ≤ 2k + 1, i.e. x0 is never chosen
between steps 2 and 2k + 1 of the iteration.

(b) Additionally, also the scalar product with the other vector must be at least
as big as the chosen one, meaning

〈u2i, x1〉 ≤ 〈u2i, xd+1〉, 〈u2i+1, xd+1〉 ≤ 〈u2i+1, x1〉
for all 1 ≤ i ≤ k.

(c) To be able to choose xd+1 in step 2i and x1 in step 2i+ 1 we must have

〈u2i, x1〉 ≤ 〈u2i, xm〉, 〈u2i+1, xd+1〉 ≤ 〈u2i+1, xm〉,
for all 1 ≤ i ≤ k and 2 ≤ m ≤ d.

In order to examine Condition (a) it is straightforward to compute

〈ul, x0〉 =
{

1− cos(φ+ ǫ) + i
(

cos(φ+ ǫ)− cos(φ+ µ)
)

; l = 2i,
1 + i

(

cos(φ+ ǫ)− cos(φ+ µ)
)

; l = 2i+ 1.

Since µ > ǫ for both (ii) and (iii), the terms on the right-hand side are always
non-negative. Therefore (a) does not impose any additional condition. Similarly,
for Condition (b) we compute

〈ul, x1〉 =
{

cos(φ+ ǫ)− 1 + i
(

1− cos(µ− ǫ)
)

; l = 2i,
cos(φ+ ǫ) + i

(

1− cos(µ− ǫ)
)

; l = 2i+ 1,

〈ul, xd+1〉 =
{

cos(µ− ǫ)− cos(φ+ µ) + i
(

1− cos(µ− ǫ)
)

; l = 2i,
− cos(φ+ µ) + i

(

1− cos(µ− ǫ)
)

; l = 2i+ 1,

which is equivalent to

cos(φ+ ǫ)− 1 ≤ cos(µ− ǫ)− cos(φ+ µ),

− cos(φ+ µ) ≤ cos(φ+ ǫ).
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Again, since both inequalities are always true, (b) does not introduce new con-
ditions either. Finally, Condition (c) requires

〈u2i, xm〉 − 〈u2i, x1〉 =
d

d− 1
cos ǫ

(

cos ǫ− cos φ+ i(cosµ− cos ǫ)
)

≥ 0,

〈u2i+1, xm〉 − 〈u2i+1, xd+1〉 = − d

d− 1
cosφ cos ǫ+ cos(φ+ ǫ) + cos(φ+ µ)+

i
d

d− 1
(cosµ− cos ǫ) cos ǫ ≥ 0.

We demand that if i satisfies the first inequality, then it shall also satisfy the
second. This leads to the additional condition

cosφ− cos ǫ

cosµ− cos ǫ
≤

d
d−1

cosφ cos ǫ− cos(φ+ ǫ)− cos(φ+ µ)
d
d−1

(cosµ− cos ǫ) cos ǫ
,

which is satisfied if 3
4
≤ cosφ, which is the reason for the choice of φ = π

6
.

Summing up we are left with the condition

i ≤ cosφ− cos ǫ

cosµ− cos ǫ
. (13)

We can now finish the proof for (ii) and (iii). If the length
√
M is reached in step

2k + 1, then we have

‖u2k+1‖2 = 1 + 2k
(

cos(φ+ ǫ)− cos(φ+ µ)
)

+ 2k2
(

1− cos(µ− ǫ)
)

≥M.

Solving the quadratic inequality in k and using standard trigonometric identities
we get

k ≥

√

sin2(φ+ µ+ǫ
2
) +M − 1− sin(φ+ µ+ǫ

2
)

2 sin µ−ǫ
2

. (14)

Putting together (13) and (14) we get

cosφ− cos ǫ

cosµ− cos ǫ
≥

√

sin2(φ+ µ+ǫ
2
) +M − 1− sin(φ+ µ+ǫ

2
)

2 sin µ−ǫ
2

.

Finally we isolate M and arrive at

M ≤ (cos ǫ− cosφ)2

sin2 µ+ǫ
2

+
2(cos ǫ− cosφ) sin(φ+ µ+ǫ

2
)

sin µ+ǫ
2

+ 1.

For (ii) replace µ by 3ǫ, for (iii) set ǫ = 0. In both cases the right-hand side
becomes arbitrarily large when ǫ resp. µ approaches zero. �
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