ON THE BOUNDEDNESS OF AN ITERATION INVOLVING POINTS ON THE HYPERSPHERE

THOMAS BINDER AND THOMAS MARTINETZ

Abstract

For a finite set of points X on the unit hypersphere in \mathbb{R}^{d} we consider the iteration $u_{i+1}=u_{i}+\chi_{i}$, where χ_{i} is the point of X farthest from u_{i}. Restricting to the case where the origin is contained in the convex hull of X we study the maximal length of u_{i}. We give sharp upper bounds for the length of u_{i} independently of X. Precisely, this upper bound is infinity for $d \geq 3$ and $\sqrt{2}$ for $d=2$.

1. Introduction and overview

Throughout this paper we will assume that $d \geq 2$. By \mathbb{R}^{d} we denote d-dimensional Euclidean space, equipped with the standard scalar product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. Moreover $S^{l}(r)$ denotes the l-dimensional sphere of radius r, and $S^{l}:=S^{l}(1)$. These spheres are always considered as embedded in \mathbb{R}^{d}. Let $X=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq S^{d-1} \subseteq \mathbb{R}^{d}$ be a finite set on the unit hypersphere. Without mentioning this each time, we assume that the linear space spanned by the elements of X equals \mathbb{R}^{d}, i.e. d cannot be reduced. Consider the iteration

$$
u_{0}:=0, \quad u_{i+1}:=u_{i}+\chi_{i},
$$

where $i \in \mathbb{N}_{0}$ and χ_{i} is the element of X which is farthest away from u_{i} (which happens to be $\operatorname{argmin}_{x \in X}\left\langle x, u_{i}\right\rangle$). In case there are several elements of X at maximal distance, just choose any of them. Due to this ambiguity there are many iterations $\left(u_{i}\right)_{i=0}^{\infty}$ for a particular set X. By $U(X)$ we denote the set of vectors occurring in any of these iterations. Let

$$
u^{*}(X):=\sup \{\|u\| \mid u \in U(X)\}
$$

be the greatest length reached during any of these iterations. The question which values $u^{*}(X)$ can take is simple and intriguing; it was brought up in connection with the rate of convergence of an iterative approach of computing the smallest enclosing ball of a point set, as described in the following.
Let $\tilde{Y} \subseteq \mathbb{R}^{d}$ be a finite set of points. Then the smallest enclosing ball $\operatorname{SEB}(\tilde{Y})$ of \tilde{Y} exists and is unique Wel91. We assume that \tilde{Y} has at least two elements. By
$c \in \mathbb{R}^{d}$ and $R \in \mathbb{R}^{+}$we denote center and radius of $\operatorname{SEB}(\tilde{Y})$, respectively. Bădoiu and Clarkson [BC03] introduced the following approximation of c :

$$
\begin{equation*}
c_{0}:=0, \quad c_{i+1}:=c_{i}+\frac{1}{i+1}\left(\xi_{i}-c_{i}\right) \tag{1}
\end{equation*}
$$

where $i \in \mathbb{N}$ and ξ_{i} is the element of \tilde{Y} farthest away from c_{i}. This approximation $\left(c_{i}\right)_{i=0}^{\infty}$ is related to the iteration $\left(u_{i}\right)_{i=0}^{\infty}$ by $R u_{i}=i\left(c_{i}-c\right)$ which implies $u_{i+1}=$ $u_{i}+\frac{\xi_{i}-c}{R}$. The set \tilde{X} connected to $\left(u_{i}\right)_{i=0}^{\infty}$ is given by

$$
\begin{equation*}
\tilde{X}:=\left\{\left.\frac{1}{R}(y-c) \right\rvert\, y \in \tilde{Y}\right\} . \tag{2}
\end{equation*}
$$

Unlike X the set \tilde{X} can contain also points in the interior of the unit hypersphere. Martinetz, Madany and Mota MMM06 show that after a finite number of steps all ξ_{i} will lie on the boundary of $\operatorname{SEB}(\tilde{Y})$, i.e. $\xi_{i} \in Y$ for all $i \geq i_{0}$, where $Y \subseteq \tilde{Y}$ consists of all points on the surface of $\operatorname{SEB}(\tilde{Y})$. This clarifies the correspondence.
While the approximation is extremely easy to use, the question of convergence needs to be answered. In BC03] it is shown that for $i \in \mathbb{N}$

$$
\begin{equation*}
\frac{\left\|c-c_{i}\right\|}{R} \leq \frac{1}{\sqrt{i}} \tag{3}
\end{equation*}
$$

[MMM06] aims at proving faster convergence than (3). In particular:
Theorem 1 (MMM06], Theorem 2). Let $\tilde{Y} \subseteq \mathbb{R}^{d}$ be a finite set with at least two elements, and let \tilde{X} be given by (21). Consider the approximation (11) of $\operatorname{SEB}(\tilde{Y})$. Then for all $i \in \mathbb{N}$

$$
\frac{\left\|c-c_{i}\right\|}{R} \leq \frac{u^{*}(\tilde{X})}{i}
$$

where the definition of u^{*} has been extended to sets \tilde{X} with points on or in the interior of the unit hypersphere in a straightforward manner.

In view of Theorem 1, a finite value of u^{*} or even a uniform upper bound independent of X is desirable. Before stating our results on the latter, we need some preparations.
The connection between $\left(c_{i}\right)_{i=0}^{\infty}$ and $\left(u_{i}\right)_{i=0}^{\infty}$ is further illustrated by
Proposition 2. For a finite set $X \subseteq S^{d-1} \subseteq \mathbb{R}^{d}$ the following statements are equivalent.
(i) $\operatorname{SEB}(X)=S^{d-1}$,
(ii) The origin $0 \in \mathbb{R}^{d}$ is contained in $\operatorname{conv}(X)$,
(iii) $\delta(X) \geq 0$, where

$$
\delta(X):=-\max _{\|u\|=1} \min _{x \in X}\langle x, u\rangle .
$$

Proof. (i) \Longleftrightarrow (ii) is due to R. Seidel (cf. Lemma 1 in [FGK03]). (ii) $\Longleftrightarrow($ iii) follows from the fact that a point $p \in \mathbb{R}^{d}$ lies in the convex hull of X if and only if $\min _{x \in X}\langle x-p, u\rangle \leq 0$ for all unit vectors u.
X is called 0 -balanced if $0 \notin \operatorname{conv}(X)$. For $1 \leq b \leq d-1$ the set X is called b-balanced, if 0 is a point on the boundary of $\operatorname{conv}(X)$ and is contained in a b-dimensional face, but not in a $(b-1)$-dimensional face of $\operatorname{conv}(X)$. If 0 is an inner point of $\operatorname{conv}(X)$, then X is called d-balanced or balanced. Having the same balance property is an equivalence relation on all sets X under consideration.
Note that $\delta(X)$ is strictly positive if and only if X is d-balanced, and Proposition 2 characterizes all sets X that are not 0 -balanced.
Theorem 3. Let X be a finite set of unit vectors in \mathbb{R}^{d}.
(i) If X is 0-balanced, then $u^{*}(X)=\infty$.
(ii) If X is b-balanced for $0<b \leq d$, then $u^{*}(X)<\infty$.

Proof. Again, (ii) is shown in MMM06; it remains to prove (i). Since conv (X) is compact, there is a point $T \in \operatorname{conv}(X)$ which is closest to the origin. Let $\epsilon:=|O T|$. Clearly $\left\|\chi_{j}\right\| \geq \epsilon$ for all $j \in \mathbb{N}_{0}$, therefore $\left\|u_{i}\right\|=\left\|\sum_{j=0}^{i-1} \chi_{j}\right\| \geq i \epsilon$ is an unbounded sequence for $i \in \mathbb{N}_{0}$.

For $0 \leq b \leq d$ we define

$$
u_{d, b}^{* *}:=\sup \left\{u^{*}(X) \mid X \subseteq S^{d-1} \subseteq \mathbb{R}^{d} \text { finite and } b \text {-balanced }\right\}
$$

Our goal is to compute $u_{d, b}^{* *}$ for all possible d and b.
Theorem 4. For $d=2$ we have $u_{2,0}^{* *}=\infty$, while $u_{2,1}^{* *}=u_{2,2}^{* *}=\sqrt{2}$.
Clearly, for $d=2, X=\left\{x_{1}, x_{2}\right\}, x_{1}=(0,1), x_{2}=(1,0)$ the iteration $u_{0}=0$, $u_{1}=x_{1}, u_{2}=x_{1}+x_{2}$ is valid and $\left\|u_{2}\right\|=\sqrt{2}$. This manifest example represents one inequality of the proof of Theorem [4) the missing inequality is shown in Section 2,
Theorem 5. For $d \geq 3$ we have $u_{d, b}^{* *}=\infty$ for all $0 \leq b \leq d$.
Proof. For any dimension d we have $u_{d, 0}^{* *}=\infty$ from Theorem 3 (i). For $1 \leq b \leq$ $d-2$ the assertion follows from the example discussed in Proposition 13 below. For $b=d$ and $b=d-1$ use Proposition 15 (ii) and (iii), respectively.

Although the balance property of X is a suggesting geometric property, it does not seem to give a finer prediction for $u^{*}(X)$ than $\delta(X)$. In the balanced case, $0<\delta(X)$ determines a finite upper bound for $u^{*}(X)$ as shown in MMM06, namely

$$
\left\|u_{i}\right\| \leq \frac{1}{2 \delta(X)}+1, \quad i \in \mathbb{N}_{0}
$$

With respect to the faster convergence we have an immediate result for $d=2$:
Corollary 6. Let $\tilde{Y} \subseteq \mathbb{R}^{2}$ be a finite set with at least two elements. Assume that all elements of \tilde{Y} lie on the boundary of $\operatorname{SEB}(\tilde{Y})$. Then $\left\|c-c_{i}\right\| \leq \frac{\sqrt{2} R}{i}$ for all $i \in \mathbb{N}$.

2. Proof for $d=2$

Let e_{1}, e_{2} denote the canonical orthonormal basis of \mathbb{R}^{2}. Each $x_{j} \in X, 1 \leq j \leq n$ can be written as

$$
x_{j}=\cos \left(\phi_{j}\right) e_{1}+\sin \left(\phi_{j}\right) e_{2}=\left[1 ; \phi_{j}\right]
$$

where $[\tilde{r} ; \tilde{\phi}]$ indicates a point in standard polar coordinates on \mathbb{R}^{2}. Similarly, for $j \in \mathbb{N}$ we write

$$
\begin{aligned}
& \chi_{j}=\cos \left(\psi_{j}\right) e_{1}+\sin \left(\psi_{j}\right) e_{2}=\left[1 ; \psi_{j}\right], \\
& u_{j}=\lambda_{j}\left(\cos \left(\alpha_{j}\right) e_{1}+\sin \left(\alpha_{j}\right) e_{2}\right)=\left[\lambda_{j} ; \alpha_{j}\right] .
\end{aligned}
$$

All argument angles are real numbers taken modulo 2π. The freedom in rotation is fixed as follows. Assume that x_{1}, \ldots, x_{n} are numbered counterclockwise, starting at $\phi_{1}=2 \pi-\phi$, ending at $\phi_{n}=\pi+\phi$, such that there is a gap with angle size $\pi-2 \phi$ between the two neighboring elements x_{1}, x_{n} of X is symmetric about the e_{2}-axis. We call this a parametrization of X with base gap of size $\pi-2 \phi$, where $\phi \in\left[0, \frac{\pi}{2}\right)$. The choice of ϕ indicates that we restrict to the balanced cases. Define $\bar{\phi}:=\frac{\pi}{6}-\phi$. For $W \subseteq \mathbb{R}^{2}$ and $k=1, \ldots, n$ let $\mathcal{T}_{k}(W)$ denote the set obtained by translation of W by x_{k}. The set T is defined by

$$
T:=\left\{[\tilde{r} ; \tilde{\phi}] \in \mathbb{R}^{2} \mid \tilde{r} \in(1, \sqrt{2}] \text { and } \tilde{\phi} \in\left(\frac{\pi}{2}-\bar{\phi}, \frac{\pi}{2}+\bar{\phi}\right)\right\}
$$

Moreover, we define three subsets of \mathbb{R}^{2} by

$$
\begin{aligned}
R & :=\{[\tilde{r} ; \tilde{\phi}] \mid \tilde{r}>0 \text { and } \tilde{\phi} \in(\pi-\phi, 2 \pi+\phi)\}, \\
Q & :=\left\{(a, b)| | a\left|\tan \phi \leq b \leq|a| \tan \phi+\lambda_{\min }\right\},\right. \\
P & :=\left\{u \in \mathbb{R}^{2} \mid\|u\| \leq 1\right\} \backslash(R \cup Q) .
\end{aligned}
$$

Here $\lambda_{\text {min }}:=\frac{\sqrt{3}}{2 \cos \phi}$ is the length of the intersection of Q with the e_{2}-axis. Figure 1 gives an illustration of this situation; [FIG] gives an animated version where ϕ varies in time.

Lemma 7. Let X be a finite subset of $S^{1} \subseteq \mathbb{R}^{2}$, parametrized as above. Suppose that $\phi \in\left[0, \frac{\pi}{6}\right)$, i.e. the size of the base gap is greater than $\frac{2}{3} \pi$. Define the set V by

$$
V:=P \cup \mathcal{T}_{n}\left(P^{+}\right) \cup \mathcal{T}_{1}\left(P^{-}\right) \cup Q \cup R,
$$

where P^{+}, P^{-}denote the elements of P with non-negative and non-positive e_{1} coordinate, respectively. Then $u_{j} \in V$ for all $j \in \mathbb{N}_{0}$.

Figure 1. An arbitrary set $X \subseteq S^{1} \subseteq \mathbb{R}^{2}$ given in base gap parametrization. Only x_{1} and x_{n} are displayed, the remaining elements of X are above x_{1} and x_{n}. Recall that $\phi+\bar{\phi}=\frac{\pi}{6}$. R is the open set bounded from above by the lower dashed lines. Q is the closed set between the dashed lines. The set P is given by the central hatched area. For small values of $\phi, \mathcal{T}_{1}\left(P^{-}\right) \backslash(Q \cup R)$ and $\mathcal{T}_{n}\left(P^{+}\right) \backslash(Q \cup R)$ are nonempty.

Proof. Clearly $u_{0} \in V$. By induction, assume that $u_{j} \in V$ for some $j \in \mathbb{N}$. The proof is complete if all of the following claims are shown to be true.
(a) If $u_{j} \in Q$, then $u_{j+1} \in Q \cup R$.
(b) If $u_{j} \in P$, then $u_{j+1} \in \mathcal{T}_{n}\left(P^{+}\right) \cup \mathcal{T}_{1}\left(P^{-}\right)$.
(c) If $u_{j} \in R$, then $u_{j+1} \in P \cup Q \cup R$.
(d) If $u_{j} \in \mathcal{T}_{n}\left(P^{+}\right)$, then $u_{j+1} \in P \cup Q \cup R$.
(e) If $u_{j} \in \mathcal{T}_{1}\left(P^{-}\right)$, then $u_{j+1} \in P \cup Q \cup R$.

If $u_{j} \in P \cup Q$, then x_{1} or x_{n} is chosen in the next step of the iteration, i.e. $\chi_{j} \in\left\{x_{1}, x_{n}\right\}$. Therefore, (b) is trivial. Also (a) is true since $\mathcal{T}_{1}(Q)$ and $\mathcal{T}_{n}(Q)$ have no parts above Q. If (d) is true then (e) holds by symmetry. Hence it suffices to show (c) and (d).

Claim (c). Suppose that $u_{j} \in R$ is arbitrarily fixed. If $\alpha_{j} \in(\pi+\phi, 2 \pi-\phi)$, then from Figure 1 it is clear that translation of the part of R with such argument α_{j} by an arbitrary unit vector stays inside $P \cup Q \cup R$.
Otherwise, $\alpha_{j} \in[-\phi, \phi)$ or $\alpha_{j} \in(\pi-\phi, \pi+\phi]$, where the second part follows from the first by symmetry. Restricting to $\alpha:=\alpha_{j} \in[-\phi, \phi)$ and setting $\lambda:=\lambda_{j}>0$, $\psi:=\psi_{j} \in[\pi+2 \alpha-\phi, \pi+\phi]$ we can write

$$
u_{j+1}=(\lambda \cos \alpha+\cos \psi) e_{1}+(\lambda \sin \alpha+\sin \psi) e_{2}
$$

The range of ψ follows since the center of the interval of possible values for ψ is $\alpha+\pi$, it extends by $\pi+\phi-(\alpha+\pi)=\phi-\alpha$ to both sides. We continue to work on two cases.
(c.i) The e_{1}-coordinate of u_{j+1} is non-negative. In this case $\sin (\psi-\phi) \leq \frac{\sqrt{3}}{2}$ and $\lambda \sin (\phi-\alpha) \geq 0$. Since equality does not hold simultaneously,

$$
0<\lambda \sin (\phi-\alpha)+\sin (\phi-\psi)+\frac{\sqrt{3}}{2}
$$

Expanding and rearranging the trigonometric terms, substituting $\lambda_{\text {min }}=$ $\frac{\sqrt{3}}{2 \cos \phi}$ (which denotes the length of the intersection of Q with the e_{2}-axis) and dividing by $\cos \phi>0$ we get

$$
(\lambda \sin \alpha+\sin \psi)-\lambda_{\min }<\tan \phi(\lambda \cos \alpha+\cos \psi) .
$$

This shows that u_{j+1} falls below the line bounding Q from above. Hence $u_{j+1} \in Q \cup R$.
(c.ii) The e_{1}-coordinate of u_{j+1} is negative, i.e. $\lambda<-\frac{\cos \psi}{\cos \alpha}$. If we knew the inequality

$$
\begin{equation*}
\frac{\cos \psi}{\cos \alpha} \geq 2 \cos (\psi-\alpha) \tag{4}
\end{equation*}
$$

then $\lambda \leq-2 \cos (\psi-\alpha)$ would follow using the inequality for λ. We would arrive at

$$
\left\|u_{j+1}\right\|^{2}=1+\lambda^{2}+2 \lambda \cos (\psi-\alpha) \leq 1
$$

which would show that $u_{j+1} \in P \cup Q \cup R$. Hence we are left with (4). First consider the case $\alpha \geq 0$. Then $2 \cos (\psi-\alpha)<-\sqrt{3}$ and

$$
\frac{\cos \psi}{\cos \alpha} \geq-\frac{1}{\cos \alpha}>-\frac{2}{\sqrt{3}}
$$

hence (4) is true for this case. Now restrict to the case when $\alpha<0$. Then $2 \cos (\psi-\alpha)<-1$ and

$$
\frac{\cos \psi}{\cos \alpha} \geq-\frac{\cos (\pi+2 \alpha-\phi)}{\cos \alpha}>-1
$$

hence (4) is true.

Claim (d). From the assumption there is some $v=[\lambda ; \delta] \in P^{+}$with $\frac{\sqrt{3}}{2 \sin (\delta-\phi)} \leq$ $\lambda \leq 1$ and $\delta \in\left[\frac{\pi}{2}-\bar{\phi}, \frac{\pi}{2}\right]$ such that

$$
u_{j}=\mathcal{T}_{n} v=(\lambda \cos \delta-\cos \phi) e_{1}+(\lambda \sin \delta-\sin \phi) e_{2}
$$

We are done if we show that x_{1} is chosen for the next step of the iteration, i.e. $\chi_{j}=x_{1}$. In this case

$$
u_{j+1}=\lambda \cos \delta e_{1}+(\lambda \sin \delta-2 \sin \phi) e_{2}
$$

u_{j+1} has a smaller e_{2}-coordinate than the original point $v \in P^{+}$, hence $u_{j+1} \in$ $R \cup Q \cup P^{+}$. We are left with the mentioned claim and show that the argument angle α_{j} of u_{j} satisfies $\alpha_{j} \leq \pi-\phi$. From

$$
\lambda \sin (\phi+\delta) \geq \frac{\sqrt{3}}{2} \frac{\sin (\phi+\delta)}{\sin (\delta-\phi)} \geq \frac{\sqrt{3}}{2}>\sin 2 \phi
$$

we get

$$
(\lambda \cos \delta-\cos \phi) \sin \phi \geq-\cos \phi(\lambda \sin \delta-\sin \phi)
$$

Since $\lambda \sin \delta-\sin \phi>0$ and $\sin \phi \geq 0$ division by these terms does not change the type of inequality. We obtain

$$
\cot \alpha_{j}=\frac{\lambda \cos \delta-\cos \phi}{\lambda \sin \delta-\sin \phi} \geq-\cot \phi=\cot (\pi-\phi)
$$

which proves the desired fact.
Lemma 8. In the situation of Lemma 7 we have $V \cap T=\emptyset$.

Proof. By construction $(P \cup Q \cup R) \cap T=\emptyset$. By symmetry it is therefore enough to show that $\mathcal{T}_{n}\left(P^{+}\right) \cap T=\emptyset$. As before, let $u=[\lambda ; \delta] \in P^{+}$, where $\delta \in\left[\frac{\pi}{2}-\bar{\phi}, \frac{\pi}{2}\right]$ and $\frac{\sqrt{3}}{2 \sin (\delta-\phi)} \leq \lambda \leq 1$. Then

$$
\mathcal{T}_{n} u=(\lambda \cos \delta-\cos \phi) e_{1}+(\lambda \sin \delta-\sin \phi) e_{2}
$$

Starting with

$$
\lambda \cos (\delta-\bar{\phi}) \leq \cos (\delta-\bar{\phi}) \leq \frac{\sqrt{3}}{2} \leq \cos (\phi-\bar{\phi})
$$

expanding and dividing by $\lambda \sin \delta-\sin \phi>0$ and by $\cos \bar{\phi}>0$ we get

$$
\cot \arg \mathcal{T}_{n} u=\frac{\lambda \cos \delta-\cos \phi}{\lambda \sin \delta-\sin \phi} \leq-\tan \bar{\phi}=\cot \left(\frac{\pi}{2}+\bar{\phi}\right)
$$

which shows that the argument angle of $\mathcal{T}_{n} u$ is greater or equal than $\frac{\pi}{2}+\bar{\phi}$. Therefore $\mathcal{T}_{n} u \notin T$, which proves the assertion.

Proof of Theorem 4. Again, the set $A_{2,1}$ from Example 10 below shows that $u_{2,1}^{* *} \geq$ $\sqrt{2}$. Moving e_{1} slightly away from e_{2} turns $A_{2,1}$ into a balanced set and shows that also $u_{2,2}^{* *} \geq \sqrt{2}$. Hence it suffices to prove $u_{2,1}^{* *}, u_{2,2}^{* *} \leq \sqrt{2}$. Contrarily, we assume that there exists an iteration such that $\lambda_{i}>\sqrt{2}$ for some fixed $i \in \mathbb{N}$. Without loss of generality we may assume that i is the smallest such index, in particular $\lambda_{i-1} \leq \sqrt{2}$.
The angle $\gamma_{j} \in[0, \pi]$ between u_{j} and χ_{j} is defined for all $j \in \mathbb{N}$ since without loss of generality we may assume $u_{j} \neq 0$. Now observe that

$$
\frac{\pi}{2}+\phi=\frac{1}{2}(2 \pi-(\pi-2 \phi)) \leq \gamma_{j} \leq \pi
$$

for all $j \in \mathbb{N}$. A simple computation yields

$$
\begin{equation*}
\lambda_{j}^{2}=1+2 \lambda_{j-1} \cos \gamma_{j-1}+\lambda_{j-1}^{2} \tag{5}
\end{equation*}
$$

Hence

$$
2 \lambda_{i-1} \cos \gamma_{i-1}=\lambda_{i}^{2}-\lambda_{i-1}^{2}-1>2-2-1=-1
$$

and

$$
-\frac{1}{2}<-\frac{1}{2 \lambda_{i-1}}<\cos \gamma_{i-1} \leq \cos \left(\frac{\pi}{2}+\phi\right)=-\sin \phi
$$

since from (5) we also have $1<\lambda_{i-1}$. Therefore

$$
\frac{\pi}{2}+\phi \leq \gamma_{i-1} \leq \frac{2}{3} \pi \quad \text { and } \quad 0 \leq \phi<\frac{\pi}{6}
$$

In other words there is a gap greater than $\frac{2}{3} \pi$ between two neighboring elements of X. In a second step of the proof we will explore possible ranges of α_{i-1}. Clearly, the angle between u_{i-1} and x_{1}, x_{n} is less or equal than $\frac{2}{3} \pi$. Therefore exactly one of the following cases holds.
Case 1. $\alpha_{i-1} \in\left(\frac{\pi}{2}-\bar{\phi}, \frac{\pi}{2}+\bar{\phi}\right)$, where $\bar{\phi}:=\frac{\pi}{6}-\phi$. Hence $u_{i-1} \in T$ but also $u_{i-1} \in V$ from Lemma 7. This contradicts Lemma 8 .
Case 2. $\alpha_{i-1} \in\left(\frac{3}{2} \pi-\overline{\bar{\phi}}, \frac{3}{2} \pi+\overline{\bar{\phi}}\right)$, where $\overline{\bar{\phi}}:=\frac{\pi}{6}+\phi$. We can restrict the range of α_{i-1} further by adding the above condition not only for x_{1} and x_{n}, but for all elements of X. Doing so we get that

$$
\begin{cases}\frac{2}{3} \pi>\alpha_{i-1}-\phi_{j}, & \text { if } \pi \geq \alpha_{i-1}-\phi_{j}, \text { and } \\ \frac{4}{3} \pi<\alpha_{i-1}-\phi_{j}, & \text { if } \pi<\alpha_{i-1}-\phi_{j} .\end{cases}
$$

Let $k=1, \ldots, n-1$ be the greatest index satisfying $\pi<\alpha_{i-1}-\phi_{k}$. Since k is maximal we have $\pi \geq \alpha_{i-1}-\phi_{k+1}$. We get $\phi_{k+1}-\phi_{k}>\frac{2}{3} \pi$, which shows that there must be a second gap which is greater than $\frac{2}{3} \pi$. After a rotation of the coordinate system and renumbering the elements of X we may apply Lemma 8 again and obtain a contradiction.
The indirect assumption must have been wrong in Cases 1 and 2, hence both $u_{2,1}^{* *}, u_{2,2}^{* *} \leq \sqrt{2}$.

3. Examples

This section provides examples illustrating that the situation is more complicated in dimension $d \geq 3$. All examples are unique up to rotation of \mathbb{R}^{d}.

Example 9. For $l \geq 1$ we describe the operation of choosing $l+1$ equidistant points $x_{0}, \ldots, x_{l} \in S^{l-1} \subseteq \mathbb{R}^{l}$. Equidistant means that the value s of the scalar product does not depend on the chosen pair of points. Since all vectors have unit length, the constant scalar product equals $\cos \alpha$ for some $\alpha \in[0, \pi]$. By recursion on l suppose $\tilde{x}_{1}, \ldots, \tilde{x}_{l}$ have been found in the next lower dimension $l-1$, with scalar product \tilde{s}. Set

$$
x_{0}=(0,0, \ldots, 0,1), \quad x_{1}=\left(\tilde{x}_{1} \cos \alpha, \sin \alpha\right), \quad \ldots, \quad x_{l}=\left(\tilde{x}_{l} \cos \alpha, \sin \alpha\right)
$$

We demand

$$
\sin \alpha=\left\langle x_{0}, x_{1}\right\rangle=s=\left\langle x_{i}, x_{j}\right\rangle=\sin ^{2} \alpha+\left\langle\tilde{x}_{i}, \tilde{x}_{j}\right\rangle \cos ^{2} \alpha
$$

which leads to $s=s^{2}+\left(1-s^{2}\right) \tilde{s}$. Solving this equation gives $s=\frac{\tilde{s}}{1-\tilde{s}}$. It is easy to see that the recursion produces the values

$$
-1,-\frac{1}{2},-\frac{1}{3},-\frac{1}{4}, \ldots
$$

for s. Hence, when denoting the scalar product of dimension l by s_{l}, we get $s_{l}=s=-\frac{1}{l}$. Knowing s it is also clear that $x_{0}+\ldots+x_{d}=0$ since $\tilde{x}_{1}+\ldots+\tilde{x}_{d}=0$. In low dimensions, equidistant points are just two points on the real line $(l=1)$, a regular triangle in a circle $(l=2)$, or a tetrahedron in a 2 -sphere $(l=3)$.

Clearly, the set X of $d+1$ equidistant points is balanced in $S^{d-1} \subseteq \mathbb{R}^{d}$. The problem of finding $u^{*}(X)$ in this case was approached by a computer experiment only. We checked $d=2, \ldots, 12$ and found that $u^{*}(X)=\frac{a(d)}{d}$, where a is the integer sequence

$$
0,1,2,4,6,9,12,16,20,25,30,36,42, \ldots
$$

starting at index $d=0$. Obviously, u_{i} may take only a certain finite number of values on the lattice

$$
\left\{\sum_{i=1}^{d+1} k_{i} x_{i} \mid k_{i} \in \mathbb{N}_{0}\right\}
$$

all of which are close to the origin. For example, there are 3 possibilities for $d=1$ and 7 for $d=2$. The sequence a has relations to other fields and problems [ATT]. Note also that $a(d)<d \sqrt{d}$, or equivalently $u^{*}(X) \leq \sqrt{d}$. The latter inequality was an ad-hoc conjecture for a general set X, which turned out to be true only in dimension $d=2$.

Example 10. For $1 \leq m \leq d$ consider the following set $X=A_{d, m}$ consisting of $n=d+m$ points. As before, let $e_{i} \in \mathbb{R}^{d}$ be the vector with all zero components except the i th which is 1 . Then define

$$
A_{d, m}:=\left\{e_{1}, e_{2}, \ldots, e_{d},-e_{1},-e_{2}, \ldots,-e_{m}\right\}
$$

Proposition 11. Let $X=A_{d, m}$ be as in Example 10.
(i) $A_{d, m}$ is m-balanced,
(ii) $u^{*}\left(A_{d, m}\right) \geq \sqrt{d-m+1}$.

Proof. (i) is clear from the definition; the origin is contained in the m-dimensional face of $\operatorname{conv}\left(A_{d, m}\right)$ spanned by $\pm e_{1}, \ldots, \pm e_{m}$. For (ii) observe that there is an iteration such that $u_{i}=e_{m+1}+e_{m+2}+\ldots+e_{m+i}$ for $1 \leq i \leq d-m$.

It is likely that equality holds in (ii), but we do not need this stronger assertion.
Example 12. The following construction of $X=B_{d, b}(\epsilon, \phi)$ depends on the dimension d, some integer $1 \leq b \leq d-2$, some real numbers $\epsilon>0$ and $0<\phi<\frac{\pi}{2}$, where the value of ϕ is uncritical. For $c:=d-b, 2 \leq c \leq d-1$, we have the orthogonal decomposition $\mathbb{R}^{d}=\mathbb{R}^{b} \oplus \mathbb{R}^{c}$. The subspaces contain unit hyperspheres $S^{b-1} \subseteq \mathbb{R}^{b}$ and $S^{c-1} \subseteq \mathbb{R}^{c}$.
In S^{c-1} choose $c+1$ points $x_{0}, x_{1}, \ldots, x_{c}$ as follows. Fix any direction $v \in S^{c-1}$ and consider the linear hyperplane V which is perpendicular to v. In $S^{c-2}=V \cap S^{c-1}$ choose c equidistant points $\bar{x}_{1}, \ldots, \bar{x}_{c}$ as described in Example 9. Then let

$$
x_{i}:=\cos (\epsilon) \bar{x}_{i}+\sin (\epsilon) v
$$

for $i=1, \ldots, c$. Note that x_{1}, \ldots, x_{c} are equidistant in $S^{c-2}(\cos \epsilon):=(V+$ $\sin (\epsilon) v) \cap S^{c-1}$. The remaining point x_{0} is given by

$$
x_{0}:=-\cos (\phi) x_{1}+\sin (\phi) v
$$

In S^{b-1} choose $b+1$ equidistant points x_{c+1}, \ldots, x_{d+1}, which makes a total of $n=d+2$ points in X.

Proposition 13. For $d \geq 3$ and $X=B_{d, b}(\epsilon, \phi)$ the following statements are true.
(i) X is b-balanced,
(ii) for any large $M>0$ there is an $\epsilon>0$ such that $u^{*}(X) \geq \sqrt{M}$.

Proof. (i) is clear from the definition; the origin is contained in the b-dimensional face spanned by x_{c+1}, \ldots, x_{d+1}. Note that $x_{1}+\ldots+x_{c}=c \sin (\epsilon) v$ and

$$
\sigma:=\left\langle x_{i}, x_{j}\right\rangle=\left\langle\bar{x}_{i}, \bar{x}_{j}\right\rangle \cos ^{2} \epsilon+\sin ^{2} \epsilon=1-\frac{c}{c-1} \cos ^{2} \epsilon
$$

since $\left\langle\bar{x}_{i}, \bar{x}_{j}\right\rangle=-\frac{1}{c-1}$ for all $1 \leq i, j \leq c$. From now on we suppose that ϵ is sufficiently small such that

$$
\begin{equation*}
-\frac{1}{c-1}<\sigma<0 . \tag{6}
\end{equation*}
$$

We also have

$$
\left\langle x_{0}, x_{i}\right\rangle= \begin{cases}-\cos \phi & +\sin \phi \sin \epsilon ; \\ -\sigma \cos \phi & +\sin \phi \sin \epsilon ; \\ -1<i \leq c\end{cases}
$$

To prove (ii), we show that the iteration which starts with x_{0} and adds points from $\left\{x_{1}, \ldots, x_{c}\right\}$ as long as possible is feasible. More precisely,

$$
u_{0}=0, \quad u_{1}=x_{0}, \quad u_{2}=x_{0}+x_{1}, \quad \ldots, \quad u_{c+1}=x_{0}+x_{1}+\cdots+x_{c} .
$$

In general for $i=0,1, \ldots$ we can write

$$
\begin{align*}
u_{i c+1} & =x_{0}+(i-1)\left(x_{1}+x_{2}+\ldots+x_{c}\right) \\
u_{i c+2} & =x_{0}+(i-1)\left(x_{1}+x_{2}+\ldots+x_{c}\right)+x_{1} \\
& \vdots \\
u_{i c+c} & =x_{0}+(i-1)\left(x_{1}+x_{2}+\ldots+x_{c}\right)+\left(x_{1}+x_{2}+\ldots+x_{c-1}\right) \\
u_{(i+1) c+1} & =x_{0}+i\left(x_{1}+x_{2}+\ldots+x_{c}\right) \tag{7}
\end{align*}
$$

In what follows we fix $0 \leq i \leq k$ and $0 \leq j \leq c-1$ arbitrarily, and consider step $s:=(i+1) c+j+1$ of the iteration (7). In other words, we want to control the iteration up to and including step $(k+1) c+m+1$, where $0 \leq m \leq c-1$.
(a) To be able to choose x_{j+1} in step s we must have

$$
\left\langle u_{s}, x_{j+1}\right\rangle \leq 0
$$

(b) Also, to make the choice of x_{j+1} work, the scalar product with all other vectors must be at least as big as the one from (a), or

$$
\left\langle u_{s}, x_{l+1}\right\rangle \geq\left\langle u_{s}, x_{j+1}\right\rangle
$$

for all $0 \leq l \leq c-1$.
(c) The point x_{0} must not come into play, which is the case when

$$
\left\langle u_{s}, x_{0}\right\rangle \geq 0
$$

(d) By construction we have

$$
\left\langle u_{s}, x_{r+1}\right\rangle=0
$$

for $c \leq r \leq d$.
Let us now analyze these conditions. There is nothing to show for (d). For (c) we compute
$\left\langle u_{s}, x_{0}\right\rangle= \begin{cases}1+i c \sin \epsilon \sin \phi ; & j=0, \\ 1-\cos \phi+i c \sin \epsilon \sin \phi-(j-1) \sigma \cos \phi+j \sin \epsilon \sin \phi ; & 0<j \leq c-1 .\end{cases}$

From this expression it is clear that (c) is always satisfied. Looking at (a) and (b) and observing that $1+(c-1) \sigma=c \sin ^{2} \epsilon$ we compute

$$
\left\langle u_{s}, x_{j+1}\right\rangle=\left\{\begin{array}{lll}
i c \sin ^{2} \epsilon-\cos \phi & +\sin \phi \sin \epsilon ; & j=0 \\
i c \sin ^{2} \epsilon+j \sigma-\sigma \cos \phi & +\sin \phi \sin \epsilon ; & 0<j \leq c-1
\end{array}\right.
$$

and for $l \neq j$

$$
\left\langle u_{s}, x_{l+1}\right\rangle= \begin{cases}i c \sin ^{2} \epsilon+(j-1) \sigma+1-\cos \phi & +\sin \phi \sin \epsilon ; 0=l<j \\ i c \sin ^{2} \epsilon+(j-1) \sigma+1-\sigma \cos \phi & +\sin \phi \sin \epsilon ; 0<l<j \\ i c \sin ^{2} \epsilon+j \sigma-\sigma \cos \phi & +\sin \phi \sin \epsilon ; l>j\end{cases}
$$

From these expressions (b) is immediately clear; one just has to compare the varying terms and to use (6). It remains to analyze Condition (a). For $j=0$ it can be expressed as

$$
\begin{equation*}
i \leq \frac{\cos \phi-\sin \phi \sin \epsilon}{c \sin ^{2} \epsilon} \tag{8}
\end{equation*}
$$

for $j>0$ note that we have a set of $c-1$ inequalities, whose "sharpness" increases with j, cf. (6). Therefore it suffices to take the last condition $(j=c-1)$ which reads

$$
\begin{equation*}
i \leq \frac{\sigma(\cos \phi-(c-1))-\sin \phi \sin \epsilon}{c \sin ^{2} \epsilon} \tag{9}
\end{equation*}
$$

In the second and last part of the proof, the assertion is brought into play. Assume the length \sqrt{M} is reached in step $(k+1) c+m+1$, i.e.

$$
\begin{equation*}
\left\|u_{(k+1) c+m+1}\right\|^{2} \geq M \tag{10}
\end{equation*}
$$

For arbitrary k and $1 \leq m \leq c-1$ we have

$$
\begin{aligned}
\left\|u_{(k+1) c+m+1}\right\|^{2}= & 1+(k c+2 m) k c \sin ^{2} \epsilon+(1+(m-1) \sigma)(m-2 \cos \phi)+ \\
& 2(k c+m) \sin \epsilon \sin \phi,
\end{aligned}
$$

while for $m=0$ we get the simpler expression

$$
\begin{equation*}
\left\|u_{(k+1) c+1}\right\|^{2}=1+k^{2} c^{2} \sin ^{2} \epsilon+2 k c \sin \epsilon \sin \phi . \tag{11}
\end{equation*}
$$

Assuming $m=0$ (to use the advantages of the simpler form) and inserting (11) into (10) we get an inequality which is quadratic in k :

$$
k^{2}+k \frac{2}{c} \frac{\sin \phi}{\sin \epsilon}+\frac{1-M}{c^{2} \sin ^{2} \epsilon} \geq 0
$$

Solving the inequality gives

$$
\begin{equation*}
k \geq \frac{\sqrt{\sin ^{2} \phi-1+M}-\sin \phi}{c \sin \epsilon} \tag{12}
\end{equation*}
$$

To finish the proof, we must put together (8) and (12) as well as (9) and (12). For the first pairing, solve

$$
\sqrt{\sin ^{2} \phi-1+M}-\sin \phi \leq \frac{\cos \phi-\sin \phi \sin \epsilon}{\sin \epsilon}
$$

Isolating M yields

$$
M \leq \cos ^{2} \phi\left(1+\frac{1}{\sin ^{2} \epsilon}\right) .
$$

For small ϵ, the right-hand side becomes arbitrarily large, which finishes this part of the proof. For the remaining pairing, one has to solve

$$
\sqrt{\sin ^{2} \phi-1+M}-\sin \phi \leq \frac{\sigma(\cos \phi-(c-1))-\sin \phi \sin \epsilon}{\sin \epsilon} .
$$

Isolating M again gives

$$
M \leq \frac{\sigma^{2}(\cos \phi-(c-1))^{2}}{\sin ^{2} \epsilon}+\cos ^{2} \phi
$$

which with small ϵ again has an arbitrarily large right-hand side.
Example 14. The following construction of a point set $X=C_{d}(\epsilon, \mu, \phi)$ depends on the dimension $d \geq 3$, on real numbers $\epsilon \geq 0, \mu>0$ and $0<\phi<\frac{\pi}{2}$, where the value of ϕ is uncritical. Pick any unit vector $v \in \mathbb{R}^{d}$ which determines a hyperplane V of \mathbb{R}^{d}. In $S^{d-2} \subseteq V$ choose d equidistant points $\bar{x}_{1}, \ldots, \bar{x}_{d}$ as described in Example 9. Then define

$$
x_{i}:=\cos (\epsilon) \bar{x}_{i}-\sin (\epsilon) v
$$

for $i=1, \ldots, d$. The two remaining points are given by

$$
\begin{aligned}
x_{d+1} & =-\cos (\mu) \bar{x}_{1}+\sin (\mu) v, \\
x_{0} & =\cos (\phi) \bar{x}_{1}+\sin (\phi) v .
\end{aligned}
$$

Finally let $X:=\left\{x_{0}, x_{1}, \ldots, x_{d}, x_{d+1}\right\}$.
Proposition 15. For $d \geq 3$ the following statements are true.
(i) $C_{d}(\epsilon, \mu, \phi)$ is d-balanced for $\epsilon>0$, and $(d-1)$-balanced for $\epsilon=0$,
(ii) for any large $M>0$ there is an $\epsilon>0$ such that $u^{*}\left(C_{d}\left(\epsilon, 3 \epsilon, \frac{\pi}{6}\right)\right) \geq \sqrt{M}$,
(iii) for any large $M>0$ there is a $\mu>0$ such that $u^{*}\left(C_{d}\left(0, \mu, \frac{\pi}{6}\right)\right) \geq \sqrt{M}$.

Proof. (i) is immediately clear from the definition, in particular for $\epsilon=0$ the origin is contained in the $(d-1)$-dimensional face spanned by x_{1}, \ldots, x_{d}. We are left with (ii) and (iii) which are shown simultaneously. Consider the following
finite piece of an iteration for $C_{d}(\epsilon, \mu, \phi)$. Start with $u_{0}=0$, and let

$$
\begin{aligned}
u_{1} & =x_{0}, \\
u_{2} & =x_{0}+x_{d+1}, \\
u_{3} & =x_{0}+x_{1}+x_{d+1}, \\
\vdots & \\
u_{2 k-1} & =x_{0}+(k-1)\left(x_{1}+x_{d+1}\right), \\
u_{2 k} & =x_{0}+(k-1)\left(x_{1}+x_{d+1}\right)+x_{d+1}, \\
u_{2 k+1} & =x_{0}+k\left(x_{1}+x_{d+1}\right) .
\end{aligned}
$$

The following conditions (a)-(c) are sufficient for the iteration to work as above, up to step $2 k+1$.
(a) We must have $\left\langle u_{l}, x_{0}\right\rangle \geq 0$ for all $1 \leq l \leq 2 k+1$, i.e. x_{0} is never chosen between steps 2 and $2 k+1$ of the iteration.
(b) Additionally, also the scalar product with the other vector must be at least as big as the chosen one, meaning

$$
\left\langle u_{2 i}, x_{1}\right\rangle \leq\left\langle u_{2 i}, x_{d+1}\right\rangle, \quad\left\langle u_{2 i+1}, x_{d+1}\right\rangle \leq\left\langle u_{2 i+1}, x_{1}\right\rangle
$$

for all $1 \leq i \leq k$.
(c) To be able to choose x_{d+1} in step $2 i$ and x_{1} in step $2 i+1$ we must have

$$
\left\langle u_{2 i}, x_{1}\right\rangle \leq\left\langle u_{2 i}, x_{m}\right\rangle, \quad\left\langle u_{2 i+1}, x_{d+1}\right\rangle \leq\left\langle u_{2 i+1}, x_{m}\right\rangle
$$

for all $1 \leq i \leq k$ and $2 \leq m \leq d$.
In order to examine Condition (a) it is straightforward to compute

$$
\left\langle u_{l}, x_{0}\right\rangle= \begin{cases}1-\cos (\phi+\epsilon) & +i(\cos (\phi+\epsilon)-\cos (\phi+\mu)) ; \quad l=2 i \\ 1 & +i(\cos (\phi+\epsilon)-\cos (\phi+\mu)) ; \quad l=2 i+1\end{cases}
$$

Since $\mu>\epsilon$ for both (ii) and (iii), the terms on the right-hand side are always non-negative. Therefore (a) does not impose any additional condition. Similarly, for Condition (b) we compute

$$
\begin{gathered}
\left\langle u_{l}, x_{1}\right\rangle=\left\{\begin{array}{lll}
\cos (\phi+\epsilon)-1 & +i(1-\cos (\mu-\epsilon)) ; & l=2 i \\
\cos (\phi+\epsilon) & +i(1-\cos (\mu-\epsilon)) ; & l=2 i+1
\end{array}\right. \\
\left\langle u_{l}, x_{d+1}\right\rangle=\left\{\begin{array}{ll}
\cos (\mu-\epsilon)-\cos (\phi+\mu) & +i(1-\cos (\mu-\epsilon)) ; \\
-\cos (\phi+\mu) & +i(1-\cos (\mu-\epsilon)) ;
\end{array} \quad l=2 i+1\right.
\end{gathered}
$$

which is equivalent to

$$
\begin{aligned}
\cos (\phi+\epsilon)-1 & \leq \cos (\mu-\epsilon)-\cos (\phi+\mu) \\
-\cos (\phi+\mu) & \leq \cos (\phi+\epsilon)
\end{aligned}
$$

Again, since both inequalities are always true, (b) does not introduce new conditions either. Finally, Condition (c) requires

$$
\begin{aligned}
\left\langle u_{2 i}, x_{m}\right\rangle-\left\langle u_{2 i}, x_{1}\right\rangle= & \frac{d}{d-1} \cos \epsilon(\cos \epsilon-\cos \phi+i(\cos \mu-\cos \epsilon)) \geq 0 \\
\left\langle u_{2 i+1}, x_{m}\right\rangle-\left\langle u_{2 i+1}, x_{d+1}\right\rangle=- & \frac{d}{d-1} \cos \phi \cos \epsilon+\cos (\phi+\epsilon)+\cos (\phi+\mu)+ \\
& i \frac{d}{d-1}(\cos \mu-\cos \epsilon) \cos \epsilon \geq 0
\end{aligned}
$$

We demand that if i satisfies the first inequality, then it shall also satisfy the second. This leads to the additional condition

$$
\frac{\cos \phi-\cos \epsilon}{\cos \mu-\cos \epsilon} \leq \frac{\frac{d}{d-1} \cos \phi \cos \epsilon-\cos (\phi+\epsilon)-\cos (\phi+\mu)}{\frac{d}{d-1}(\cos \mu-\cos \epsilon) \cos \epsilon}
$$

which is satisfied if $\frac{3}{4} \leq \cos \phi$, which is the reason for the choice of $\phi=\frac{\pi}{6}$. Summing up we are left with the condition

$$
\begin{equation*}
i \leq \frac{\cos \phi-\cos \epsilon}{\cos \mu-\cos \epsilon} \tag{13}
\end{equation*}
$$

We can now finish the proof for (ii) and (iii). If the length \sqrt{M} is reached in step $2 k+1$, then we have

$$
\left\|u_{2 k+1}\right\|^{2}=1+2 k(\cos (\phi+\epsilon)-\cos (\phi+\mu))+2 k^{2}(1-\cos (\mu-\epsilon)) \geq M
$$

Solving the quadratic inequality in k and using standard trigonometric identities we get

$$
\begin{equation*}
k \geq \frac{\sqrt{\sin ^{2}\left(\phi+\frac{\mu+\epsilon}{2}\right)+M-1}-\sin \left(\phi+\frac{\mu+\epsilon}{2}\right)}{2 \sin \frac{\mu-\epsilon}{2}} \tag{14}
\end{equation*}
$$

Putting together (13) and (14) we get

$$
\frac{\cos \phi-\cos \epsilon}{\cos \mu-\cos \epsilon} \geq \frac{\sqrt{\sin ^{2}\left(\phi+\frac{\mu+\epsilon}{2}\right)+M-1}-\sin \left(\phi+\frac{\mu+\epsilon}{2}\right)}{2 \sin \frac{\mu-\epsilon}{2}}
$$

Finally we isolate M and arrive at

$$
M \leq \frac{(\cos \epsilon-\cos \phi)^{2}}{\sin ^{2} \frac{\mu+\epsilon}{2}}+\frac{2(\cos \epsilon-\cos \phi) \sin \left(\phi+\frac{\mu+\epsilon}{2}\right)}{\sin \frac{\mu+\epsilon}{2}}+1
$$

For (ii) replace μ by 3ϵ, for (iii) set $\epsilon=0$. In both cases the right-hand side becomes arbitrarily large when ϵ resp. μ approaches zero.

References

[ATT] The On-Line Encyclopedia of Integer Sequences, see http://www.research.att.com/~njas/sequences/A002620, AT\&T Labs Research.
[BC03] Mihai Bădoiu and Kenneth L. Clarkson, Smaller core-sets for balls, Proc. 14th ACMSIAM Symposium on Discrete Algorithms (SoDA), 2003, pp. 801-802.
[FG03] Kaspar Fischer and Bernd Gärtner, The Smallest Enclosing Ball of Balls: Combinatorial Structure and Algorithms, SoCG'03, June 8-10, 2003, San Diego, California, USA, 2003, pp. 292-301.
[FGK03] Kaspar Fischer, Bernd Gärtner, and Martin Kutz, Fast smallest-enclosing-ball computation in high dimensions, ESA 2003, 11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003 (Giuseppe Di Battista and Uri Zwick, eds.), Lecture Notes in Computer Science, vol. 2832, Springer, 2003, pp. 630-641.
[FIG] Animated version of Figure $\mathbb{1}$ see http://www.math.tu-berlin.de/~tbinder/animation.gif.
[MMM06] Thomas Martinetz, Amir Madany Mamlouk, and Cicero Mota, Fast and Easy Computation of Approximate Smallest Enclosing Balls, Proc. SIBGRAPI, 2006, pp. 163170.
[Wel91] Emo Welzl, Smallest enclosing disks (balls and ellipsoids), New Results and New Trends in Computer Science (Hermann Maurer, ed.), Lecture Notes in Computer Science, vol. 555, Springer, 1991, pp. 359-370.

University of Lübeck, Institute of Mathematics, Wallstrasse 40, D-23560 Lübeck, Germany
E-mail address: thmsbinder@gmail.com
University of Lübeck, Institute for Neuro- und Bioinformatics, Ratzeburger Allee 160, D-23538 Lübeck, Germany
E-mail address: martinetz@informatik.uni-luebeck.de

